blob: 0be4564e1e9ec4c89a34d823393f6a30360b976c [file] [log] [blame]
//===--- Function.h - Bytecode function for the VM --------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the Function class which holds all bytecode function-specific data.
//
// The scope class which describes local variables is also defined here.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_AST_INTERP_FUNCTION_H
#define LLVM_CLANG_AST_INTERP_FUNCTION_H
#include "Descriptor.h"
#include "Source.h"
#include "clang/AST/ASTLambda.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "llvm/Support/raw_ostream.h"
namespace clang {
namespace interp {
class Program;
class ByteCodeEmitter;
class Pointer;
enum PrimType : uint32_t;
/// Describes a scope block.
///
/// The block gathers all the descriptors of the locals defined in this block.
class Scope final {
public:
/// Information about a local's storage.
struct Local {
/// Offset of the local in frame.
unsigned Offset;
/// Descriptor of the local.
Descriptor *Desc;
};
using LocalVectorTy = llvm::SmallVector<Local, 8>;
Scope(LocalVectorTy &&Descriptors) : Descriptors(std::move(Descriptors)) {}
llvm::iterator_range<LocalVectorTy::const_iterator> locals() const {
return llvm::make_range(Descriptors.begin(), Descriptors.end());
}
private:
/// Object descriptors in this block.
LocalVectorTy Descriptors;
};
/// Bytecode function.
///
/// Contains links to the bytecode of the function, as well as metadata
/// describing all arguments and stack-local variables.
///
/// # Calling Convention
///
/// When calling a function, all argument values must be on the stack.
///
/// If the function has a This pointer (i.e. hasThisPointer() returns true,
/// the argument values need to be preceeded by a Pointer for the This object.
///
/// If the function uses Return Value Optimization, the arguments (and
/// potentially the This pointer) need to be preceeded by a Pointer pointing
/// to the location to construct the returned value.
///
/// After the function has been called, it will remove all arguments,
/// including RVO and This pointer, from the stack.
///
class Function final {
public:
using ParamDescriptor = std::pair<PrimType, Descriptor *>;
/// Returns the size of the function's local stack.
unsigned getFrameSize() const { return FrameSize; }
/// Returns the size of the argument stack.
unsigned getArgSize() const { return ArgSize; }
/// Returns a pointer to the start of the code.
CodePtr getCodeBegin() const { return Code.data(); }
/// Returns a pointer to the end of the code.
CodePtr getCodeEnd() const { return Code.data() + Code.size(); }
/// Returns the original FunctionDecl.
const FunctionDecl *getDecl() const { return F; }
/// Returns the name of the function decl this code
/// was generated for.
const std::string getName() const {
if (!F)
return "<<expr>>";
return F->getQualifiedNameAsString();
}
/// Returns the location.
SourceLocation getLoc() const { return Loc; }
/// Returns a parameter descriptor.
ParamDescriptor getParamDescriptor(unsigned Offset) const;
/// Checks if the first argument is a RVO pointer.
bool hasRVO() const { return HasRVO; }
bool hasNonNullAttr() const { return getDecl()->hasAttr<NonNullAttr>(); }
/// Range over the scope blocks.
llvm::iterator_range<llvm::SmallVector<Scope, 2>::const_iterator>
scopes() const {
return llvm::make_range(Scopes.begin(), Scopes.end());
}
/// Range over argument types.
using arg_reverse_iterator =
SmallVectorImpl<PrimType>::const_reverse_iterator;
llvm::iterator_range<arg_reverse_iterator> args_reverse() const {
return llvm::reverse(ParamTypes);
}
/// Returns a specific scope.
Scope &getScope(unsigned Idx) { return Scopes[Idx]; }
const Scope &getScope(unsigned Idx) const { return Scopes[Idx]; }
/// Returns the source information at a given PC.
SourceInfo getSource(CodePtr PC) const;
/// Checks if the function is valid to call in constexpr.
bool isConstexpr() const { return IsValid || isLambdaStaticInvoker(); }
/// Checks if the function is virtual.
bool isVirtual() const;
/// Checks if the function is a constructor.
bool isConstructor() const { return isa<CXXConstructorDecl>(F); }
/// Checks if the function is a destructor.
bool isDestructor() const { return isa<CXXDestructorDecl>(F); }
/// Returns the parent record decl, if any.
const CXXRecordDecl *getParentDecl() const {
if (const auto *MD = dyn_cast<CXXMethodDecl>(F))
return MD->getParent();
return nullptr;
}
/// Returns whether this function is a lambda static invoker,
/// which we generate custom byte code for.
bool isLambdaStaticInvoker() const {
if (const auto *MD = dyn_cast<CXXMethodDecl>(F))
return MD->isLambdaStaticInvoker();
return false;
}
/// Returns whether this function is the call operator
/// of a lambda record decl.
bool isLambdaCallOperator() const {
if (const auto *MD = dyn_cast<CXXMethodDecl>(F))
return clang::isLambdaCallOperator(MD);
return false;
}
/// Checks if the function is fully done compiling.
bool isFullyCompiled() const { return IsFullyCompiled; }
bool hasThisPointer() const { return HasThisPointer; }
/// Checks if the function already has a body attached.
bool hasBody() const { return HasBody; }
/// Checks if the function is defined.
bool isDefined() const { return Defined; }
bool isVariadic() const { return Variadic; }
unsigned getBuiltinID() const { return F->getBuiltinID(); }
bool isBuiltin() const { return F->getBuiltinID() != 0; }
bool isUnevaluatedBuiltin() const { return IsUnevaluatedBuiltin; }
unsigned getNumParams() const { return ParamTypes.size(); }
/// Returns the number of parameter this function takes when it's called,
/// i.e excluding the instance pointer and the RVO pointer.
unsigned getNumWrittenParams() const {
assert(getNumParams() >= (unsigned)(hasThisPointer() + hasRVO()));
return getNumParams() - hasThisPointer() - hasRVO();
}
unsigned getWrittenArgSize() const {
return ArgSize - (align(primSize(PT_Ptr)) * (hasThisPointer() + hasRVO()));
}
unsigned getParamOffset(unsigned ParamIndex) const {
return ParamOffsets[ParamIndex];
}
private:
/// Construct a function representing an actual function.
Function(Program &P, const FunctionDecl *F, unsigned ArgSize,
llvm::SmallVectorImpl<PrimType> &&ParamTypes,
llvm::DenseMap<unsigned, ParamDescriptor> &&Params,
llvm::SmallVectorImpl<unsigned> &&ParamOffsets, bool HasThisPointer,
bool HasRVO, bool UnevaluatedBuiltin);
/// Sets the code of a function.
void setCode(unsigned NewFrameSize, std::vector<std::byte> &&NewCode,
SourceMap &&NewSrcMap, llvm::SmallVector<Scope, 2> &&NewScopes,
bool NewHasBody) {
FrameSize = NewFrameSize;
Code = std::move(NewCode);
SrcMap = std::move(NewSrcMap);
Scopes = std::move(NewScopes);
IsValid = true;
HasBody = NewHasBody;
}
void setIsFullyCompiled(bool FC) { IsFullyCompiled = FC; }
void setDefined(bool D) { Defined = D; }
private:
friend class Program;
friend class ByteCodeEmitter;
/// Program reference.
Program &P;
/// Location of the executed code.
SourceLocation Loc;
/// Declaration this function was compiled from.
const FunctionDecl *F;
/// Local area size: storage + metadata.
unsigned FrameSize = 0;
/// Size of the argument stack.
unsigned ArgSize;
/// Program code.
std::vector<std::byte> Code;
/// Opcode-to-expression mapping.
SourceMap SrcMap;
/// List of block descriptors.
llvm::SmallVector<Scope, 2> Scopes;
/// List of argument types.
llvm::SmallVector<PrimType, 8> ParamTypes;
/// Map from byte offset to parameter descriptor.
llvm::DenseMap<unsigned, ParamDescriptor> Params;
/// List of parameter offsets.
llvm::SmallVector<unsigned, 8> ParamOffsets;
/// Flag to indicate if the function is valid.
bool IsValid = false;
/// Flag to indicate if the function is done being
/// compiled to bytecode.
bool IsFullyCompiled = false;
/// Flag indicating if this function takes the this pointer
/// as the first implicit argument
bool HasThisPointer = false;
/// Whether this function has Return Value Optimization, i.e.
/// the return value is constructed in the caller's stack frame.
/// This is done for functions that return non-primive values.
bool HasRVO = false;
/// If we've already compiled the function's body.
bool HasBody = false;
bool Defined = false;
bool Variadic = false;
bool IsUnevaluatedBuiltin = false;
public:
/// Dumps the disassembled bytecode to \c llvm::errs().
void dump() const;
void dump(llvm::raw_ostream &OS) const;
};
} // namespace interp
} // namespace clang
#endif