blob: 25a5fa05b21c7d8ab1054231de0af5f109b74227 [file] [log] [blame]
//======- ParsedAttr.h - Parsed attribute sets ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the ParsedAttr class, which is used to collect
// parsed attributes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_SEMA_PARSEDATTR_H
#define LLVM_CLANG_SEMA_PARSEDATTR_H
#include "clang/Basic/AttrSubjectMatchRules.h"
#include "clang/Basic/AttributeCommonInfo.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/ParsedAttrInfo.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Sema/Ownership.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/VersionTuple.h"
#include <bitset>
#include <cassert>
#include <cstddef>
#include <cstring>
#include <utility>
namespace clang {
class ASTContext;
class Decl;
class Expr;
class IdentifierInfo;
class LangOptions;
class Sema;
class Stmt;
class TargetInfo;
/// Represents information about a change in availability for
/// an entity, which is part of the encoding of the 'availability'
/// attribute.
struct AvailabilityChange {
/// The location of the keyword indicating the kind of change.
SourceLocation KeywordLoc;
/// The version number at which the change occurred.
VersionTuple Version;
/// The source range covering the version number.
SourceRange VersionRange;
/// Determine whether this availability change is valid.
bool isValid() const { return !Version.empty(); }
};
namespace detail {
enum AvailabilitySlot {
IntroducedSlot, DeprecatedSlot, ObsoletedSlot, NumAvailabilitySlots
};
/// Describes the trailing object for Availability attribute in ParsedAttr.
struct AvailabilityData {
AvailabilityChange Changes[NumAvailabilitySlots];
SourceLocation StrictLoc;
const Expr *Replacement;
AvailabilityData(const AvailabilityChange &Introduced,
const AvailabilityChange &Deprecated,
const AvailabilityChange &Obsoleted,
SourceLocation Strict, const Expr *ReplaceExpr)
: StrictLoc(Strict), Replacement(ReplaceExpr) {
Changes[IntroducedSlot] = Introduced;
Changes[DeprecatedSlot] = Deprecated;
Changes[ObsoletedSlot] = Obsoleted;
}
};
struct TypeTagForDatatypeData {
ParsedType MatchingCType;
LLVM_PREFERRED_TYPE(bool)
unsigned LayoutCompatible : 1;
LLVM_PREFERRED_TYPE(bool)
unsigned MustBeNull : 1;
};
struct PropertyData {
IdentifierInfo *GetterId, *SetterId;
PropertyData(IdentifierInfo *getterId, IdentifierInfo *setterId)
: GetterId(getterId), SetterId(setterId) {}
};
} // namespace detail
/// Wraps an identifier and optional source location for the identifier.
struct IdentifierLoc {
SourceLocation Loc;
IdentifierInfo *Ident;
static IdentifierLoc *create(ASTContext &Ctx, SourceLocation Loc,
IdentifierInfo *Ident);
};
/// A union of the various pointer types that can be passed to an
/// ParsedAttr as an argument.
using ArgsUnion = llvm::PointerUnion<Expr *, IdentifierLoc *>;
using ArgsVector = llvm::SmallVector<ArgsUnion, 12U>;
/// ParsedAttr - Represents a syntactic attribute.
///
/// For a GNU attribute, there are four forms of this construct:
///
/// 1: __attribute__(( const )). ParmName/Args/NumArgs will all be unused.
/// 2: __attribute__(( mode(byte) )). ParmName used, Args/NumArgs unused.
/// 3: __attribute__(( format(printf, 1, 2) )). ParmName/Args/NumArgs all used.
/// 4: __attribute__(( aligned(16) )). ParmName is unused, Args/Num used.
///
class ParsedAttr final
: public AttributeCommonInfo,
private llvm::TrailingObjects<
ParsedAttr, ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType, detail::PropertyData> {
friend TrailingObjects;
size_t numTrailingObjects(OverloadToken<ArgsUnion>) const { return NumArgs; }
size_t numTrailingObjects(OverloadToken<detail::AvailabilityData>) const {
return IsAvailability;
}
size_t
numTrailingObjects(OverloadToken<detail::TypeTagForDatatypeData>) const {
return IsTypeTagForDatatype;
}
size_t numTrailingObjects(OverloadToken<ParsedType>) const {
return HasParsedType;
}
size_t numTrailingObjects(OverloadToken<detail::PropertyData>) const {
return IsProperty;
}
private:
IdentifierInfo *MacroII = nullptr;
SourceLocation MacroExpansionLoc;
SourceLocation EllipsisLoc;
/// The number of expression arguments this attribute has.
/// The expressions themselves are stored after the object.
unsigned NumArgs : 16;
/// True if already diagnosed as invalid.
LLVM_PREFERRED_TYPE(bool)
mutable unsigned Invalid : 1;
/// True if this attribute was used as a type attribute.
LLVM_PREFERRED_TYPE(bool)
mutable unsigned UsedAsTypeAttr : 1;
/// True if this has the extra information associated with an
/// availability attribute.
LLVM_PREFERRED_TYPE(bool)
unsigned IsAvailability : 1;
/// True if this has extra information associated with a
/// type_tag_for_datatype attribute.
LLVM_PREFERRED_TYPE(bool)
unsigned IsTypeTagForDatatype : 1;
/// True if this has extra information associated with a
/// Microsoft __delcspec(property) attribute.
LLVM_PREFERRED_TYPE(bool)
unsigned IsProperty : 1;
/// True if this has a ParsedType
LLVM_PREFERRED_TYPE(bool)
unsigned HasParsedType : 1;
/// True if the processing cache is valid.
LLVM_PREFERRED_TYPE(bool)
mutable unsigned HasProcessingCache : 1;
/// A cached value.
mutable unsigned ProcessingCache : 8;
/// True if the attribute is specified using '#pragma clang attribute'.
LLVM_PREFERRED_TYPE(bool)
mutable unsigned IsPragmaClangAttribute : 1;
/// The location of the 'unavailable' keyword in an
/// availability attribute.
SourceLocation UnavailableLoc;
const Expr *MessageExpr;
const ParsedAttrInfo &Info;
ArgsUnion *getArgsBuffer() { return getTrailingObjects<ArgsUnion>(); }
ArgsUnion const *getArgsBuffer() const {
return getTrailingObjects<ArgsUnion>();
}
detail::AvailabilityData *getAvailabilityData() {
return getTrailingObjects<detail::AvailabilityData>();
}
const detail::AvailabilityData *getAvailabilityData() const {
return getTrailingObjects<detail::AvailabilityData>();
}
private:
friend class AttributeFactory;
friend class AttributePool;
/// Constructor for attributes with expression arguments.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
ArgsUnion *args, unsigned numArgs, Form formUsed,
SourceLocation ellipsisLoc)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
EllipsisLoc(ellipsisLoc), NumArgs(numArgs), Invalid(false),
UsedAsTypeAttr(false), IsAvailability(false),
IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false),
HasProcessingCache(false), IsPragmaClangAttribute(false),
Info(ParsedAttrInfo::get(*this)) {
if (numArgs)
memcpy(getArgsBuffer(), args, numArgs * sizeof(ArgsUnion));
}
/// Constructor for availability attributes.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Parm, const AvailabilityChange &introduced,
const AvailabilityChange &deprecated,
const AvailabilityChange &obsoleted, SourceLocation unavailable,
const Expr *messageExpr, Form formUsed, SourceLocation strict,
const Expr *replacementExpr)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
NumArgs(1), Invalid(false), UsedAsTypeAttr(false), IsAvailability(true),
IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(false),
HasProcessingCache(false), IsPragmaClangAttribute(false),
UnavailableLoc(unavailable), MessageExpr(messageExpr),
Info(ParsedAttrInfo::get(*this)) {
ArgsUnion PVal(Parm);
memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion));
new (getAvailabilityData()) detail::AvailabilityData(
introduced, deprecated, obsoleted, strict, replacementExpr);
}
/// Constructor for objc_bridge_related attributes.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Parm1, IdentifierLoc *Parm2, IdentifierLoc *Parm3,
Form formUsed)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
NumArgs(3), Invalid(false), UsedAsTypeAttr(false),
IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(false),
HasParsedType(false), HasProcessingCache(false),
IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) {
ArgsUnion *Args = getArgsBuffer();
Args[0] = Parm1;
Args[1] = Parm2;
Args[2] = Parm3;
}
/// Constructor for type_tag_for_datatype attribute.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *ArgKind, ParsedType matchingCType,
bool layoutCompatible, bool mustBeNull, Form formUsed)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
NumArgs(1), Invalid(false), UsedAsTypeAttr(false),
IsAvailability(false), IsTypeTagForDatatype(true), IsProperty(false),
HasParsedType(false), HasProcessingCache(false),
IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) {
ArgsUnion PVal(ArgKind);
memcpy(getArgsBuffer(), &PVal, sizeof(ArgsUnion));
detail::TypeTagForDatatypeData &ExtraData = getTypeTagForDatatypeDataSlot();
new (&ExtraData.MatchingCType) ParsedType(matchingCType);
ExtraData.LayoutCompatible = layoutCompatible;
ExtraData.MustBeNull = mustBeNull;
}
/// Constructor for attributes with a single type argument.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
ParsedType typeArg, Form formUsed, SourceLocation ellipsisLoc)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
EllipsisLoc(ellipsisLoc), NumArgs(0), Invalid(false),
UsedAsTypeAttr(false), IsAvailability(false),
IsTypeTagForDatatype(false), IsProperty(false), HasParsedType(true),
HasProcessingCache(false), IsPragmaClangAttribute(false),
Info(ParsedAttrInfo::get(*this)) {
new (&getTypeBuffer()) ParsedType(typeArg);
}
/// Constructor for microsoft __declspec(property) attribute.
ParsedAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierInfo *getterId, IdentifierInfo *setterId, Form formUsed)
: AttributeCommonInfo(attrName, scopeName, attrRange, scopeLoc, formUsed),
NumArgs(0), Invalid(false), UsedAsTypeAttr(false),
IsAvailability(false), IsTypeTagForDatatype(false), IsProperty(true),
HasParsedType(false), HasProcessingCache(false),
IsPragmaClangAttribute(false), Info(ParsedAttrInfo::get(*this)) {
new (&getPropertyDataBuffer()) detail::PropertyData(getterId, setterId);
}
/// Type tag information is stored immediately following the arguments, if
/// any, at the end of the object. They are mutually exclusive with
/// availability slots.
detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() {
return *getTrailingObjects<detail::TypeTagForDatatypeData>();
}
const detail::TypeTagForDatatypeData &getTypeTagForDatatypeDataSlot() const {
return *getTrailingObjects<detail::TypeTagForDatatypeData>();
}
/// The type buffer immediately follows the object and are mutually exclusive
/// with arguments.
ParsedType &getTypeBuffer() { return *getTrailingObjects<ParsedType>(); }
const ParsedType &getTypeBuffer() const {
return *getTrailingObjects<ParsedType>();
}
/// The property data immediately follows the object is mutually exclusive
/// with arguments.
detail::PropertyData &getPropertyDataBuffer() {
assert(IsProperty);
return *getTrailingObjects<detail::PropertyData>();
}
const detail::PropertyData &getPropertyDataBuffer() const {
assert(IsProperty);
return *getTrailingObjects<detail::PropertyData>();
}
size_t allocated_size() const;
public:
ParsedAttr(const ParsedAttr &) = delete;
ParsedAttr(ParsedAttr &&) = delete;
ParsedAttr &operator=(const ParsedAttr &) = delete;
ParsedAttr &operator=(ParsedAttr &&) = delete;
~ParsedAttr() = delete;
void operator delete(void *) = delete;
bool hasParsedType() const { return HasParsedType; }
/// Is this the Microsoft __declspec(property) attribute?
bool isDeclspecPropertyAttribute() const {
return IsProperty;
}
bool isInvalid() const { return Invalid; }
void setInvalid(bool b = true) const { Invalid = b; }
bool hasProcessingCache() const { return HasProcessingCache; }
unsigned getProcessingCache() const {
assert(hasProcessingCache());
return ProcessingCache;
}
void setProcessingCache(unsigned value) const {
ProcessingCache = value;
HasProcessingCache = true;
}
bool isUsedAsTypeAttr() const { return UsedAsTypeAttr; }
void setUsedAsTypeAttr(bool Used = true) { UsedAsTypeAttr = Used; }
/// True if the attribute is specified using '#pragma clang attribute'.
bool isPragmaClangAttribute() const { return IsPragmaClangAttribute; }
void setIsPragmaClangAttribute() { IsPragmaClangAttribute = true; }
bool isPackExpansion() const { return EllipsisLoc.isValid(); }
SourceLocation getEllipsisLoc() const { return EllipsisLoc; }
/// getNumArgs - Return the number of actual arguments to this attribute.
unsigned getNumArgs() const { return NumArgs; }
/// getArg - Return the specified argument.
ArgsUnion getArg(unsigned Arg) const {
assert(Arg < NumArgs && "Arg access out of range!");
return getArgsBuffer()[Arg];
}
bool isArgExpr(unsigned Arg) const {
return Arg < NumArgs && getArg(Arg).is<Expr*>();
}
Expr *getArgAsExpr(unsigned Arg) const {
return getArg(Arg).get<Expr*>();
}
bool isArgIdent(unsigned Arg) const {
return Arg < NumArgs && getArg(Arg).is<IdentifierLoc*>();
}
IdentifierLoc *getArgAsIdent(unsigned Arg) const {
return getArg(Arg).get<IdentifierLoc*>();
}
const AvailabilityChange &getAvailabilityIntroduced() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return getAvailabilityData()->Changes[detail::IntroducedSlot];
}
const AvailabilityChange &getAvailabilityDeprecated() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return getAvailabilityData()->Changes[detail::DeprecatedSlot];
}
const AvailabilityChange &getAvailabilityObsoleted() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return getAvailabilityData()->Changes[detail::ObsoletedSlot];
}
SourceLocation getStrictLoc() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return getAvailabilityData()->StrictLoc;
}
SourceLocation getUnavailableLoc() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return UnavailableLoc;
}
const Expr * getMessageExpr() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return MessageExpr;
}
const Expr *getReplacementExpr() const {
assert(getParsedKind() == AT_Availability &&
"Not an availability attribute");
return getAvailabilityData()->Replacement;
}
const ParsedType &getMatchingCType() const {
assert(getParsedKind() == AT_TypeTagForDatatype &&
"Not a type_tag_for_datatype attribute");
return getTypeTagForDatatypeDataSlot().MatchingCType;
}
bool getLayoutCompatible() const {
assert(getParsedKind() == AT_TypeTagForDatatype &&
"Not a type_tag_for_datatype attribute");
return getTypeTagForDatatypeDataSlot().LayoutCompatible;
}
bool getMustBeNull() const {
assert(getParsedKind() == AT_TypeTagForDatatype &&
"Not a type_tag_for_datatype attribute");
return getTypeTagForDatatypeDataSlot().MustBeNull;
}
const ParsedType &getTypeArg() const {
assert(HasParsedType && "Not a type attribute");
return getTypeBuffer();
}
IdentifierInfo *getPropertyDataGetter() const {
assert(isDeclspecPropertyAttribute() &&
"Not a __delcspec(property) attribute");
return getPropertyDataBuffer().GetterId;
}
IdentifierInfo *getPropertyDataSetter() const {
assert(isDeclspecPropertyAttribute() &&
"Not a __delcspec(property) attribute");
return getPropertyDataBuffer().SetterId;
}
/// Set the macro identifier info object that this parsed attribute was
/// declared in if it was declared in a macro. Also set the expansion location
/// of the macro.
void setMacroIdentifier(IdentifierInfo *MacroName, SourceLocation Loc) {
MacroII = MacroName;
MacroExpansionLoc = Loc;
}
/// Returns true if this attribute was declared in a macro.
bool hasMacroIdentifier() const { return MacroII != nullptr; }
/// Return the macro identifier if this attribute was declared in a macro.
/// nullptr is returned if it was not declared in a macro.
IdentifierInfo *getMacroIdentifier() const { return MacroII; }
SourceLocation getMacroExpansionLoc() const {
assert(hasMacroIdentifier() && "Can only get the macro expansion location "
"if this attribute has a macro identifier.");
return MacroExpansionLoc;
}
/// Check if the attribute has exactly as many args as Num. May output an
/// error. Returns false if a diagnostic is produced.
bool checkExactlyNumArgs(class Sema &S, unsigned Num) const;
/// Check if the attribute has at least as many args as Num. May output an
/// error. Returns false if a diagnostic is produced.
bool checkAtLeastNumArgs(class Sema &S, unsigned Num) const;
/// Check if the attribute has at most as many args as Num. May output an
/// error. Returns false if a diagnostic is produced.
bool checkAtMostNumArgs(class Sema &S, unsigned Num) const;
bool isTargetSpecificAttr() const;
bool isTypeAttr() const;
bool isStmtAttr() const;
bool hasCustomParsing() const;
bool acceptsExprPack() const;
bool isParamExpr(size_t N) const;
unsigned getMinArgs() const;
unsigned getMaxArgs() const;
unsigned getNumArgMembers() const;
bool hasVariadicArg() const;
void handleAttrWithDelayedArgs(Sema &S, Decl *D) const;
bool diagnoseAppertainsTo(class Sema &S, const Decl *D) const;
bool diagnoseAppertainsTo(class Sema &S, const Stmt *St) const;
bool diagnoseMutualExclusion(class Sema &S, const Decl *D) const;
// This function stub exists for parity with the declaration checking code so
// that checkCommonAttributeFeatures() can work generically on declarations
// or statements.
bool diagnoseMutualExclusion(class Sema &S, const Stmt *St) const {
return true;
}
bool appliesToDecl(const Decl *D, attr::SubjectMatchRule MatchRule) const;
void getMatchRules(const LangOptions &LangOpts,
SmallVectorImpl<std::pair<attr::SubjectMatchRule, bool>>
&MatchRules) const;
bool diagnoseLangOpts(class Sema &S) const;
bool existsInTarget(const TargetInfo &Target) const;
bool isKnownToGCC() const;
bool isSupportedByPragmaAttribute() const;
/// Returns whether a [[]] attribute, if specified ahead of a declaration,
/// should be applied to the decl-specifier-seq instead (i.e. whether it
/// "slides" to the decl-specifier-seq).
///
/// By the standard, attributes specified before the declaration always
/// appertain to the declaration, but historically we have allowed some of
/// these attributes to slide to the decl-specifier-seq, so we need to keep
/// supporting this behavior.
///
/// This may only be called if isStandardAttributeSyntax() returns true.
bool slidesFromDeclToDeclSpecLegacyBehavior() const;
/// If the parsed attribute has a semantic equivalent, and it would
/// have a semantic Spelling enumeration (due to having semantically-distinct
/// spelling variations), return the value of that semantic spelling. If the
/// parsed attribute does not have a semantic equivalent, or would not have
/// a Spelling enumeration, the value UINT_MAX is returned.
unsigned getSemanticSpelling() const;
/// If this is an OpenCL address space attribute, returns its representation
/// in LangAS, otherwise returns default address space.
LangAS asOpenCLLangAS() const {
switch (getParsedKind()) {
case ParsedAttr::AT_OpenCLConstantAddressSpace:
return LangAS::opencl_constant;
case ParsedAttr::AT_OpenCLGlobalAddressSpace:
return LangAS::opencl_global;
case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
return LangAS::opencl_global_device;
case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
return LangAS::opencl_global_host;
case ParsedAttr::AT_OpenCLLocalAddressSpace:
return LangAS::opencl_local;
case ParsedAttr::AT_OpenCLPrivateAddressSpace:
return LangAS::opencl_private;
case ParsedAttr::AT_OpenCLGenericAddressSpace:
return LangAS::opencl_generic;
default:
return LangAS::Default;
}
}
/// If this is an OpenCL address space attribute, returns its SYCL
/// representation in LangAS, otherwise returns default address space.
LangAS asSYCLLangAS() const {
switch (getKind()) {
case ParsedAttr::AT_OpenCLGlobalAddressSpace:
return LangAS::sycl_global;
case ParsedAttr::AT_OpenCLGlobalDeviceAddressSpace:
return LangAS::sycl_global_device;
case ParsedAttr::AT_OpenCLGlobalHostAddressSpace:
return LangAS::sycl_global_host;
case ParsedAttr::AT_OpenCLLocalAddressSpace:
return LangAS::sycl_local;
case ParsedAttr::AT_OpenCLPrivateAddressSpace:
return LangAS::sycl_private;
case ParsedAttr::AT_OpenCLGenericAddressSpace:
default:
return LangAS::Default;
}
}
/// If this is an HLSL address space attribute, returns its representation
/// in LangAS, otherwise returns default address space.
LangAS asHLSLLangAS() const {
switch (getParsedKind()) {
case ParsedAttr::AT_HLSLGroupSharedAddressSpace:
return LangAS::hlsl_groupshared;
default:
return LangAS::Default;
}
}
AttributeCommonInfo::Kind getKind() const {
return AttributeCommonInfo::Kind(Info.AttrKind);
}
const ParsedAttrInfo &getInfo() const { return Info; }
};
class AttributePool;
/// A factory, from which one makes pools, from which one creates
/// individual attributes which are deallocated with the pool.
///
/// Note that it's tolerably cheap to create and destroy one of
/// these as long as you don't actually allocate anything in it.
class AttributeFactory {
public:
enum {
AvailabilityAllocSize =
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(1, 1, 0, 0, 0),
TypeTagForDatatypeAllocSize =
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(1, 0, 1, 0, 0),
PropertyAllocSize =
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(0, 0, 0, 0, 1),
};
private:
enum {
/// The number of free lists we want to be sure to support
/// inline. This is just enough that availability attributes
/// don't surpass it. It's actually very unlikely we'll see an
/// attribute that needs more than that; on x86-64 you'd need 10
/// expression arguments, and on i386 you'd need 19.
InlineFreeListsCapacity =
1 + (AvailabilityAllocSize - sizeof(ParsedAttr)) / sizeof(void *)
};
llvm::BumpPtrAllocator Alloc;
/// Free lists. The index is determined by the following formula:
/// (size - sizeof(ParsedAttr)) / sizeof(void*)
SmallVector<SmallVector<ParsedAttr *, 8>, InlineFreeListsCapacity> FreeLists;
// The following are the private interface used by AttributePool.
friend class AttributePool;
/// Allocate an attribute of the given size.
void *allocate(size_t size);
void deallocate(ParsedAttr *AL);
/// Reclaim all the attributes in the given pool chain, which is
/// non-empty. Note that the current implementation is safe
/// against reclaiming things which were not actually allocated
/// with the allocator, although of course it's important to make
/// sure that their allocator lives at least as long as this one.
void reclaimPool(AttributePool &head);
public:
AttributeFactory();
~AttributeFactory();
};
class ParsedAttributesView;
class AttributePool {
friend class AttributeFactory;
friend class ParsedAttributes;
AttributeFactory &Factory;
llvm::SmallVector<ParsedAttr *> Attrs;
void *allocate(size_t size) {
return Factory.allocate(size);
}
ParsedAttr *add(ParsedAttr *attr) {
Attrs.push_back(attr);
return attr;
}
void remove(ParsedAttr *attr) {
assert(llvm::is_contained(Attrs, attr) &&
"Can't take attribute from a pool that doesn't own it!");
Attrs.erase(llvm::find(Attrs, attr));
}
void takePool(AttributePool &pool);
public:
/// Create a new pool for a factory.
AttributePool(AttributeFactory &factory) : Factory(factory) {}
AttributePool(const AttributePool &) = delete;
// The copy assignment operator is defined as deleted pending further
// motivation.
AttributePool &operator=(const AttributePool &) = delete;
~AttributePool() { Factory.reclaimPool(*this); }
/// Move the given pool's allocations to this pool.
AttributePool(AttributePool &&pool) = default;
// The move assignment operator is defined as deleted pending further
// motivation.
AttributePool &operator=(AttributePool &&pool) = delete;
AttributeFactory &getFactory() const { return Factory; }
void clear() {
Factory.reclaimPool(*this);
Attrs.clear();
}
/// Take the given pool's allocations and add them to this pool.
void takeAllFrom(AttributePool &pool) {
takePool(pool);
pool.Attrs.clear();
}
/// Removes the attributes from \c List, which are owned by \c Pool, and adds
/// them at the end of this \c AttributePool.
void takeFrom(ParsedAttributesView &List, AttributePool &Pool);
ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
ArgsUnion *args, unsigned numArgs, ParsedAttr::Form form,
SourceLocation ellipsisLoc = SourceLocation()) {
void *memory = allocate(
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(numArgs, 0, 0, 0,
0));
return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc,
args, numArgs, form, ellipsisLoc));
}
ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Param, const AvailabilityChange &introduced,
const AvailabilityChange &deprecated,
const AvailabilityChange &obsoleted,
SourceLocation unavailable, const Expr *MessageExpr,
ParsedAttr::Form form, SourceLocation strict,
const Expr *ReplacementExpr) {
void *memory = allocate(AttributeFactory::AvailabilityAllocSize);
return add(new (memory) ParsedAttr(
attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated,
obsoleted, unavailable, MessageExpr, form, strict, ReplacementExpr));
}
ParsedAttr *create(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Param1, IdentifierLoc *Param2,
IdentifierLoc *Param3, ParsedAttr::Form form) {
void *memory = allocate(
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(3, 0, 0, 0, 0));
return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc,
Param1, Param2, Param3, form));
}
ParsedAttr *
createTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *argumentKind,
ParsedType matchingCType, bool layoutCompatible,
bool mustBeNull, ParsedAttr::Form form) {
void *memory = allocate(AttributeFactory::TypeTagForDatatypeAllocSize);
return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc,
argumentKind, matchingCType,
layoutCompatible, mustBeNull, form));
}
ParsedAttr *createTypeAttribute(IdentifierInfo *attrName,
SourceRange attrRange,
IdentifierInfo *scopeName,
SourceLocation scopeLoc, ParsedType typeArg,
ParsedAttr::Form formUsed,
SourceLocation ellipsisLoc) {
void *memory = allocate(
ParsedAttr::totalSizeToAlloc<ArgsUnion, detail::AvailabilityData,
detail::TypeTagForDatatypeData, ParsedType,
detail::PropertyData>(0, 0, 0, 1, 0));
return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc,
typeArg, formUsed, ellipsisLoc));
}
ParsedAttr *
createPropertyAttribute(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierInfo *getterId, IdentifierInfo *setterId,
ParsedAttr::Form formUsed) {
void *memory = allocate(AttributeFactory::PropertyAllocSize);
return add(new (memory) ParsedAttr(attrName, attrRange, scopeName, scopeLoc,
getterId, setterId, formUsed));
}
};
class ParsedAttributesView {
friend class AttributePool;
using VecTy = llvm::SmallVector<ParsedAttr *>;
using SizeType = decltype(std::declval<VecTy>().size());
public:
SourceRange Range;
static const ParsedAttributesView &none() {
static const ParsedAttributesView Attrs;
return Attrs;
}
bool empty() const { return AttrList.empty(); }
SizeType size() const { return AttrList.size(); }
ParsedAttr &operator[](SizeType pos) { return *AttrList[pos]; }
const ParsedAttr &operator[](SizeType pos) const { return *AttrList[pos]; }
void addAtEnd(ParsedAttr *newAttr) {
assert(newAttr);
AttrList.push_back(newAttr);
}
void remove(ParsedAttr *ToBeRemoved) {
assert(is_contained(AttrList, ToBeRemoved) &&
"Cannot remove attribute that isn't in the list");
AttrList.erase(llvm::find(AttrList, ToBeRemoved));
}
void clearListOnly() { AttrList.clear(); }
struct iterator : llvm::iterator_adaptor_base<iterator, VecTy::iterator,
std::random_access_iterator_tag,
ParsedAttr> {
iterator() : iterator_adaptor_base(nullptr) {}
iterator(VecTy::iterator I) : iterator_adaptor_base(I) {}
reference operator*() const { return **I; }
friend class ParsedAttributesView;
};
struct const_iterator
: llvm::iterator_adaptor_base<const_iterator, VecTy::const_iterator,
std::random_access_iterator_tag,
ParsedAttr> {
const_iterator() : iterator_adaptor_base(nullptr) {}
const_iterator(VecTy::const_iterator I) : iterator_adaptor_base(I) {}
reference operator*() const { return **I; }
friend class ParsedAttributesView;
};
void addAll(iterator B, iterator E) {
AttrList.insert(AttrList.begin(), B.I, E.I);
}
void addAll(const_iterator B, const_iterator E) {
AttrList.insert(AttrList.begin(), B.I, E.I);
}
void addAllAtEnd(iterator B, iterator E) {
AttrList.insert(AttrList.end(), B.I, E.I);
}
void addAllAtEnd(const_iterator B, const_iterator E) {
AttrList.insert(AttrList.end(), B.I, E.I);
}
iterator begin() { return iterator(AttrList.begin()); }
const_iterator begin() const { return const_iterator(AttrList.begin()); }
iterator end() { return iterator(AttrList.end()); }
const_iterator end() const { return const_iterator(AttrList.end()); }
ParsedAttr &front() {
assert(!empty());
return *AttrList.front();
}
const ParsedAttr &front() const {
assert(!empty());
return *AttrList.front();
}
ParsedAttr &back() {
assert(!empty());
return *AttrList.back();
}
const ParsedAttr &back() const {
assert(!empty());
return *AttrList.back();
}
bool hasAttribute(ParsedAttr::Kind K) const {
return llvm::any_of(AttrList, [K](const ParsedAttr *AL) {
return AL->getParsedKind() == K;
});
}
const ParsedAttr *getMSPropertyAttr() const {
auto It = llvm::find_if(AttrList, [](const ParsedAttr *AL) {
return AL->isDeclspecPropertyAttribute();
});
if (It != AttrList.end())
return *It;
return nullptr;
}
bool hasMSPropertyAttr() const { return getMSPropertyAttr(); }
private:
VecTy AttrList;
};
struct ParsedAttributeArgumentsProperties {
ParsedAttributeArgumentsProperties(uint32_t StringLiteralBits)
: StringLiterals(StringLiteralBits) {}
bool isStringLiteralArg(unsigned I) const {
// If the last bit is set, assume we have a variadic parameter
if (I >= StringLiterals.size())
return StringLiterals.test(StringLiterals.size() - 1);
return StringLiterals.test(I);
}
private:
std::bitset<32> StringLiterals;
};
/// ParsedAttributes - A collection of parsed attributes. Currently
/// we don't differentiate between the various attribute syntaxes,
/// which is basically silly.
///
/// Right now this is a very lightweight container, but the expectation
/// is that this will become significantly more serious.
class ParsedAttributes : public ParsedAttributesView {
public:
ParsedAttributes(AttributeFactory &factory) : pool(factory) {}
ParsedAttributes(const ParsedAttributes &) = delete;
ParsedAttributes &operator=(const ParsedAttributes &) = delete;
AttributePool &getPool() const { return pool; }
void takeAllFrom(ParsedAttributes &Other) {
assert(&Other != this &&
"ParsedAttributes can't take attributes from itself");
addAll(Other.begin(), Other.end());
Other.clearListOnly();
pool.takeAllFrom(Other.pool);
}
void takeOneFrom(ParsedAttributes &Other, ParsedAttr *PA) {
assert(&Other != this &&
"ParsedAttributes can't take attribute from itself");
Other.getPool().remove(PA);
Other.remove(PA);
getPool().add(PA);
addAtEnd(PA);
}
void clear() {
clearListOnly();
pool.clear();
Range = SourceRange();
}
/// Add attribute with expression arguments.
ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
ArgsUnion *args, unsigned numArgs, ParsedAttr::Form form,
SourceLocation ellipsisLoc = SourceLocation()) {
ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc,
args, numArgs, form, ellipsisLoc);
addAtEnd(attr);
return attr;
}
/// Add availability attribute.
ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Param, const AvailabilityChange &introduced,
const AvailabilityChange &deprecated,
const AvailabilityChange &obsoleted,
SourceLocation unavailable, const Expr *MessageExpr,
ParsedAttr::Form form, SourceLocation strict,
const Expr *ReplacementExpr) {
ParsedAttr *attr = pool.create(
attrName, attrRange, scopeName, scopeLoc, Param, introduced, deprecated,
obsoleted, unavailable, MessageExpr, form, strict, ReplacementExpr);
addAtEnd(attr);
return attr;
}
/// Add objc_bridge_related attribute.
ParsedAttr *addNew(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *Param1, IdentifierLoc *Param2,
IdentifierLoc *Param3, ParsedAttr::Form form) {
ParsedAttr *attr = pool.create(attrName, attrRange, scopeName, scopeLoc,
Param1, Param2, Param3, form);
addAtEnd(attr);
return attr;
}
/// Add type_tag_for_datatype attribute.
ParsedAttr *
addNewTypeTagForDatatype(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierLoc *argumentKind,
ParsedType matchingCType, bool layoutCompatible,
bool mustBeNull, ParsedAttr::Form form) {
ParsedAttr *attr = pool.createTypeTagForDatatype(
attrName, attrRange, scopeName, scopeLoc, argumentKind, matchingCType,
layoutCompatible, mustBeNull, form);
addAtEnd(attr);
return attr;
}
/// Add an attribute with a single type argument.
ParsedAttr *addNewTypeAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
ParsedType typeArg, ParsedAttr::Form formUsed,
SourceLocation ellipsisLoc = SourceLocation()) {
ParsedAttr *attr =
pool.createTypeAttribute(attrName, attrRange, scopeName, scopeLoc,
typeArg, formUsed, ellipsisLoc);
addAtEnd(attr);
return attr;
}
/// Add microsoft __delspec(property) attribute.
ParsedAttr *
addNewPropertyAttr(IdentifierInfo *attrName, SourceRange attrRange,
IdentifierInfo *scopeName, SourceLocation scopeLoc,
IdentifierInfo *getterId, IdentifierInfo *setterId,
ParsedAttr::Form formUsed) {
ParsedAttr *attr = pool.createPropertyAttribute(
attrName, attrRange, scopeName, scopeLoc, getterId, setterId, formUsed);
addAtEnd(attr);
return attr;
}
private:
mutable AttributePool pool;
};
/// Consumes the attributes from `First` and `Second` and concatenates them into
/// `Result`. Sets `Result.Range` to the combined range of `First` and `Second`.
void takeAndConcatenateAttrs(ParsedAttributes &First, ParsedAttributes &Second,
ParsedAttributes &Result);
/// These constants match the enumerated choices of
/// err_attribute_argument_n_type and err_attribute_argument_type.
enum AttributeArgumentNType {
AANT_ArgumentIntOrBool,
AANT_ArgumentIntegerConstant,
AANT_ArgumentString,
AANT_ArgumentIdentifier,
AANT_ArgumentConstantExpr,
AANT_ArgumentBuiltinFunction,
};
/// These constants match the enumerated choices of
/// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
enum AttributeDeclKind {
ExpectedFunction,
ExpectedUnion,
ExpectedVariableOrFunction,
ExpectedFunctionOrMethod,
ExpectedFunctionMethodOrBlock,
ExpectedFunctionMethodOrParameter,
ExpectedVariable,
ExpectedVariableOrField,
ExpectedVariableFieldOrTag,
ExpectedTypeOrNamespace,
ExpectedFunctionVariableOrClass,
ExpectedKernelFunction,
ExpectedFunctionWithProtoType,
};
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const ParsedAttr &At) {
DB.AddTaggedVal(reinterpret_cast<uint64_t>(At.getAttrName()),
DiagnosticsEngine::ak_identifierinfo);
return DB;
}
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const ParsedAttr *At) {
DB.AddTaggedVal(reinterpret_cast<uint64_t>(At->getAttrName()),
DiagnosticsEngine::ak_identifierinfo);
return DB;
}
/// AttributeCommonInfo has a non-explicit constructor which takes an
/// SourceRange as its only argument, this constructor has many uses so making
/// it explicit is hard. This constructor causes ambiguity with
/// DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, SourceRange R).
/// We use SFINAE to disable any conversion and remove any ambiguity.
template <
typename ACI,
std::enable_if_t<std::is_same<ACI, AttributeCommonInfo>::value, int> = 0>
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const ACI &CI) {
DB.AddTaggedVal(reinterpret_cast<uint64_t>(CI.getAttrName()),
DiagnosticsEngine::ak_identifierinfo);
return DB;
}
template <
typename ACI,
std::enable_if_t<std::is_same<ACI, AttributeCommonInfo>::value, int> = 0>
inline const StreamingDiagnostic &operator<<(const StreamingDiagnostic &DB,
const ACI *CI) {
DB.AddTaggedVal(reinterpret_cast<uint64_t>(CI->getAttrName()),
DiagnosticsEngine::ak_identifierinfo);
return DB;
}
} // namespace clang
#endif // LLVM_CLANG_SEMA_PARSEDATTR_H