blob: 99c665f420e664b3f3884f901a7dad84dd3a4ae0 [file] [log] [blame]
//===--- Randstruct.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation for Clang's structure field layout
// randomization.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/Randstruct.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTDiagnostic.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h" // For StaticAssertDecl
#include "clang/Basic/Diagnostic.h"
#include "llvm/ADT/SmallVector.h"
#include <algorithm>
#include <random>
#include <set>
#include <sstream>
#include <string>
using clang::ASTContext;
using clang::FieldDecl;
using llvm::SmallVector;
namespace {
// FIXME: Replace this with some discovery once that mechanism exists.
enum { CACHE_LINE = 64 };
// The Bucket class holds the struct fields we're trying to fill to a
// cache-line.
class Bucket {
SmallVector<FieldDecl *, 64> Fields;
int Size = 0;
public:
virtual ~Bucket() = default;
SmallVector<FieldDecl *, 64> &fields() { return Fields; }
void addField(FieldDecl *Field, int FieldSize);
virtual bool canFit(int FieldSize) const {
return Size + FieldSize <= CACHE_LINE;
}
virtual bool isBitfieldRun() const { return false; }
bool full() const { return Size >= CACHE_LINE; }
};
void Bucket::addField(FieldDecl *Field, int FieldSize) {
Size += FieldSize;
Fields.push_back(Field);
}
struct BitfieldRunBucket : public Bucket {
bool canFit(int FieldSize) const override { return true; }
bool isBitfieldRun() const override { return true; }
};
void randomizeStructureLayoutImpl(const ASTContext &Context,
llvm::SmallVectorImpl<FieldDecl *> &FieldsOut,
std::mt19937 &RNG) {
// All of the Buckets produced by best-effort cache-line algorithm.
SmallVector<std::unique_ptr<Bucket>, 16> Buckets;
// The current bucket of fields that we are trying to fill to a cache-line.
std::unique_ptr<Bucket> CurrentBucket;
// The current bucket containing the run of adjacent bitfields to ensure they
// remain adjacent.
std::unique_ptr<BitfieldRunBucket> CurrentBitfieldRun;
// Tracks the number of fields that we failed to fit to the current bucket,
// and thus still need to be added later.
size_t Skipped = 0;
while (!FieldsOut.empty()) {
// If we've Skipped more fields than we have remaining to place, that means
// that they can't fit in our current bucket, and we need to start a new
// one.
if (Skipped >= FieldsOut.size()) {
Skipped = 0;
Buckets.push_back(std::move(CurrentBucket));
}
// Take the first field that needs to be put in a bucket.
auto FieldIter = FieldsOut.begin();
FieldDecl *FD = *FieldIter;
if (FD->isBitField() && !FD->isZeroLengthBitField(Context)) {
// Start a bitfield run if this is the first bitfield we have found.
if (!CurrentBitfieldRun)
CurrentBitfieldRun = std::make_unique<BitfieldRunBucket>();
// We've placed the field, and can remove it from the "awaiting Buckets"
// vector called "Fields."
CurrentBitfieldRun->addField(FD, /*FieldSize is irrelevant here*/ 1);
FieldsOut.erase(FieldIter);
continue;
}
// Else, current field is not a bitfield. If we were previously in a
// bitfield run, end it.
if (CurrentBitfieldRun)
Buckets.push_back(std::move(CurrentBitfieldRun));
// If we don't have a bucket, make one.
if (!CurrentBucket)
CurrentBucket = std::make_unique<Bucket>();
uint64_t Width = Context.getTypeInfo(FD->getType()).Width;
if (Width >= CACHE_LINE) {
std::unique_ptr<Bucket> OverSized = std::make_unique<Bucket>();
OverSized->addField(FD, Width);
FieldsOut.erase(FieldIter);
Buckets.push_back(std::move(OverSized));
continue;
}
// If it fits, add it.
if (CurrentBucket->canFit(Width)) {
CurrentBucket->addField(FD, Width);
FieldsOut.erase(FieldIter);
// If it's now full, tie off the bucket.
if (CurrentBucket->full()) {
Skipped = 0;
Buckets.push_back(std::move(CurrentBucket));
}
} else {
// We can't fit it in our current bucket. Move to the end for processing
// later.
++Skipped; // Mark it skipped.
FieldsOut.push_back(FD);
FieldsOut.erase(FieldIter);
}
}
// Done processing the fields awaiting a bucket.
// If we were filling a bucket, tie it off.
if (CurrentBucket)
Buckets.push_back(std::move(CurrentBucket));
// If we were processing a bitfield run bucket, tie it off.
if (CurrentBitfieldRun)
Buckets.push_back(std::move(CurrentBitfieldRun));
std::shuffle(std::begin(Buckets), std::end(Buckets), RNG);
// Produce the new ordering of the elements from the Buckets.
SmallVector<FieldDecl *, 16> FinalOrder;
for (const std::unique_ptr<Bucket> &B : Buckets) {
llvm::SmallVectorImpl<FieldDecl *> &RandFields = B->fields();
if (!B->isBitfieldRun())
std::shuffle(std::begin(RandFields), std::end(RandFields), RNG);
FinalOrder.insert(FinalOrder.end(), RandFields.begin(), RandFields.end());
}
FieldsOut = FinalOrder;
}
} // anonymous namespace
namespace clang {
namespace randstruct {
bool randomizeStructureLayout(const ASTContext &Context, RecordDecl *RD,
SmallVectorImpl<Decl *> &FinalOrdering) {
SmallVector<FieldDecl *, 64> RandomizedFields;
SmallVector<Decl *, 8> PostRandomizedFields;
unsigned TotalNumFields = 0;
for (Decl *D : RD->decls()) {
++TotalNumFields;
if (auto *FD = dyn_cast<FieldDecl>(D))
RandomizedFields.push_back(FD);
else if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D))
PostRandomizedFields.push_back(D);
else
FinalOrdering.push_back(D);
}
if (RandomizedFields.empty())
return false;
// Struct might end with a flexible array or an array of size 0 or 1,
// in which case we don't want to randomize it.
FieldDecl *FlexibleArray =
RD->hasFlexibleArrayMember() ? RandomizedFields.pop_back_val() : nullptr;
if (!FlexibleArray) {
if (const auto *CA =
dyn_cast<ConstantArrayType>(RandomizedFields.back()->getType()))
if (CA->getSize().sle(2))
FlexibleArray = RandomizedFields.pop_back_val();
}
std::string Seed =
Context.getLangOpts().RandstructSeed + RD->getNameAsString();
std::seed_seq SeedSeq(Seed.begin(), Seed.end());
std::mt19937 RNG(SeedSeq);
randomizeStructureLayoutImpl(Context, RandomizedFields, RNG);
// Plorp the randomized decls into the final ordering.
FinalOrdering.insert(FinalOrdering.end(), RandomizedFields.begin(),
RandomizedFields.end());
// Add fields that belong towards the end of the RecordDecl.
FinalOrdering.insert(FinalOrdering.end(), PostRandomizedFields.begin(),
PostRandomizedFields.end());
// Add back the flexible array.
if (FlexibleArray)
FinalOrdering.push_back(FlexibleArray);
assert(TotalNumFields == FinalOrdering.size() &&
"Decl count has been altered after Randstruct randomization!");
(void)TotalNumFields;
return true;
}
} // end namespace randstruct
} // end namespace clang