blob: a64dc4e80dec82c83bb008bf8915a8815099b2cc [file] [log] [blame]
//===-- Clang.cpp - Clang+LLVM ToolChain Implementations --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Clang.h"
#include "AMDGPU.h"
#include "Arch/AArch64.h"
#include "Arch/ARM.h"
#include "Arch/M68k.h"
#include "Arch/Mips.h"
#include "Arch/PPC.h"
#include "Arch/RISCV.h"
#include "Arch/Sparc.h"
#include "Arch/SystemZ.h"
#include "Arch/VE.h"
#include "Arch/X86.h"
#include "CommonArgs.h"
#include "Hexagon.h"
#include "InputInfo.h"
#include "MSP430.h"
#include "PS4CPU.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/ObjCRuntime.h"
#include "clang/Basic/Version.h"
#include "clang/Driver/Distro.h"
#include "clang/Driver/DriverDiagnostic.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/SanitizerArgs.h"
#include "clang/Driver/XRayArgs.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Option/ArgList.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/Support/YAMLParser.h"
using namespace clang::driver;
using namespace clang::driver::tools;
using namespace clang;
using namespace llvm::opt;
static void CheckPreprocessingOptions(const Driver &D, const ArgList &Args) {
if (Arg *A =
Args.getLastArg(clang::driver::options::OPT_C, options::OPT_CC)) {
if (!Args.hasArg(options::OPT_E) && !Args.hasArg(options::OPT__SLASH_P) &&
!Args.hasArg(options::OPT__SLASH_EP) && !D.CCCIsCPP()) {
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< A->getBaseArg().getAsString(Args)
<< (D.IsCLMode() ? "/E, /P or /EP" : "-E");
}
}
}
static void CheckCodeGenerationOptions(const Driver &D, const ArgList &Args) {
// In gcc, only ARM checks this, but it seems reasonable to check universally.
if (Args.hasArg(options::OPT_static))
if (const Arg *A =
Args.getLastArg(options::OPT_dynamic, options::OPT_mdynamic_no_pic))
D.Diag(diag::err_drv_argument_not_allowed_with) << A->getAsString(Args)
<< "-static";
}
// Add backslashes to escape spaces and other backslashes.
// This is used for the space-separated argument list specified with
// the -dwarf-debug-flags option.
static void EscapeSpacesAndBackslashes(const char *Arg,
SmallVectorImpl<char> &Res) {
for (; *Arg; ++Arg) {
switch (*Arg) {
default:
break;
case ' ':
case '\\':
Res.push_back('\\');
break;
}
Res.push_back(*Arg);
}
}
// Quote target names for inclusion in GNU Make dependency files.
// Only the characters '$', '#', ' ', '\t' are quoted.
static void QuoteTarget(StringRef Target, SmallVectorImpl<char> &Res) {
for (unsigned i = 0, e = Target.size(); i != e; ++i) {
switch (Target[i]) {
case ' ':
case '\t':
// Escape the preceding backslashes
for (int j = i - 1; j >= 0 && Target[j] == '\\'; --j)
Res.push_back('\\');
// Escape the space/tab
Res.push_back('\\');
break;
case '$':
Res.push_back('$');
break;
case '#':
Res.push_back('\\');
break;
default:
break;
}
Res.push_back(Target[i]);
}
}
/// Apply \a Work on the current tool chain \a RegularToolChain and any other
/// offloading tool chain that is associated with the current action \a JA.
static void
forAllAssociatedToolChains(Compilation &C, const JobAction &JA,
const ToolChain &RegularToolChain,
llvm::function_ref<void(const ToolChain &)> Work) {
// Apply Work on the current/regular tool chain.
Work(RegularToolChain);
// Apply Work on all the offloading tool chains associated with the current
// action.
if (JA.isHostOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Cuda>());
else if (JA.isDeviceOffloading(Action::OFK_Cuda))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
else if (JA.isHostOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_HIP>());
else if (JA.isDeviceOffloading(Action::OFK_HIP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
if (JA.isHostOffloading(Action::OFK_OpenMP)) {
auto TCs = C.getOffloadToolChains<Action::OFK_OpenMP>();
for (auto II = TCs.first, IE = TCs.second; II != IE; ++II)
Work(*II->second);
} else if (JA.isDeviceOffloading(Action::OFK_OpenMP))
Work(*C.getSingleOffloadToolChain<Action::OFK_Host>());
//
// TODO: Add support for other offloading programming models here.
//
}
/// This is a helper function for validating the optional refinement step
/// parameter in reciprocal argument strings. Return false if there is an error
/// parsing the refinement step. Otherwise, return true and set the Position
/// of the refinement step in the input string.
static bool getRefinementStep(StringRef In, const Driver &D,
const Arg &A, size_t &Position) {
const char RefinementStepToken = ':';
Position = In.find(RefinementStepToken);
if (Position != StringRef::npos) {
StringRef Option = A.getOption().getName();
StringRef RefStep = In.substr(Position + 1);
// Allow exactly one numeric character for the additional refinement
// step parameter. This is reasonable for all currently-supported
// operations and architectures because we would expect that a larger value
// of refinement steps would cause the estimate "optimization" to
// under-perform the native operation. Also, if the estimate does not
// converge quickly, it probably will not ever converge, so further
// refinement steps will not produce a better answer.
if (RefStep.size() != 1) {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
char RefStepChar = RefStep[0];
if (RefStepChar < '0' || RefStepChar > '9') {
D.Diag(diag::err_drv_invalid_value) << Option << RefStep;
return false;
}
}
return true;
}
/// The -mrecip flag requires processing of many optional parameters.
static void ParseMRecip(const Driver &D, const ArgList &Args,
ArgStringList &OutStrings) {
StringRef DisabledPrefixIn = "!";
StringRef DisabledPrefixOut = "!";
StringRef EnabledPrefixOut = "";
StringRef Out = "-mrecip=";
Arg *A = Args.getLastArg(options::OPT_mrecip, options::OPT_mrecip_EQ);
if (!A)
return;
unsigned NumOptions = A->getNumValues();
if (NumOptions == 0) {
// No option is the same as "all".
OutStrings.push_back(Args.MakeArgString(Out + "all"));
return;
}
// Pass through "all", "none", or "default" with an optional refinement step.
if (NumOptions == 1) {
StringRef Val = A->getValue(0);
size_t RefStepLoc;
if (!getRefinementStep(Val, D, *A, RefStepLoc))
return;
StringRef ValBase = Val.slice(0, RefStepLoc);
if (ValBase == "all" || ValBase == "none" || ValBase == "default") {
OutStrings.push_back(Args.MakeArgString(Out + Val));
return;
}
}
// Each reciprocal type may be enabled or disabled individually.
// Check each input value for validity, concatenate them all back together,
// and pass through.
llvm::StringMap<bool> OptionStrings;
OptionStrings.insert(std::make_pair("divd", false));
OptionStrings.insert(std::make_pair("divf", false));
OptionStrings.insert(std::make_pair("vec-divd", false));
OptionStrings.insert(std::make_pair("vec-divf", false));
OptionStrings.insert(std::make_pair("sqrtd", false));
OptionStrings.insert(std::make_pair("sqrtf", false));
OptionStrings.insert(std::make_pair("vec-sqrtd", false));
OptionStrings.insert(std::make_pair("vec-sqrtf", false));
for (unsigned i = 0; i != NumOptions; ++i) {
StringRef Val = A->getValue(i);
bool IsDisabled = Val.startswith(DisabledPrefixIn);
// Ignore the disablement token for string matching.
if (IsDisabled)
Val = Val.substr(1);
size_t RefStep;
if (!getRefinementStep(Val, D, *A, RefStep))
return;
StringRef ValBase = Val.slice(0, RefStep);
llvm::StringMap<bool>::iterator OptionIter = OptionStrings.find(ValBase);
if (OptionIter == OptionStrings.end()) {
// Try again specifying float suffix.
OptionIter = OptionStrings.find(ValBase.str() + 'f');
if (OptionIter == OptionStrings.end()) {
// The input name did not match any known option string.
D.Diag(diag::err_drv_unknown_argument) << Val;
return;
}
// The option was specified without a float or double suffix.
// Make sure that the double entry was not already specified.
// The float entry will be checked below.
if (OptionStrings[ValBase.str() + 'd']) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
}
if (OptionIter->second == true) {
// Duplicate option specified.
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Val;
return;
}
// Mark the matched option as found. Do not allow duplicate specifiers.
OptionIter->second = true;
// If the precision was not specified, also mark the double entry as found.
if (ValBase.back() != 'f' && ValBase.back() != 'd')
OptionStrings[ValBase.str() + 'd'] = true;
// Build the output string.
StringRef Prefix = IsDisabled ? DisabledPrefixOut : EnabledPrefixOut;
Out = Args.MakeArgString(Out + Prefix + Val);
if (i != NumOptions - 1)
Out = Args.MakeArgString(Out + ",");
}
OutStrings.push_back(Args.MakeArgString(Out));
}
/// The -mprefer-vector-width option accepts either a positive integer
/// or the string "none".
static void ParseMPreferVectorWidth(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
Arg *A = Args.getLastArg(options::OPT_mprefer_vector_width_EQ);
if (!A)
return;
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("-mprefer-vector-width=none");
} else {
unsigned Width;
if (Value.getAsInteger(10, Width)) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
CmdArgs.push_back(Args.MakeArgString("-mprefer-vector-width=" + Value));
}
}
static void getWebAssemblyTargetFeatures(const ArgList &Args,
std::vector<StringRef> &Features) {
handleTargetFeaturesGroup(Args, Features, options::OPT_m_wasm_Features_Group);
}
static void getTargetFeatures(const Driver &D, const llvm::Triple &Triple,
const ArgList &Args, ArgStringList &CmdArgs,
bool ForAS, bool IsAux = false) {
std::vector<StringRef> Features;
switch (Triple.getArch()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
mips::getMIPSTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
arm::getARMTargetFeatures(D, Triple, Args, CmdArgs, Features, ForAS);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
ppc::getPPCTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
riscv::getRISCVTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::systemz:
systemz::getSystemZTargetFeatures(D, Args, Features);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
aarch64::getAArch64TargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
x86::getX86TargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::hexagon:
hexagon::getHexagonTargetFeatures(D, Args, Features);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
getWebAssemblyTargetFeatures(Args, Features);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
sparc::getSparcTargetFeatures(D, Args, Features);
break;
case llvm::Triple::r600:
case llvm::Triple::amdgcn:
amdgpu::getAMDGPUTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::m68k:
m68k::getM68kTargetFeatures(D, Triple, Args, Features);
break;
case llvm::Triple::msp430:
msp430::getMSP430TargetFeatures(D, Args, Features);
break;
case llvm::Triple::ve:
ve::getVETargetFeatures(D, Args, Features);
break;
}
for (auto Feature : unifyTargetFeatures(Features)) {
CmdArgs.push_back(IsAux ? "-aux-target-feature" : "-target-feature");
CmdArgs.push_back(Feature.data());
}
}
static bool
shouldUseExceptionTablesForObjCExceptions(const ObjCRuntime &runtime,
const llvm::Triple &Triple) {
// We use the zero-cost exception tables for Objective-C if the non-fragile
// ABI is enabled or when compiling for x86_64 and ARM on Snow Leopard and
// later.
if (runtime.isNonFragile())
return true;
if (!Triple.isMacOSX())
return false;
return (!Triple.isMacOSXVersionLT(10, 5) &&
(Triple.getArch() == llvm::Triple::x86_64 ||
Triple.getArch() == llvm::Triple::arm));
}
/// Adds exception related arguments to the driver command arguments. There's a
/// master flag, -fexceptions and also language specific flags to enable/disable
/// C++ and Objective-C exceptions. This makes it possible to for example
/// disable C++ exceptions but enable Objective-C exceptions.
static bool addExceptionArgs(const ArgList &Args, types::ID InputType,
const ToolChain &TC, bool KernelOrKext,
const ObjCRuntime &objcRuntime,
ArgStringList &CmdArgs) {
const llvm::Triple &Triple = TC.getTriple();
if (KernelOrKext) {
// -mkernel and -fapple-kext imply no exceptions, so claim exception related
// arguments now to avoid warnings about unused arguments.
Args.ClaimAllArgs(options::OPT_fexceptions);
Args.ClaimAllArgs(options::OPT_fno_exceptions);
Args.ClaimAllArgs(options::OPT_fobjc_exceptions);
Args.ClaimAllArgs(options::OPT_fno_objc_exceptions);
Args.ClaimAllArgs(options::OPT_fcxx_exceptions);
Args.ClaimAllArgs(options::OPT_fno_cxx_exceptions);
return false;
}
// See if the user explicitly enabled exceptions.
bool EH = Args.hasFlag(options::OPT_fexceptions, options::OPT_fno_exceptions,
false);
// Obj-C exceptions are enabled by default, regardless of -fexceptions. This
// is not necessarily sensible, but follows GCC.
if (types::isObjC(InputType) &&
Args.hasFlag(options::OPT_fobjc_exceptions,
options::OPT_fno_objc_exceptions, true)) {
CmdArgs.push_back("-fobjc-exceptions");
EH |= shouldUseExceptionTablesForObjCExceptions(objcRuntime, Triple);
}
if (types::isCXX(InputType)) {
// Disable C++ EH by default on XCore and PS4.
bool CXXExceptionsEnabled =
Triple.getArch() != llvm::Triple::xcore && !Triple.isPS4CPU();
Arg *ExceptionArg = Args.getLastArg(
options::OPT_fcxx_exceptions, options::OPT_fno_cxx_exceptions,
options::OPT_fexceptions, options::OPT_fno_exceptions);
if (ExceptionArg)
CXXExceptionsEnabled =
ExceptionArg->getOption().matches(options::OPT_fcxx_exceptions) ||
ExceptionArg->getOption().matches(options::OPT_fexceptions);
if (CXXExceptionsEnabled) {
CmdArgs.push_back("-fcxx-exceptions");
EH = true;
}
}
// OPT_fignore_exceptions means exception could still be thrown,
// but no clean up or catch would happen in current module.
// So we do not set EH to false.
Args.AddLastArg(CmdArgs, options::OPT_fignore_exceptions);
if (EH)
CmdArgs.push_back("-fexceptions");
return EH;
}
static bool ShouldEnableAutolink(const ArgList &Args, const ToolChain &TC,
const JobAction &JA) {
bool Default = true;
if (TC.getTriple().isOSDarwin()) {
// The native darwin assembler doesn't support the linker_option directives,
// so we disable them if we think the .s file will be passed to it.
Default = TC.useIntegratedAs();
}
// The linker_option directives are intended for host compilation.
if (JA.isDeviceOffloading(Action::OFK_Cuda) ||
JA.isDeviceOffloading(Action::OFK_HIP))
Default = false;
return Args.hasFlag(options::OPT_fautolink, options::OPT_fno_autolink,
Default);
}
static bool ShouldDisableDwarfDirectory(const ArgList &Args,
const ToolChain &TC) {
bool UseDwarfDirectory =
Args.hasFlag(options::OPT_fdwarf_directory_asm,
options::OPT_fno_dwarf_directory_asm, TC.useIntegratedAs());
return !UseDwarfDirectory;
}
// Convert an arg of the form "-gN" or "-ggdbN" or one of their aliases
// to the corresponding DebugInfoKind.
static codegenoptions::DebugInfoKind DebugLevelToInfoKind(const Arg &A) {
assert(A.getOption().matches(options::OPT_gN_Group) &&
"Not a -g option that specifies a debug-info level");
if (A.getOption().matches(options::OPT_g0) ||
A.getOption().matches(options::OPT_ggdb0))
return codegenoptions::NoDebugInfo;
if (A.getOption().matches(options::OPT_gline_tables_only) ||
A.getOption().matches(options::OPT_ggdb1))
return codegenoptions::DebugLineTablesOnly;
if (A.getOption().matches(options::OPT_gline_directives_only))
return codegenoptions::DebugDirectivesOnly;
return codegenoptions::LimitedDebugInfo;
}
static bool mustUseNonLeafFramePointerForTarget(const llvm::Triple &Triple) {
switch (Triple.getArch()){
default:
return false;
case llvm::Triple::arm:
case llvm::Triple::thumb:
// ARM Darwin targets require a frame pointer to be always present to aid
// offline debugging via backtraces.
return Triple.isOSDarwin();
}
}
static bool useFramePointerForTargetByDefault(const ArgList &Args,
const llvm::Triple &Triple) {
if (Args.hasArg(options::OPT_pg) && !Args.hasArg(options::OPT_mfentry))
return true;
switch (Triple.getArch()) {
case llvm::Triple::xcore:
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
case llvm::Triple::msp430:
// XCore never wants frame pointers, regardless of OS.
// WebAssembly never wants frame pointers.
return false;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::amdgcn:
case llvm::Triple::r600:
return !areOptimizationsEnabled(Args);
default:
break;
}
if (Triple.isOSNetBSD()) {
return !areOptimizationsEnabled(Args);
}
if (Triple.isOSLinux() || Triple.getOS() == llvm::Triple::CloudABI ||
Triple.isOSHurd()) {
switch (Triple.getArch()) {
// Don't use a frame pointer on linux if optimizing for certain targets.
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Triple.isAndroid())
return true;
LLVM_FALLTHROUGH;
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::systemz:
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return !areOptimizationsEnabled(Args);
default:
return true;
}
}
if (Triple.isOSWindows()) {
switch (Triple.getArch()) {
case llvm::Triple::x86:
return !areOptimizationsEnabled(Args);
case llvm::Triple::x86_64:
return Triple.isOSBinFormatMachO();
case llvm::Triple::arm:
case llvm::Triple::thumb:
// Windows on ARM builds with FPO disabled to aid fast stack walking
return true;
default:
// All other supported Windows ISAs use xdata unwind information, so frame
// pointers are not generally useful.
return false;
}
}
return true;
}
static CodeGenOptions::FramePointerKind
getFramePointerKind(const ArgList &Args, const llvm::Triple &Triple) {
// We have 4 states:
//
// 00) leaf retained, non-leaf retained
// 01) leaf retained, non-leaf omitted (this is invalid)
// 10) leaf omitted, non-leaf retained
// (what -momit-leaf-frame-pointer was designed for)
// 11) leaf omitted, non-leaf omitted
//
// "omit" options taking precedence over "no-omit" options is the only way
// to make 3 valid states representable
Arg *A = Args.getLastArg(options::OPT_fomit_frame_pointer,
options::OPT_fno_omit_frame_pointer);
bool OmitFP = A && A->getOption().matches(options::OPT_fomit_frame_pointer);
bool NoOmitFP =
A && A->getOption().matches(options::OPT_fno_omit_frame_pointer);
bool OmitLeafFP = Args.hasFlag(options::OPT_momit_leaf_frame_pointer,
options::OPT_mno_omit_leaf_frame_pointer,
Triple.isAArch64() || Triple.isPS4CPU());
if (NoOmitFP || mustUseNonLeafFramePointerForTarget(Triple) ||
(!OmitFP && useFramePointerForTargetByDefault(Args, Triple))) {
if (OmitLeafFP)
return CodeGenOptions::FramePointerKind::NonLeaf;
return CodeGenOptions::FramePointerKind::All;
}
return CodeGenOptions::FramePointerKind::None;
}
/// Add a CC1 option to specify the debug compilation directory.
static void addDebugCompDirArg(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::vfs::FileSystem &VFS) {
if (Arg *A = Args.getLastArg(options::OPT_ffile_compilation_dir_EQ,
options::OPT_fdebug_compilation_dir_EQ)) {
if (A->getOption().matches(options::OPT_ffile_compilation_dir_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("-fdebug-compilation-dir=") +
A->getValue()));
else
A->render(Args, CmdArgs);
} else if (llvm::ErrorOr<std::string> CWD =
VFS.getCurrentWorkingDirectory()) {
CmdArgs.push_back(Args.MakeArgString("-fdebug-compilation-dir=" + *CWD));
}
}
/// Add a CC1 and CC1AS option to specify the debug file path prefix map.
static void addDebugPrefixMapArg(const Driver &D, const ArgList &Args, ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fdebug_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (Map.find('=') == StringRef::npos)
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Map << A->getOption().getName();
else
CmdArgs.push_back(Args.MakeArgString("-fdebug-prefix-map=" + Map));
A->claim();
}
}
/// Add a CC1 and CC1AS option to specify the macro file path prefix map.
static void addMacroPrefixMapArg(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fmacro_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (Map.find('=') == StringRef::npos)
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Map << A->getOption().getName();
else
CmdArgs.push_back(Args.MakeArgString("-fmacro-prefix-map=" + Map));
A->claim();
}
}
/// Add a CC1 and CC1AS option to specify the coverage file path prefix map.
static void addCoveragePrefixMapArg(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
for (const Arg *A : Args.filtered(options::OPT_ffile_prefix_map_EQ,
options::OPT_fcoverage_prefix_map_EQ)) {
StringRef Map = A->getValue();
if (Map.find('=') == StringRef::npos)
D.Diag(diag::err_drv_invalid_argument_to_option)
<< Map << A->getOption().getName();
else
CmdArgs.push_back(Args.MakeArgString("-fcoverage-prefix-map=" + Map));
A->claim();
}
}
/// Vectorize at all optimization levels greater than 1 except for -Oz.
/// For -Oz the loop vectorizer is disabled, while the slp vectorizer is
/// enabled.
static bool shouldEnableVectorizerAtOLevel(const ArgList &Args, bool isSlpVec) {
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4) ||
A->getOption().matches(options::OPT_Ofast))
return true;
if (A->getOption().matches(options::OPT_O0))
return false;
assert(A->getOption().matches(options::OPT_O) && "Must have a -O flag");
// Vectorize -Os.
StringRef S(A->getValue());
if (S == "s")
return true;
// Don't vectorize -Oz, unless it's the slp vectorizer.
if (S == "z")
return isSlpVec;
unsigned OptLevel = 0;
if (S.getAsInteger(10, OptLevel))
return false;
return OptLevel > 1;
}
return false;
}
/// Add -x lang to \p CmdArgs for \p Input.
static void addDashXForInput(const ArgList &Args, const InputInfo &Input,
ArgStringList &CmdArgs) {
// When using -verify-pch, we don't want to provide the type
// 'precompiled-header' if it was inferred from the file extension
if (Args.hasArg(options::OPT_verify_pch) && Input.getType() == types::TY_PCH)
return;
CmdArgs.push_back("-x");
if (Args.hasArg(options::OPT_rewrite_objc))
CmdArgs.push_back(types::getTypeName(types::TY_PP_ObjCXX));
else {
// Map the driver type to the frontend type. This is mostly an identity
// mapping, except that the distinction between module interface units
// and other source files does not exist at the frontend layer.
const char *ClangType;
switch (Input.getType()) {
case types::TY_CXXModule:
ClangType = "c++";
break;
case types::TY_PP_CXXModule:
ClangType = "c++-cpp-output";
break;
default:
ClangType = types::getTypeName(Input.getType());
break;
}
CmdArgs.push_back(ClangType);
}
}
static void addPGOAndCoverageFlags(const ToolChain &TC, Compilation &C,
const Driver &D, const InputInfo &Output,
const ArgList &Args,
ArgStringList &CmdArgs) {
auto *PGOGenerateArg = Args.getLastArg(options::OPT_fprofile_generate,
options::OPT_fprofile_generate_EQ,
options::OPT_fno_profile_generate);
if (PGOGenerateArg &&
PGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
PGOGenerateArg = nullptr;
auto *CSPGOGenerateArg = Args.getLastArg(options::OPT_fcs_profile_generate,
options::OPT_fcs_profile_generate_EQ,
options::OPT_fno_profile_generate);
if (CSPGOGenerateArg &&
CSPGOGenerateArg->getOption().matches(options::OPT_fno_profile_generate))
CSPGOGenerateArg = nullptr;
auto *ProfileGenerateArg = Args.getLastArg(
options::OPT_fprofile_instr_generate,
options::OPT_fprofile_instr_generate_EQ,
options::OPT_fno_profile_instr_generate);
if (ProfileGenerateArg &&
ProfileGenerateArg->getOption().matches(
options::OPT_fno_profile_instr_generate))
ProfileGenerateArg = nullptr;
if (PGOGenerateArg && ProfileGenerateArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< PGOGenerateArg->getSpelling() << ProfileGenerateArg->getSpelling();
auto *ProfileUseArg = getLastProfileUseArg(Args);
if (PGOGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileUseArg->getSpelling() << PGOGenerateArg->getSpelling();
if (ProfileGenerateArg && ProfileUseArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< ProfileGenerateArg->getSpelling() << ProfileUseArg->getSpelling();
if (CSPGOGenerateArg && PGOGenerateArg) {
D.Diag(diag::err_drv_argument_not_allowed_with)
<< CSPGOGenerateArg->getSpelling() << PGOGenerateArg->getSpelling();
PGOGenerateArg = nullptr;
}
if (ProfileGenerateArg) {
if (ProfileGenerateArg->getOption().matches(
options::OPT_fprofile_instr_generate_EQ))
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-instrument-path=") +
ProfileGenerateArg->getValue()));
// The default is to use Clang Instrumentation.
CmdArgs.push_back("-fprofile-instrument=clang");
if (TC.getTriple().isWindowsMSVCEnvironment()) {
// Add dependent lib for clang_rt.profile
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRTBasename(Args, "profile")));
}
}
Arg *PGOGenArg = nullptr;
if (PGOGenerateArg) {
assert(!CSPGOGenerateArg);
PGOGenArg = PGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=llvm");
}
if (CSPGOGenerateArg) {
assert(!PGOGenerateArg);
PGOGenArg = CSPGOGenerateArg;
CmdArgs.push_back("-fprofile-instrument=csllvm");
}
if (PGOGenArg) {
if (TC.getTriple().isWindowsMSVCEnvironment()) {
// Add dependent lib for clang_rt.profile
CmdArgs.push_back(Args.MakeArgString(
"--dependent-lib=" + TC.getCompilerRTBasename(Args, "profile")));
}
if (PGOGenArg->getOption().matches(
PGOGenerateArg ? options::OPT_fprofile_generate_EQ
: options::OPT_fcs_profile_generate_EQ)) {
SmallString<128> Path(PGOGenArg->getValue());
llvm::sys::path::append(Path, "default_%m.profraw");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-path=") + Path));
}
}
if (ProfileUseArg) {
if (ProfileUseArg->getOption().matches(options::OPT_fprofile_instr_use_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("-fprofile-instrument-use-path=") + ProfileUseArg->getValue()));
else if ((ProfileUseArg->getOption().matches(
options::OPT_fprofile_use_EQ) ||
ProfileUseArg->getOption().matches(
options::OPT_fprofile_instr_use))) {
SmallString<128> Path(
ProfileUseArg->getNumValues() == 0 ? "" : ProfileUseArg->getValue());
if (Path.empty() || llvm::sys::fs::is_directory(Path))
llvm::sys::path::append(Path, "default.profdata");
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-instrument-use-path=") + Path));
}
}
bool EmitCovNotes = Args.hasFlag(options::OPT_ftest_coverage,
options::OPT_fno_test_coverage, false) ||
Args.hasArg(options::OPT_coverage);
bool EmitCovData = TC.needsGCovInstrumentation(Args);
if (EmitCovNotes)
CmdArgs.push_back("-ftest-coverage");
if (EmitCovData)
CmdArgs.push_back("-fprofile-arcs");
if (Args.hasFlag(options::OPT_fcoverage_mapping,
options::OPT_fno_coverage_mapping, false)) {
if (!ProfileGenerateArg)
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fcoverage-mapping"
<< "-fprofile-instr-generate";
CmdArgs.push_back("-fcoverage-mapping");
}
if (Arg *A = Args.getLastArg(options::OPT_ffile_compilation_dir_EQ,
options::OPT_fcoverage_compilation_dir_EQ)) {
if (A->getOption().matches(options::OPT_ffile_compilation_dir_EQ))
CmdArgs.push_back(Args.MakeArgString(
Twine("-fcoverage-compilation-dir=") + A->getValue()));
else
A->render(Args, CmdArgs);
} else if (llvm::ErrorOr<std::string> CWD =
D.getVFS().getCurrentWorkingDirectory()) {
CmdArgs.push_back(Args.MakeArgString("-fcoverage-compilation-dir=" + *CWD));
}
if (Args.hasArg(options::OPT_fprofile_exclude_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_exclude_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-exclude-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(
Args.MakeArgString(Twine("-fprofile-exclude-files=" + v)));
}
if (Args.hasArg(options::OPT_fprofile_filter_files_EQ)) {
auto *Arg = Args.getLastArg(options::OPT_fprofile_filter_files_EQ);
if (!Args.hasArg(options::OPT_coverage))
D.Diag(clang::diag::err_drv_argument_only_allowed_with)
<< "-fprofile-filter-files="
<< "--coverage";
StringRef v = Arg->getValue();
CmdArgs.push_back(Args.MakeArgString(Twine("-fprofile-filter-files=" + v)));
}
if (const auto *A = Args.getLastArg(options::OPT_fprofile_update_EQ)) {
StringRef Val = A->getValue();
if (Val == "atomic" || Val == "prefer-atomic")
CmdArgs.push_back("-fprofile-update=atomic");
else if (Val != "single")
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
} else if (TC.getSanitizerArgs().needsTsanRt()) {
CmdArgs.push_back("-fprofile-update=atomic");
}
// Leave -fprofile-dir= an unused argument unless .gcda emission is
// enabled. To be polite, with '-fprofile-arcs -fno-profile-arcs' consider
// the flag used. There is no -fno-profile-dir, so the user has no
// targeted way to suppress the warning.
Arg *FProfileDir = nullptr;
if (Args.hasArg(options::OPT_fprofile_arcs) ||
Args.hasArg(options::OPT_coverage))
FProfileDir = Args.getLastArg(options::OPT_fprofile_dir);
// Put the .gcno and .gcda files (if needed) next to the object file or
// bitcode file in the case of LTO.
// FIXME: There should be a simpler way to find the object file for this
// input, and this code probably does the wrong thing for commands that
// compile and link all at once.
if ((Args.hasArg(options::OPT_c) || Args.hasArg(options::OPT_S)) &&
(EmitCovNotes || EmitCovData) && Output.isFilename()) {
SmallString<128> OutputFilename;
if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT__SLASH_Fo))
OutputFilename = FinalOutput->getValue();
else if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
OutputFilename = FinalOutput->getValue();
else
OutputFilename = llvm::sys::path::filename(Output.getBaseInput());
SmallString<128> CoverageFilename = OutputFilename;
if (llvm::sys::path::is_relative(CoverageFilename))
(void)D.getVFS().makeAbsolute(CoverageFilename);
llvm::sys::path::replace_extension(CoverageFilename, "gcno");
CmdArgs.push_back("-coverage-notes-file");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
if (EmitCovData) {
if (FProfileDir) {
CoverageFilename = FProfileDir->getValue();
llvm::sys::path::append(CoverageFilename, OutputFilename);
}
llvm::sys::path::replace_extension(CoverageFilename, "gcda");
CmdArgs.push_back("-coverage-data-file");
CmdArgs.push_back(Args.MakeArgString(CoverageFilename));
}
}
}
/// Check whether the given input tree contains any compilation actions.
static bool ContainsCompileAction(const Action *A) {
if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A))
return true;
for (const auto &AI : A->inputs())
if (ContainsCompileAction(AI))
return true;
return false;
}
/// Check if -relax-all should be passed to the internal assembler.
/// This is done by default when compiling non-assembler source with -O0.
static bool UseRelaxAll(Compilation &C, const ArgList &Args) {
bool RelaxDefault = true;
if (Arg *A = Args.getLastArg(options::OPT_O_Group))
RelaxDefault = A->getOption().matches(options::OPT_O0);
if (RelaxDefault) {
RelaxDefault = false;
for (const auto &Act : C.getActions()) {
if (ContainsCompileAction(Act)) {
RelaxDefault = true;
break;
}
}
}
return Args.hasFlag(options::OPT_mrelax_all, options::OPT_mno_relax_all,
RelaxDefault);
}
// Extract the integer N from a string spelled "-dwarf-N", returning 0
// on mismatch. The StringRef input (rather than an Arg) allows
// for use by the "-Xassembler" option parser.
static unsigned DwarfVersionNum(StringRef ArgValue) {
return llvm::StringSwitch<unsigned>(ArgValue)
.Case("-gdwarf-2", 2)
.Case("-gdwarf-3", 3)
.Case("-gdwarf-4", 4)
.Case("-gdwarf-5", 5)
.Default(0);
}
// Find a DWARF format version option.
// This function is a complementary for DwarfVersionNum().
static const Arg *getDwarfNArg(const ArgList &Args) {
return Args.getLastArg(options::OPT_gdwarf_2, options::OPT_gdwarf_3,
options::OPT_gdwarf_4, options::OPT_gdwarf_5,
options::OPT_gdwarf);
}
static void RenderDebugEnablingArgs(const ArgList &Args, ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind DebugInfoKind,
unsigned DwarfVersion,
llvm::DebuggerKind DebuggerTuning) {
switch (DebugInfoKind) {
case codegenoptions::DebugDirectivesOnly:
CmdArgs.push_back("-debug-info-kind=line-directives-only");
break;
case codegenoptions::DebugLineTablesOnly:
CmdArgs.push_back("-debug-info-kind=line-tables-only");
break;
case codegenoptions::DebugInfoConstructor:
CmdArgs.push_back("-debug-info-kind=constructor");
break;
case codegenoptions::LimitedDebugInfo:
CmdArgs.push_back("-debug-info-kind=limited");
break;
case codegenoptions::FullDebugInfo:
CmdArgs.push_back("-debug-info-kind=standalone");
break;
case codegenoptions::UnusedTypeInfo:
CmdArgs.push_back("-debug-info-kind=unused-types");
break;
default:
break;
}
if (DwarfVersion > 0)
CmdArgs.push_back(
Args.MakeArgString("-dwarf-version=" + Twine(DwarfVersion)));
switch (DebuggerTuning) {
case llvm::DebuggerKind::GDB:
CmdArgs.push_back("-debugger-tuning=gdb");
break;
case llvm::DebuggerKind::LLDB:
CmdArgs.push_back("-debugger-tuning=lldb");
break;
case llvm::DebuggerKind::SCE:
CmdArgs.push_back("-debugger-tuning=sce");
break;
default:
break;
}
}
static bool checkDebugInfoOption(const Arg *A, const ArgList &Args,
const Driver &D, const ToolChain &TC) {
assert(A && "Expected non-nullptr argument.");
if (TC.supportsDebugInfoOption(A))
return true;
D.Diag(diag::warn_drv_unsupported_debug_info_opt_for_target)
<< A->getAsString(Args) << TC.getTripleString();
return false;
}
static void RenderDebugInfoCompressionArgs(const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D,
const ToolChain &TC) {
const Arg *A = Args.getLastArg(options::OPT_gz_EQ);
if (!A)
return;
if (checkDebugInfoOption(A, Args, D, TC)) {
StringRef Value = A->getValue();
if (Value == "none") {
CmdArgs.push_back("--compress-debug-sections=none");
} else if (Value == "zlib" || Value == "zlib-gnu") {
if (llvm::zlib::isAvailable()) {
CmdArgs.push_back(
Args.MakeArgString("--compress-debug-sections=" + Twine(Value)));
} else {
D.Diag(diag::warn_debug_compression_unavailable);
}
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
static const char *RelocationModelName(llvm::Reloc::Model Model) {
switch (Model) {
case llvm::Reloc::Static:
return "static";
case llvm::Reloc::PIC_:
return "pic";
case llvm::Reloc::DynamicNoPIC:
return "dynamic-no-pic";
case llvm::Reloc::ROPI:
return "ropi";
case llvm::Reloc::RWPI:
return "rwpi";
case llvm::Reloc::ROPI_RWPI:
return "ropi-rwpi";
}
llvm_unreachable("Unknown Reloc::Model kind");
}
static void handleAMDGPUCodeObjectVersionOptions(const Driver &D,
const ArgList &Args,
ArgStringList &CmdArgs) {
unsigned CodeObjVer = getOrCheckAMDGPUCodeObjectVersion(D, Args);
CmdArgs.insert(CmdArgs.begin() + 1,
Args.MakeArgString(Twine("--amdhsa-code-object-version=") +
Twine(CodeObjVer)));
CmdArgs.insert(CmdArgs.begin() + 1, "-mllvm");
}
void Clang::AddPreprocessingOptions(Compilation &C, const JobAction &JA,
const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs,
const InputInfo &Output,
const InputInfoList &Inputs) const {
const bool IsIAMCU = getToolChain().getTriple().isOSIAMCU();
CheckPreprocessingOptions(D, Args);
Args.AddLastArg(CmdArgs, options::OPT_C);
Args.AddLastArg(CmdArgs, options::OPT_CC);
// Handle dependency file generation.
Arg *ArgM = Args.getLastArg(options::OPT_MM);
if (!ArgM)
ArgM = Args.getLastArg(options::OPT_M);
Arg *ArgMD = Args.getLastArg(options::OPT_MMD);
if (!ArgMD)
ArgMD = Args.getLastArg(options::OPT_MD);
// -M and -MM imply -w.
if (ArgM)
CmdArgs.push_back("-w");
else
ArgM = ArgMD;
if (ArgM) {
// Determine the output location.
const char *DepFile;
if (Arg *MF = Args.getLastArg(options::OPT_MF)) {
DepFile = MF->getValue();
C.addFailureResultFile(DepFile, &JA);
} else if (Output.getType() == types::TY_Dependencies) {
DepFile = Output.getFilename();
} else if (!ArgMD) {
DepFile = "-";
} else {
DepFile = getDependencyFileName(Args, Inputs);
C.addFailureResultFile(DepFile, &JA);
}
CmdArgs.push_back("-dependency-file");
CmdArgs.push_back(DepFile);
bool HasTarget = false;
for (const Arg *A : Args.filtered(options::OPT_MT, options::OPT_MQ)) {
HasTarget = true;
A->claim();
if (A->getOption().matches(options::OPT_MT)) {
A->render(Args, CmdArgs);
} else {
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
QuoteTarget(A->getValue(), Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
}
}
// Add a default target if one wasn't specified.
if (!HasTarget) {
const char *DepTarget;
// If user provided -o, that is the dependency target, except
// when we are only generating a dependency file.
Arg *OutputOpt = Args.getLastArg(options::OPT_o);
if (OutputOpt && Output.getType() != types::TY_Dependencies) {
DepTarget = OutputOpt->getValue();
} else {
// Otherwise derive from the base input.
//
// FIXME: This should use the computed output file location.
SmallString<128> P(Inputs[0].getBaseInput());
llvm::sys::path::replace_extension(P, "o");
DepTarget = Args.MakeArgString(llvm::sys::path::filename(P));
}
CmdArgs.push_back("-MT");
SmallString<128> Quoted;
QuoteTarget(DepTarget, Quoted);
CmdArgs.push_back(Args.MakeArgString(Quoted));
}
if (ArgM->getOption().matches(options::OPT_M) ||
ArgM->getOption().matches(options::OPT_MD))
CmdArgs.push_back("-sys-header-deps");
if ((isa<PrecompileJobAction>(JA) &&
!Args.hasArg(options::OPT_fno_module_file_deps)) ||
Args.hasArg(options::OPT_fmodule_file_deps))
CmdArgs.push_back("-module-file-deps");
}
if (Args.hasArg(options::OPT_MG)) {
if (!ArgM || ArgM->getOption().matches(options::OPT_MD) ||
ArgM->getOption().matches(options::OPT_MMD))
D.Diag(diag::err_drv_mg_requires_m_or_mm);
CmdArgs.push_back("-MG");
}
Args.AddLastArg(CmdArgs, options::OPT_MP);
Args.AddLastArg(CmdArgs, options::OPT_MV);
// Add offload include arguments specific for CUDA/HIP. This must happen
// before we -I or -include anything else, because we must pick up the
// CUDA/HIP headers from the particular CUDA/ROCm installation, rather than
// from e.g. /usr/local/include.
if (JA.isOffloading(Action::OFK_Cuda))
getToolChain().AddCudaIncludeArgs(Args, CmdArgs);
if (JA.isOffloading(Action::OFK_HIP))
getToolChain().AddHIPIncludeArgs(Args, CmdArgs);
// If we are offloading to a target via OpenMP we need to include the
// openmp_wrappers folder which contains alternative system headers.
if (JA.isDeviceOffloading(Action::OFK_OpenMP) &&
getToolChain().getTriple().isNVPTX()){
if (!Args.hasArg(options::OPT_nobuiltininc)) {
// Add openmp_wrappers/* to our system include path. This lets us wrap
// standard library headers.
SmallString<128> P(D.ResourceDir);
llvm::sys::path::append(P, "include");
llvm::sys::path::append(P, "openmp_wrappers");
CmdArgs.push_back("-internal-isystem");
CmdArgs.push_back(Args.MakeArgString(P));
}
CmdArgs.push_back("-include");
CmdArgs.push_back("__clang_openmp_device_functions.h");
}
// Add -i* options, and automatically translate to
// -include-pch/-include-pth for transparent PCH support. It's
// wonky, but we include looking for .gch so we can support seamless
// replacement into a build system already set up to be generating
// .gch files.
if (getToolChain().getDriver().IsCLMode()) {
const Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
const Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
if (YcArg && JA.getKind() >= Action::PrecompileJobClass &&
JA.getKind() <= Action::AssembleJobClass) {
CmdArgs.push_back(Args.MakeArgString("-building-pch-with-obj"));
// -fpch-instantiate-templates is the default when creating
// precomp using /Yc
if (Args.hasFlag(options::OPT_fpch_instantiate_templates,
options::OPT_fno_pch_instantiate_templates, true))
CmdArgs.push_back(Args.MakeArgString("-fpch-instantiate-templates"));
}
if (YcArg || YuArg) {
StringRef ThroughHeader = YcArg ? YcArg->getValue() : YuArg->getValue();
if (!isa<PrecompileJobAction>(JA)) {
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(D.GetClPchPath(
C, !ThroughHeader.empty()
? ThroughHeader
: llvm::sys::path::filename(Inputs[0].getBaseInput()))));
}
if (ThroughHeader.empty()) {
CmdArgs.push_back(Args.MakeArgString(
Twine("-pch-through-hdrstop-") + (YcArg ? "create" : "use")));
} else {
CmdArgs.push_back(
Args.MakeArgString(Twine("-pch-through-header=") + ThroughHeader));
}
}
}
bool RenderedImplicitInclude = false;
for (const Arg *A : Args.filtered(options::OPT_clang_i_Group)) {
if (A->getOption().matches(options::OPT_include)) {
// Handling of gcc-style gch precompiled headers.
bool IsFirstImplicitInclude = !RenderedImplicitInclude;
RenderedImplicitInclude = true;
bool FoundPCH = false;
SmallString<128> P(A->getValue());
// We want the files to have a name like foo.h.pch. Add a dummy extension
// so that replace_extension does the right thing.
P += ".dummy";
llvm::sys::path::replace_extension(P, "pch");
if (llvm::sys::fs::exists(P))
FoundPCH = true;
if (!FoundPCH) {
llvm::sys::path::replace_extension(P, "gch");
if (llvm::sys::fs::exists(P)) {
FoundPCH = true;
}
}
if (FoundPCH) {
if (IsFirstImplicitInclude) {
A->claim();
CmdArgs.push_back("-include-pch");
CmdArgs.push_back(Args.MakeArgString(P));
continue;
} else {
// Ignore the PCH if not first on command line and emit warning.
D.Diag(diag::warn_drv_pch_not_first_include) << P
<< A->getAsString(Args);
}
}
} else if (A->getOption().matches(options::OPT_isystem_after)) {
// Handling of paths which must come late. These entries are handled by
// the toolchain itself after the resource dir is inserted in the right
// search order.
// Do not claim the argument so that the use of the argument does not
// silently go unnoticed on toolchains which do not honour the option.
continue;
} else if (A->getOption().matches(options::OPT_stdlibxx_isystem)) {
// Translated to -internal-isystem by the driver, no need to pass to cc1.
continue;
}
// Not translated, render as usual.
A->claim();
A->render(Args, CmdArgs);
}
Args.AddAllArgs(CmdArgs,
{options::OPT_D, options::OPT_U, options::OPT_I_Group,
options::OPT_F, options::OPT_index_header_map});
// Add -Wp, and -Xpreprocessor if using the preprocessor.
// FIXME: There is a very unfortunate problem here, some troubled
// souls abuse -Wp, to pass preprocessor options in gcc syntax. To
// really support that we would have to parse and then translate
// those options. :(
Args.AddAllArgValues(CmdArgs, options::OPT_Wp_COMMA,
options::OPT_Xpreprocessor);
// -I- is a deprecated GCC feature, reject it.
if (Arg *A = Args.getLastArg(options::OPT_I_))
D.Diag(diag::err_drv_I_dash_not_supported) << A->getAsString(Args);
// If we have a --sysroot, and don't have an explicit -isysroot flag, add an
// -isysroot to the CC1 invocation.
StringRef sysroot = C.getSysRoot();
if (sysroot != "") {
if (!Args.hasArg(options::OPT_isysroot)) {
CmdArgs.push_back("-isysroot");
CmdArgs.push_back(C.getArgs().MakeArgString(sysroot));
}
}
// Parse additional include paths from environment variables.
// FIXME: We should probably sink the logic for handling these from the
// frontend into the driver. It will allow deleting 4 otherwise unused flags.
// CPATH - included following the user specified includes (but prior to
// builtin and standard includes).
addDirectoryList(Args, CmdArgs, "-I", "CPATH");
// C_INCLUDE_PATH - system includes enabled when compiling C.
addDirectoryList(Args, CmdArgs, "-c-isystem", "C_INCLUDE_PATH");
// CPLUS_INCLUDE_PATH - system includes enabled when compiling C++.
addDirectoryList(Args, CmdArgs, "-cxx-isystem", "CPLUS_INCLUDE_PATH");
// OBJC_INCLUDE_PATH - system includes enabled when compiling ObjC.
addDirectoryList(Args, CmdArgs, "-objc-isystem", "OBJC_INCLUDE_PATH");
// OBJCPLUS_INCLUDE_PATH - system includes enabled when compiling ObjC++.
addDirectoryList(Args, CmdArgs, "-objcxx-isystem", "OBJCPLUS_INCLUDE_PATH");
// While adding the include arguments, we also attempt to retrieve the
// arguments of related offloading toolchains or arguments that are specific
// of an offloading programming model.
// Add C++ include arguments, if needed.
if (types::isCXX(Inputs[0].getType())) {
bool HasStdlibxxIsystem = Args.hasArg(options::OPT_stdlibxx_isystem);
forAllAssociatedToolChains(
C, JA, getToolChain(),
[&Args, &CmdArgs, HasStdlibxxIsystem](const ToolChain &TC) {
HasStdlibxxIsystem ? TC.AddClangCXXStdlibIsystemArgs(Args, CmdArgs)
: TC.AddClangCXXStdlibIncludeArgs(Args, CmdArgs);
});
}
// Add system include arguments for all targets but IAMCU.
if (!IsIAMCU)
forAllAssociatedToolChains(C, JA, getToolChain(),
[&Args, &CmdArgs](const ToolChain &TC) {
TC.AddClangSystemIncludeArgs(Args, CmdArgs);
});
else {
// For IAMCU add special include arguments.
getToolChain().AddIAMCUIncludeArgs(Args, CmdArgs);
}
addMacroPrefixMapArg(D, Args, CmdArgs);
addCoveragePrefixMapArg(D, Args, CmdArgs);
}
// FIXME: Move to target hook.
static bool isSignedCharDefault(const llvm::Triple &Triple) {
switch (Triple.getArch()) {
default:
return true;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Triple.isOSDarwin() || Triple.isOSWindows())
return true;
return false;
case llvm::Triple::ppc:
case llvm::Triple::ppc64:
if (Triple.isOSDarwin())
return true;
return false;
case llvm::Triple::hexagon:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64le:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
case llvm::Triple::systemz:
case llvm::Triple::xcore:
return false;
}
}
static bool hasMultipleInvocations(const llvm::Triple &Triple,
const ArgList &Args) {
// Supported only on Darwin where we invoke the compiler multiple times
// followed by an invocation to lipo.
if (!Triple.isOSDarwin())
return false;
// If more than one "-arch <arch>" is specified, we're targeting multiple
// architectures resulting in a fat binary.
return Args.getAllArgValues(options::OPT_arch).size() > 1;
}
static bool checkRemarksOptions(const Driver &D, const ArgList &Args,
const llvm::Triple &Triple) {
// When enabling remarks, we need to error if:
// * The remark file is specified but we're targeting multiple architectures,
// which means more than one remark file is being generated.
bool hasMultipleInvocations = ::hasMultipleInvocations(Triple, Args);
bool hasExplicitOutputFile =
Args.getLastArg(options::OPT_foptimization_record_file_EQ);
if (hasMultipleInvocations && hasExplicitOutputFile) {
D.Diag(diag::err_drv_invalid_output_with_multiple_archs)
<< "-foptimization-record-file";
return false;
}
return true;
}
static void renderRemarksOptions(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::Triple &Triple,
const InputInfo &Input,
const InputInfo &Output, const JobAction &JA) {
StringRef Format = "yaml";
if (const Arg *A = Args.getLastArg(options::OPT_fsave_optimization_record_EQ))
Format = A->getValue();
CmdArgs.push_back("-opt-record-file");
const Arg *A = Args.getLastArg(options::OPT_foptimization_record_file_EQ);
if (A) {
CmdArgs.push_back(A->getValue());
} else {
bool hasMultipleArchs =
Triple.isOSDarwin() && // Only supported on Darwin platforms.
Args.getAllArgValues(options::OPT_arch).size() > 1;
SmallString<128> F;
if (Args.hasArg(options::OPT_c) || Args.hasArg(options::OPT_S)) {
if (Arg *FinalOutput = Args.getLastArg(options::OPT_o))
F = FinalOutput->getValue();
} else {
if (Format != "yaml" && // For YAML, keep the original behavior.
Triple.isOSDarwin() && // Enable this only on darwin, since it's the only platform supporting .dSYM bundles.
Output.isFilename())
F = Output.getFilename();
}
if (F.empty()) {
// Use the input filename.
F = llvm::sys::path::stem(Input.getBaseInput());
// If we're compiling for an offload architecture (i.e. a CUDA device),
// we need to make the file name for the device compilation different
// from the host compilation.
if (!JA.isDeviceOffloading(Action::OFK_None) &&
!JA.isDeviceOffloading(Action::OFK_Host)) {
llvm::sys::path::replace_extension(F, "");
F += Action::GetOffloadingFileNamePrefix(JA.getOffloadingDeviceKind(),
Triple.normalize());
F += "-";
F += JA.getOffloadingArch();
}
}
// If we're having more than one "-arch", we should name the files
// differently so that every cc1 invocation writes to a different file.
// We're doing that by appending "-<arch>" with "<arch>" being the arch
// name from the triple.
if (hasMultipleArchs) {
// First, remember the extension.
SmallString<64> OldExtension = llvm::sys::path::extension(F);
// then, remove it.
llvm::sys::path::replace_extension(F, "");
// attach -<arch> to it.
F += "-";
F += Triple.getArchName();
// put back the extension.
llvm::sys::path::replace_extension(F, OldExtension);
}
SmallString<32> Extension;
Extension += "opt.";
Extension += Format;
llvm::sys::path::replace_extension(F, Extension);
CmdArgs.push_back(Args.MakeArgString(F));
}
if (const Arg *A =
Args.getLastArg(options::OPT_foptimization_record_passes_EQ)) {
CmdArgs.push_back("-opt-record-passes");
CmdArgs.push_back(A->getValue());
}
if (!Format.empty()) {
CmdArgs.push_back("-opt-record-format");
CmdArgs.push_back(Format.data());
}
}
void AddAAPCSVolatileBitfieldArgs(const ArgList &Args, ArgStringList &CmdArgs) {
if (!Args.hasFlag(options::OPT_faapcs_bitfield_width,
options::OPT_fno_aapcs_bitfield_width, true))
CmdArgs.push_back("-fno-aapcs-bitfield-width");
if (Args.getLastArg(options::OPT_ForceAAPCSBitfieldLoad))
CmdArgs.push_back("-faapcs-bitfield-load");
}
namespace {
void RenderARMABI(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs) {
// Select the ABI to use.
// FIXME: Support -meabi.
// FIXME: Parts of this are duplicated in the backend, unify this somehow.
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ)) {
ABIName = A->getValue();
} else {
std::string CPU = getCPUName(Args, Triple, /*FromAs*/ false);
ABIName = llvm::ARM::computeDefaultTargetABI(Triple, CPU).data();
}
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddARMTargetArgs(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs, bool KernelOrKext) const {
RenderARMABI(Triple, Args, CmdArgs);
// Determine floating point ABI from the options & target defaults.
arm::FloatABI ABI = arm::getARMFloatABI(getToolChain(), Args);
if (ABI == arm::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
// FIXME: This changes CPP defines, we need -target-soft-float.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else if (ABI == arm::FloatABI::SoftFP) {
// Floating point operations are hard, but argument passing is soft.
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == arm::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-arm-global-merge=false");
else
CmdArgs.push_back("-arm-global-merge=true");
}
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
if (Args.getLastArg(options::OPT_mcmse))
CmdArgs.push_back("-mcmse");
AddAAPCSVolatileBitfieldArgs(Args, CmdArgs);
}
void Clang::RenderTargetOptions(const llvm::Triple &EffectiveTriple,
const ArgList &Args, bool KernelOrKext,
ArgStringList &CmdArgs) const {
const ToolChain &TC = getToolChain();
// Add the target features
getTargetFeatures(TC.getDriver(), EffectiveTriple, Args, CmdArgs, false);
// Add target specific flags.
switch (TC.getArch()) {
default:
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// Use the effective triple, which takes into account the deployment target.
AddARMTargetArgs(EffectiveTriple, Args, CmdArgs, KernelOrKext);
CmdArgs.push_back("-fallow-half-arguments-and-returns");
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
AddAArch64TargetArgs(Args, CmdArgs);
CmdArgs.push_back("-fallow-half-arguments-and-returns");
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
AddMIPSTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
AddPPCTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
AddRISCVTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::sparc:
case llvm::Triple::sparcel:
case llvm::Triple::sparcv9:
AddSparcTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::systemz:
AddSystemZTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
AddX86TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::lanai:
AddLanaiTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::hexagon:
AddHexagonTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
AddWebAssemblyTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::ve:
AddVETargetArgs(Args, CmdArgs);
break;
}
}
namespace {
void RenderAArch64ABI(const llvm::Triple &Triple, const ArgList &Args,
ArgStringList &CmdArgs) {
const char *ABIName = nullptr;
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ))
ABIName = A->getValue();
else if (Triple.isOSDarwin())
ABIName = "darwinpcs";
else
ABIName = "aapcs";
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
void Clang::AddAArch64TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mimplicit_float,
options::OPT_mno_implicit_float, true))
CmdArgs.push_back("-no-implicit-float");
RenderAArch64ABI(Triple, Args, CmdArgs);
if (Arg *A = Args.getLastArg(options::OPT_mfix_cortex_a53_835769,
options::OPT_mno_fix_cortex_a53_835769)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mfix_cortex_a53_835769))
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
else
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=0");
} else if (Triple.isAndroid()) {
// Enabled A53 errata (835769) workaround by default on android
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-aarch64-fix-cortex-a53-835769=1");
}
// Forward the -mglobal-merge option for explicit control over the pass.
if (Arg *A = Args.getLastArg(options::OPT_mglobal_merge,
options::OPT_mno_global_merge)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_mno_global_merge))
CmdArgs.push_back("-aarch64-enable-global-merge=false");
else
CmdArgs.push_back("-aarch64-enable-global-merge=true");
}
// Enable/disable return address signing and indirect branch targets.
if (Arg *A = Args.getLastArg(options::OPT_msign_return_address_EQ,
options::OPT_mbranch_protection_EQ)) {
const Driver &D = getToolChain().getDriver();
StringRef Scope, Key;
bool IndirectBranches;
if (A->getOption().matches(options::OPT_msign_return_address_EQ)) {
Scope = A->getValue();
if (!Scope.equals("none") && !Scope.equals("non-leaf") &&
!Scope.equals("all"))
D.Diag(diag::err_invalid_branch_protection)
<< Scope << A->getAsString(Args);
Key = "a_key";
IndirectBranches = false;
} else {
StringRef Err;
llvm::AArch64::ParsedBranchProtection PBP;
if (!llvm::AArch64::parseBranchProtection(A->getValue(), PBP, Err))
D.Diag(diag::err_invalid_branch_protection)
<< Err << A->getAsString(Args);
Scope = PBP.Scope;
Key = PBP.Key;
IndirectBranches = PBP.BranchTargetEnforcement;
}
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address=") + Scope));
CmdArgs.push_back(
Args.MakeArgString(Twine("-msign-return-address-key=") + Key));
if (IndirectBranches)
CmdArgs.push_back("-mbranch-target-enforce");
}
// Handle -msve_vector_bits=<bits>
if (Arg *A = Args.getLastArg(options::OPT_msve_vector_bits_EQ)) {
StringRef Val = A->getValue();
const Driver &D = getToolChain().getDriver();
if (Val.equals("128") || Val.equals("256") || Val.equals("512") ||
Val.equals("1024") || Val.equals("2048"))
CmdArgs.push_back(
Args.MakeArgString(llvm::Twine("-msve-vector-bits=") + Val));
// Silently drop requests for vector-length agnostic code as it's implied.
else if (!Val.equals("scalable"))
// Handle the unsupported values passed to msve-vector-bits.
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
}
AddAAPCSVolatileBitfieldArgs(Args, CmdArgs);
}
void Clang::AddMIPSTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const Driver &D = getToolChain().getDriver();
StringRef CPUName;
StringRef ABIName;
const llvm::Triple &Triple = getToolChain().getTriple();
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
mips::FloatABI ABI = mips::getMipsFloatABI(D, Args, Triple);
if (ABI == mips::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(ABI == mips::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (Arg *A = Args.getLastArg(options::OPT_mldc1_sdc1,
options::OPT_mno_ldc1_sdc1)) {
if (A->getOption().matches(options::OPT_mno_ldc1_sdc1)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-ldc1-sdc1");
}
}
if (Arg *A = Args.getLastArg(options::OPT_mcheck_zero_division,
options::OPT_mno_check_zero_division)) {
if (A->getOption().matches(options::OPT_mno_check_zero_division)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mno-check-zero-division");
}
}
if (Arg *A = Args.getLastArg(options::OPT_G)) {
StringRef v = A->getValue();
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-ssection-threshold=" + v));
A->claim();
}
Arg *GPOpt = Args.getLastArg(options::OPT_mgpopt, options::OPT_mno_gpopt);
Arg *ABICalls =
Args.getLastArg(options::OPT_mabicalls, options::OPT_mno_abicalls);
// -mabicalls is the default for many MIPS environments, even with -fno-pic.
// -mgpopt is the default for static, -fno-pic environments but these two
// options conflict. We want to be certain that -mno-abicalls -mgpopt is
// the only case where -mllvm -mgpopt is passed.
// NOTE: We need a warning here or in the backend to warn when -mgpopt is
// passed explicitly when compiling something with -mabicalls
// (implictly) in affect. Currently the warning is in the backend.
//
// When the ABI in use is N64, we also need to determine the PIC mode that
// is in use, as -fno-pic for N64 implies -mno-abicalls.
bool NoABICalls =
ABICalls && ABICalls->getOption().matches(options::OPT_mno_abicalls);
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) =
ParsePICArgs(getToolChain(), Args);
NoABICalls = NoABICalls ||
(RelocationModel == llvm::Reloc::Static && ABIName == "n64");
bool WantGPOpt = GPOpt && GPOpt->getOption().matches(options::OPT_mgpopt);
// We quietly ignore -mno-gpopt as the backend defaults to -mno-gpopt.
if (NoABICalls && (!GPOpt || WantGPOpt)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mgpopt");
Arg *LocalSData = Args.getLastArg(options::OPT_mlocal_sdata,
options::OPT_mno_local_sdata);
Arg *ExternSData = Args.getLastArg(options::OPT_mextern_sdata,
options::OPT_mno_extern_sdata);
Arg *EmbeddedData = Args.getLastArg(options::OPT_membedded_data,
options::OPT_mno_embedded_data);
if (LocalSData) {
CmdArgs.push_back("-mllvm");
if (LocalSData->getOption().matches(options::OPT_mlocal_sdata)) {
CmdArgs.push_back("-mlocal-sdata=1");
} else {
CmdArgs.push_back("-mlocal-sdata=0");
}
LocalSData->claim();
}
if (ExternSData) {
CmdArgs.push_back("-mllvm");
if (ExternSData->getOption().matches(options::OPT_mextern_sdata)) {
CmdArgs.push_back("-mextern-sdata=1");
} else {
CmdArgs.push_back("-mextern-sdata=0");
}
ExternSData->claim();
}
if (EmbeddedData) {
CmdArgs.push_back("-mllvm");
if (EmbeddedData->getOption().matches(options::OPT_membedded_data)) {
CmdArgs.push_back("-membedded-data=1");
} else {
CmdArgs.push_back("-membedded-data=0");
}
EmbeddedData->claim();
}
} else if ((!ABICalls || (!NoABICalls && ABICalls)) && WantGPOpt)
D.Diag(diag::warn_drv_unsupported_gpopt) << (ABICalls ? 0 : 1);
if (GPOpt)
GPOpt->claim();
if (Arg *A = Args.getLastArg(options::OPT_mcompact_branches_EQ)) {
StringRef Val = StringRef(A->getValue());
if (mips::hasCompactBranches(CPUName)) {
if (Val == "never" || Val == "always" || Val == "optimal") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-mips-compact-branches=" + Val));
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
} else
D.Diag(diag::warn_target_unsupported_compact_branches) << CPUName;
}
if (Arg *A = Args.getLastArg(options::OPT_mrelax_pic_calls,
options::OPT_mno_relax_pic_calls)) {
if (A->getOption().matches(options::OPT_mno_relax_pic_calls)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-mips-jalr-reloc=0");
}
}
}
void Clang::AddPPCTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// Select the ABI to use.
const char *ABIName = nullptr;
const llvm::Triple &T = getToolChain().getTriple();
if (T.isOSBinFormatELF()) {
switch (getToolChain().getArch()) {
case llvm::Triple::ppc64: {
if ((T.isOSFreeBSD() && T.getOSMajorVersion() >= 13) ||
T.isOSOpenBSD() || T.isMusl())
ABIName = "elfv2";
else
ABIName = "elfv1";
break;
}
case llvm::Triple::ppc64le:
ABIName = "elfv2";
break;
default:
break;
}
}
bool IEEELongDouble = false;
for (const Arg *A : Args.filtered(options::OPT_mabi_EQ)) {
StringRef V = A->getValue();
if (V == "ieeelongdouble")
IEEELongDouble = true;
else if (V == "ibmlongdouble")
IEEELongDouble = false;
else if (V != "altivec")
// The ppc64 linux abis are all "altivec" abis by default. Accept and ignore
// the option if given as we don't have backend support for any targets
// that don't use the altivec abi.
ABIName = A->getValue();
}
if (IEEELongDouble)
CmdArgs.push_back("-mabi=ieeelongdouble");
ppc::FloatABI FloatABI =
ppc::getPPCFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == ppc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == ppc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
if (ABIName) {
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName);
}
}
static void SetRISCVSmallDataLimit(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
const Driver &D = TC.getDriver();
const llvm::Triple &Triple = TC.getTriple();
// Default small data limitation is eight.
const char *SmallDataLimit = "8";
// Get small data limitation.
if (Args.getLastArg(options::OPT_shared, options::OPT_fpic,
options::OPT_fPIC)) {
// Not support linker relaxation for PIC.
SmallDataLimit = "0";
if (Args.hasArg(options::OPT_G)) {
D.Diag(diag::warn_drv_unsupported_sdata);
}
} else if (Args.getLastArgValue(options::OPT_mcmodel_EQ)
.equals_lower("large") &&
(Triple.getArch() == llvm::Triple::riscv64)) {
// Not support linker relaxation for RV64 with large code model.
SmallDataLimit = "0";
if (Args.hasArg(options::OPT_G)) {
D.Diag(diag::warn_drv_unsupported_sdata);
}
} else if (Arg *A = Args.getLastArg(options::OPT_G)) {
SmallDataLimit = A->getValue();
}
// Forward the -msmall-data-limit= option.
CmdArgs.push_back("-msmall-data-limit");
CmdArgs.push_back(SmallDataLimit);
}
void Clang::AddRISCVTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getTriple();
StringRef ABIName = riscv::getRISCVABI(Args, Triple);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
SetRISCVSmallDataLimit(getToolChain(), Args, CmdArgs);
std::string TuneCPU;
if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mtune_EQ)) {
StringRef Name = A->getValue();
Name = llvm::RISCV::resolveTuneCPUAlias(Name, Triple.isArch64Bit());
TuneCPU = std::string(Name);
}
if (!TuneCPU.empty()) {
CmdArgs.push_back("-tune-cpu");
CmdArgs.push_back(Args.MakeArgString(TuneCPU));
}
}
void Clang::AddSparcTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
sparc::FloatABI FloatABI =
sparc::getSparcFloatABI(getToolChain().getDriver(), Args);
if (FloatABI == sparc::FloatABI::Soft) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
} else {
// Floating point operations and argument passing are hard.
assert(FloatABI == sparc::FloatABI::Hard && "Invalid float abi!");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
}
void Clang::AddSystemZTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
bool HasBackchain = Args.hasFlag(options::OPT_mbackchain,
options::OPT_mno_backchain, false);
bool HasPackedStack = Args.hasFlag(options::OPT_mpacked_stack,
options::OPT_mno_packed_stack, false);
systemz::FloatABI FloatABI =
systemz::getSystemZFloatABI(getToolChain().getDriver(), Args);
bool HasSoftFloat = (FloatABI == systemz::FloatABI::Soft);
if (HasBackchain && HasPackedStack && !HasSoftFloat) {
const Driver &D = getToolChain().getDriver();
D.Diag(diag::err_drv_unsupported_opt)
<< "-mpacked-stack -mbackchain -mhard-float";
}
if (HasBackchain)
CmdArgs.push_back("-mbackchain");
if (HasPackedStack)
CmdArgs.push_back("-mpacked-stack");
if (HasSoftFloat) {
// Floating point operations and argument passing are soft.
CmdArgs.push_back("-msoft-float");
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
}
}
void Clang::AddX86TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const Driver &D = getToolChain().getDriver();
addX86AlignBranchArgs(D, Args, CmdArgs, /*IsLTO=*/false);
if (!Args.hasFlag(options::OPT_mred_zone, options::OPT_mno_red_zone, true) ||
Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext))
CmdArgs.push_back("-disable-red-zone");
if (!Args.hasFlag(options::OPT_mtls_direct_seg_refs,
options::OPT_mno_tls_direct_seg_refs, true))
CmdArgs.push_back("-mno-tls-direct-seg-refs");
// Default to avoid implicit floating-point for kernel/kext code, but allow
// that to be overridden with -mno-soft-float.
bool NoImplicitFloat = (Args.hasArg(options::OPT_mkernel) ||
Args.hasArg(options::OPT_fapple_kext));
if (Arg *A = Args.getLastArg(
options::OPT_msoft_float, options::OPT_mno_soft_float,
options::OPT_mimplicit_float, options::OPT_mno_implicit_float)) {
const Option &O = A->getOption();
NoImplicitFloat = (O.matches(options::OPT_mno_implicit_float) ||
O.matches(options::OPT_msoft_float));
}
if (NoImplicitFloat)
CmdArgs.push_back("-no-implicit-float");
if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
StringRef Value = A->getValue();
if (Value == "intel" || Value == "att") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
} else if (D.IsCLMode()) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-x86-asm-syntax=intel");
}
// Set flags to support MCU ABI.
if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("soft");
CmdArgs.push_back("-mstack-alignment=4");
}
// Handle -mtune.
// Default to "generic" unless -march is present or targetting the PS4.
std::string TuneCPU;
if (!Args.hasArg(clang::driver::options::OPT_march_EQ) &&
!getToolChain().getTriple().isPS4CPU())
TuneCPU = "generic";
// Override based on -mtune.
if (const Arg *A = Args.getLastArg(clang::driver::options::OPT_mtune_EQ)) {
StringRef Name = A->getValue();
if (Name == "native") {
Name = llvm::sys::getHostCPUName();
if (!Name.empty())
TuneCPU = std::string(Name);
} else
TuneCPU = std::string(Name);
}
if (!TuneCPU.empty()) {
CmdArgs.push_back("-tune-cpu");
CmdArgs.push_back(Args.MakeArgString(TuneCPU));
}
}
void Clang::AddHexagonTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
CmdArgs.push_back("-mqdsp6-compat");
CmdArgs.push_back("-Wreturn-type");
if (auto G = toolchains::HexagonToolChain::getSmallDataThreshold(Args)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-hexagon-small-data-threshold=" +
Twine(G.getValue())));
}
if (!Args.hasArg(options::OPT_fno_short_enums))
CmdArgs.push_back("-fshort-enums");
if (Args.getLastArg(options::OPT_mieee_rnd_near)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-hexagon-ieee-rnd-near");
}
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-machine-sink-split=0");
}
void Clang::AddLanaiTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
if (Arg *A = Args.getLastArg(options::OPT_mcpu_EQ)) {
StringRef CPUName = A->getValue();
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPUName));
}
if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
StringRef Value = A->getValue();
// Only support mregparm=4 to support old usage. Report error for all other
// cases.
int Mregparm;
if (Value.getAsInteger(10, Mregparm)) {
if (Mregparm != 4) {
getToolChain().getDriver().Diag(
diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
}
void Clang::AddWebAssemblyTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
// Default to "hidden" visibility.
if (!Args.hasArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
CmdArgs.push_back("-fvisibility");
CmdArgs.push_back("hidden");
}
}
void Clang::AddVETargetArgs(const ArgList &Args, ArgStringList &CmdArgs) const {
// Floating point operations and argument passing are hard.
CmdArgs.push_back("-mfloat-abi");
CmdArgs.push_back("hard");
}
void Clang::DumpCompilationDatabase(Compilation &C, StringRef Filename,
StringRef Target, const InputInfo &Output,
const InputInfo &Input, const ArgList &Args) const {
// If this is a dry run, do not create the compilation database file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
using llvm::yaml::escape;
const Driver &D = getToolChain().getDriver();
if (!CompilationDatabase) {
std::error_code EC;
auto File = std::make_unique<llvm::raw_fd_ostream>(Filename, EC,
llvm::sys::fs::OF_Text);
if (EC) {
D.Diag(clang::diag::err_drv_compilationdatabase) << Filename
<< EC.message();
return;
}
CompilationDatabase = std::move(File);
}
auto &CDB = *CompilationDatabase;
auto CWD = D.getVFS().getCurrentWorkingDirectory();
if (!CWD)
CWD = ".";
CDB << "{ \"directory\": \"" << escape(*CWD) << "\"";
CDB << ", \"file\": \"" << escape(Input.getFilename()) << "\"";
CDB << ", \"output\": \"" << escape(Output.getFilename()) << "\"";
CDB << ", \"arguments\": [\"" << escape(D.ClangExecutable) << "\"";
SmallString<128> Buf;
Buf = "-x";
Buf += types::getTypeName(Input.getType());
CDB << ", \"" << escape(Buf) << "\"";
if (!D.SysRoot.empty() && !Args.hasArg(options::OPT__sysroot_EQ)) {
Buf = "--sysroot=";
Buf += D.SysRoot;
CDB << ", \"" << escape(Buf) << "\"";
}
CDB << ", \"" << escape(Input.getFilename()) << "\"";
for (auto &A: Args) {
auto &O = A->getOption();
// Skip language selection, which is positional.
if (O.getID() == options::OPT_x)
continue;
// Skip writing dependency output and the compilation database itself.
if (O.getGroup().isValid() && O.getGroup().getID() == options::OPT_M_Group)
continue;
if (O.getID() == options::OPT_gen_cdb_fragment_path)
continue;
// Skip inputs.
if (O.getKind() == Option::InputClass)
continue;
// All other arguments are quoted and appended.
ArgStringList ASL;
A->render(Args, ASL);
for (auto &it: ASL)
CDB << ", \"" << escape(it) << "\"";
}
Buf = "--target=";
Buf += Target;
CDB << ", \"" << escape(Buf) << "\"]},\n";
}
void Clang::DumpCompilationDatabaseFragmentToDir(
StringRef Dir, Compilation &C, StringRef Target, const InputInfo &Output,
const InputInfo &Input, const llvm::opt::ArgList &Args) const {
// If this is a dry run, do not create the compilation database file.
if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH))
return;
if (CompilationDatabase)
DumpCompilationDatabase(C, "", Target, Output, Input, Args);
SmallString<256> Path = Dir;
const auto &Driver = C.getDriver();
Driver.getVFS().makeAbsolute(Path);
auto Err = llvm::sys::fs::create_directory(Path, /*IgnoreExisting=*/true);
if (Err) {
Driver.Diag(diag::err_drv_compilationdatabase) << Dir << Err.message();
return;
}
llvm::sys::path::append(
Path,
Twine(llvm::sys::path::filename(Input.getFilename())) + ".%%%%.json");
int FD;
SmallString<256> TempPath;
Err = llvm::sys::fs::createUniqueFile(Path, FD, TempPath,
llvm::sys::fs::OF_Text);
if (Err) {
Driver.Diag(diag::err_drv_compilationdatabase) << Path << Err.message();
return;
}
CompilationDatabase =
std::make_unique<llvm::raw_fd_ostream>(FD, /*shouldClose=*/true);
DumpCompilationDatabase(C, "", Target, Output, Input, Args);
}
static bool AddARMImplicitITArgs(const ArgList &Args, ArgStringList &CmdArgs,
StringRef Value) {
if (Value == "always" || Value == "never" || Value == "arm" ||
Value == "thumb") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-arm-implicit-it=" + Value));
return true;
}
return false;
}
static void CollectArgsForIntegratedAssembler(Compilation &C,
const ArgList &Args,
ArgStringList &CmdArgs,
const Driver &D) {
if (UseRelaxAll(C, Args))
CmdArgs.push_back("-mrelax-all");
// Only default to -mincremental-linker-compatible if we think we are
// targeting the MSVC linker.
bool DefaultIncrementalLinkerCompatible =
C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment();
if (Args.hasFlag(options::OPT_mincremental_linker_compatible,
options::OPT_mno_incremental_linker_compatible,
DefaultIncrementalLinkerCompatible))
CmdArgs.push_back("-mincremental-linker-compatible");
switch (C.getDefaultToolChain().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
if (Arg *A = Args.getLastArg(options::OPT_mimplicit_it_EQ)) {
StringRef Value = A->getValue();
if (!AddARMImplicitITArgs(Args, CmdArgs, Value))
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
break;
default:
break;
}
// If you add more args here, also add them to the block below that
// starts with "// If CollectArgsForIntegratedAssembler() isn't called below".
// When passing -I arguments to the assembler we sometimes need to
// unconditionally take the next argument. For example, when parsing
// '-Wa,-I -Wa,foo' we need to accept the -Wa,foo arg after seeing the
// -Wa,-I arg and when parsing '-Wa,-I,foo' we need to accept the 'foo'
// arg after parsing the '-I' arg.
bool TakeNextArg = false;
bool UseRelaxRelocations = C.getDefaultToolChain().useRelaxRelocations();
bool UseNoExecStack = C.getDefaultToolChain().isNoExecStackDefault();
const char *MipsTargetFeature = nullptr;
for (const Arg *A :
Args.filtered(options::OPT_Wa_COMMA, options::OPT_Xassembler)) {
A->claim();
for (StringRef Value : A->getValues()) {
if (TakeNextArg) {
CmdArgs.push_back(Value.data());
TakeNextArg = false;
continue;
}
if (C.getDefaultToolChain().getTriple().isOSBinFormatCOFF() &&
Value == "-mbig-obj")
continue; // LLVM handles bigobj automatically
switch (C.getDefaultToolChain().getArch()) {
default:
break;
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
case llvm::Triple::arm:
case llvm::Triple::armeb:
if (Value.startswith("-mimplicit-it=") &&
AddARMImplicitITArgs(Args, CmdArgs, Value.split("=").second))
continue;
if (Value == "-mthumb")
// -mthumb has already been processed in ComputeLLVMTriple()
// recognize but skip over here.
continue;
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
if (Value == "--trap") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+use-tcc-in-div");
continue;
}
if (Value == "--break") {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-use-tcc-in-div");
continue;
}
if (Value.startswith("-msoft-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+soft-float");
continue;
}
if (Value.startswith("-mhard-float")) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-soft-float");
continue;
}
MipsTargetFeature = llvm::StringSwitch<const char *>(Value)
.Case("-mips1", "+mips1")
.Case("-mips2", "+mips2")
.Case("-mips3", "+mips3")
.Case("-mips4", "+mips4")
.Case("-mips5", "+mips5")
.Case("-mips32", "+mips32")
.Case("-mips32r2", "+mips32r2")
.Case("-mips32r3", "+mips32r3")
.Case("-mips32r5", "+mips32r5")
.Case("-mips32r6", "+mips32r6")
.Case("-mips64", "+mips64")
.Case("-mips64r2", "+mips64r2")
.Case("-mips64r3", "+mips64r3")
.Case("-mips64r5", "+mips64r5")
.Case("-mips64r6", "+mips64r6")
.Default(nullptr);
if (MipsTargetFeature)
continue;
}
if (Value == "-force_cpusubtype_ALL") {
// Do nothing, this is the default and we don't support anything else.
} else if (Value == "-L") {
CmdArgs.push_back("-msave-temp-labels");
} else if (Value == "--fatal-warnings") {
CmdArgs.push_back("-massembler-fatal-warnings");
} else if (Value == "--no-warn" || Value == "-W") {
CmdArgs.push_back("-massembler-no-warn");
} else if (Value == "--noexecstack") {
UseNoExecStack = true;
} else if (Value.startswith("-compress-debug-sections") ||
Value.startswith("--compress-debug-sections") ||
Value == "-nocompress-debug-sections" ||
Value == "--nocompress-debug-sections") {
CmdArgs.push_back(Value.data());
} else if (Value == "-mrelax-relocations=yes" ||
Value == "--mrelax-relocations=yes") {
UseRelaxRelocations = true;
} else if (Value == "-mrelax-relocations=no" ||
Value == "--mrelax-relocations=no") {
UseRelaxRelocations = false;
} else if (Value.startswith("-I")) {
CmdArgs.push_back(Value.data());
// We need to consume the next argument if the current arg is a plain
// -I. The next arg will be the include directory.
if (Value == "-I")
TakeNextArg = true;
} else if (Value.startswith("-gdwarf-")) {
// "-gdwarf-N" options are not cc1as options.
unsigned DwarfVersion = DwarfVersionNum(Value);
if (DwarfVersion == 0) { // Send it onward, and let cc1as complain.
CmdArgs.push_back(Value.data());
} else {
RenderDebugEnablingArgs(Args, CmdArgs,
codegenoptions::LimitedDebugInfo,
DwarfVersion, llvm::DebuggerKind::Default);
}
} else if (Value.startswith("-mcpu") || Value.startswith("-mfpu") ||
Value.startswith("-mhwdiv") || Value.startswith("-march")) {
// Do nothing, we'll validate it later.
} else if (Value == "-defsym") {
if (A->getNumValues() != 2) {
D.Diag(diag::err_drv_defsym_invalid_format) << Value;
break;
}
const char *S = A->getValue(1);
auto Pair = StringRef(S).split('=');
auto Sym = Pair.first;
auto SVal = Pair.second;
if (Sym.empty() || SVal.empty()) {
D.Diag(diag::err_drv_defsym_invalid_format) << S;
break;
}
int64_t IVal;
if (SVal.getAsInteger(0, IVal)) {
D.Diag(diag::err_drv_defsym_invalid_symval) << SVal;
break;
}
CmdArgs.push_back(Value.data());
TakeNextArg = true;
} else if (Value == "-fdebug-compilation-dir") {
CmdArgs.push_back("-fdebug-compilation-dir");
TakeNextArg = true;
} else if (Value.consume_front("-fdebug-compilation-dir=")) {
// The flag is a -Wa / -Xassembler argument and Options doesn't
// parse the argument, so this isn't automatically aliased to
// -fdebug-compilation-dir (without '=') here.
CmdArgs.push_back("-fdebug-compilation-dir");
CmdArgs.push_back(Value.data());
} else {
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
if (UseRelaxRelocations)
CmdArgs.push_back("--mrelax-relocations");
if (UseNoExecStack)
CmdArgs.push_back("-mnoexecstack");
if (MipsTargetFeature != nullptr) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back(MipsTargetFeature);
}
// forward -fembed-bitcode to assmebler
if (C.getDriver().embedBitcodeEnabled() ||
C.getDriver().embedBitcodeMarkerOnly())
Args.AddLastArg(CmdArgs, options::OPT_fembed_bitcode_EQ);
}
static void RenderFloatingPointOptions(const ToolChain &TC, const Driver &D,
bool OFastEnabled, const ArgList &Args,
ArgStringList &CmdArgs,
const JobAction &JA) {
// Handle various floating point optimization flags, mapping them to the
// appropriate LLVM code generation flags. This is complicated by several
// "umbrella" flags, so we do this by stepping through the flags incrementally
// adjusting what we think is enabled/disabled, then at the end setting the
// LLVM flags based on the final state.
bool HonorINFs = true;
bool HonorNaNs = true;
// -fmath-errno is the default on some platforms, e.g. BSD-derived OSes.
bool MathErrno = TC.IsMathErrnoDefault();
bool AssociativeMath = false;
bool ReciprocalMath = false;
bool SignedZeros = true;
bool TrappingMath = false; // Implemented via -ffp-exception-behavior
bool TrappingMathPresent = false; // Is trapping-math in args, and not
// overriden by ffp-exception-behavior?
bool RoundingFPMath = false;
bool RoundingMathPresent = false; // Is rounding-math in args?
// -ffp-model values: strict, fast, precise
StringRef FPModel = "";
// -ffp-exception-behavior options: strict, maytrap, ignore
StringRef FPExceptionBehavior = "";
const llvm::DenormalMode DefaultDenormalFPMath =
TC.getDefaultDenormalModeForType(Args, JA);
const llvm::DenormalMode DefaultDenormalFP32Math =
TC.getDefaultDenormalModeForType(Args, JA, &llvm::APFloat::IEEEsingle());
llvm::DenormalMode DenormalFPMath = DefaultDenormalFPMath;
llvm::DenormalMode DenormalFP32Math = DefaultDenormalFP32Math;
StringRef FPContract = "";
bool StrictFPModel = false;
if (const Arg *A = Args.getLastArg(options::OPT_flimited_precision_EQ)) {
CmdArgs.push_back("-mlimit-float-precision");
CmdArgs.push_back(A->getValue());
}
for (const Arg *A : Args) {
auto optID = A->getOption().getID();
bool PreciseFPModel = false;
switch (optID) {
default:
break;
case options::OPT_ffp_model_EQ: {
// If -ffp-model= is seen, reset to fno-fast-math
HonorINFs = true;
HonorNaNs = true;
// Turning *off* -ffast-math restores the toolchain default.
MathErrno = TC.IsMathErrnoDefault();
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
// -fno_fast_math restores default denormal and fpcontract handling
FPContract = "";
DenormalFPMath = llvm::DenormalMode::getIEEE();
// FIXME: The target may have picked a non-IEEE default mode here based on
// -cl-denorms-are-zero. Should the target consider -fp-model interaction?
DenormalFP32Math = llvm::DenormalMode::getIEEE();
StringRef Val = A->getValue();
if (OFastEnabled && !Val.equals("fast")) {
// Only -ffp-model=fast is compatible with OFast, ignore.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-model=" + Val)
<< "-Ofast";
break;
}
StrictFPModel = false;
PreciseFPModel = true;
// ffp-model= is a Driver option, it is entirely rewritten into more
// granular options before being passed into cc1.
// Use the gcc option in the switch below.
if (!FPModel.empty() && !FPModel.equals(Val)) {
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-model=" + FPModel)
<< Args.MakeArgString("-ffp-model=" + Val);
FPContract = "";
}
if (Val.equals("fast")) {
optID = options::OPT_ffast_math;
FPModel = Val;
FPContract = "fast";
} else if (Val.equals("precise")) {
optID = options::OPT_ffp_contract;
FPModel = Val;
FPContract = "fast";
PreciseFPModel = true;
} else if (Val.equals("strict")) {
StrictFPModel = true;
optID = options::OPT_frounding_math;
FPExceptionBehavior = "strict";
FPModel = Val;
FPContract = "off";
TrappingMath = true;
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
}
switch (optID) {
// If this isn't an FP option skip the claim below
default: continue;
// Options controlling individual features
case options::OPT_fhonor_infinities: HonorINFs = true; break;
case options::OPT_fno_honor_infinities: HonorINFs = false; break;
case options::OPT_fhonor_nans: HonorNaNs = true; break;
case options::OPT_fno_honor_nans: HonorNaNs = false; break;
case options::OPT_fmath_errno: MathErrno = true; break;
case options::OPT_fno_math_errno: MathErrno = false; break;
case options::OPT_fassociative_math: AssociativeMath = true; break;
case options::OPT_fno_associative_math: AssociativeMath = false; break;
case options::OPT_freciprocal_math: ReciprocalMath = true; break;
case options::OPT_fno_reciprocal_math: ReciprocalMath = false; break;
case options::OPT_fsigned_zeros: SignedZeros = true; break;
case options::OPT_fno_signed_zeros: SignedZeros = false; break;
case options::OPT_ftrapping_math:
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals("strict"))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< "-ftrapping-math";
TrappingMath = true;
TrappingMathPresent = true;
FPExceptionBehavior = "strict";
break;
case options::OPT_fno_trapping_math:
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals("ignore"))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< "-fno-trapping-math";
TrappingMath = false;
TrappingMathPresent = true;
FPExceptionBehavior = "ignore";
break;
case options::OPT_frounding_math:
RoundingFPMath = true;
RoundingMathPresent = true;
break;
case options::OPT_fno_rounding_math:
RoundingFPMath = false;
RoundingMathPresent = false;
break;
case options::OPT_fdenormal_fp_math_EQ:
DenormalFPMath = llvm::parseDenormalFPAttribute(A->getValue());
if (!DenormalFPMath.isValid()) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
break;
case options::OPT_fdenormal_fp_math_f32_EQ:
DenormalFP32Math = llvm::parseDenormalFPAttribute(A->getValue());
if (!DenormalFP32Math.isValid()) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
break;
// Validate and pass through -ffp-contract option.
case options::OPT_ffp_contract: {
StringRef Val = A->getValue();
if (PreciseFPModel) {
// -ffp-model=precise enables ffp-contract=fast as a side effect
// the FPContract value has already been set to a string literal
// and the Val string isn't a pertinent value.
;
} else if (Val.equals("fast") || Val.equals("on") || Val.equals("off"))
FPContract = Val;
else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
// Validate and pass through -ffp-model option.
case options::OPT_ffp_model_EQ:
// This should only occur in the error case
// since the optID has been replaced by a more granular
// floating point option.
break;
// Validate and pass through -ffp-exception-behavior option.
case options::OPT_ffp_exception_behavior_EQ: {
StringRef Val = A->getValue();
if (!TrappingMathPresent && !FPExceptionBehavior.empty() &&
!FPExceptionBehavior.equals(Val))
// Warn that previous value of option is overridden.
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< Args.MakeArgString("-ffp-exception-behavior=" + FPExceptionBehavior)
<< Args.MakeArgString("-ffp-exception-behavior=" + Val);
TrappingMath = TrappingMathPresent = false;
if (Val.equals("ignore") || Val.equals("maytrap"))
FPExceptionBehavior = Val;
else if (Val.equals("strict")) {
FPExceptionBehavior = Val;
TrappingMath = TrappingMathPresent = true;
} else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
case options::OPT_ffinite_math_only:
HonorINFs = false;
HonorNaNs = false;
break;
case options::OPT_fno_finite_math_only:
HonorINFs = true;
HonorNaNs = true;
break;
case options::OPT_funsafe_math_optimizations:
AssociativeMath = true;
ReciprocalMath = true;
SignedZeros = false;
TrappingMath = false;
FPExceptionBehavior = "";
break;
case options::OPT_fno_unsafe_math_optimizations:
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
TrappingMath = true;
FPExceptionBehavior = "strict";
// The target may have opted to flush by default, so force IEEE.
DenormalFPMath = llvm::DenormalMode::getIEEE();
DenormalFP32Math = llvm::DenormalMode::getIEEE();
break;
case options::OPT_Ofast:
// If -Ofast is the optimization level, then -ffast-math should be enabled
if (!OFastEnabled)
continue;
LLVM_FALLTHROUGH;
case options::OPT_ffast_math:
HonorINFs = false;
HonorNaNs = false;
MathErrno = false;
AssociativeMath = true;
ReciprocalMath = true;
SignedZeros = false;
TrappingMath = false;
RoundingFPMath = false;
// If fast-math is set then set the fp-contract mode to fast.
FPContract = "fast";
break;
case options::OPT_fno_fast_math:
HonorINFs = true;
HonorNaNs = true;
// Turning on -ffast-math (with either flag) removes the need for
// MathErrno. However, turning *off* -ffast-math merely restores the
// toolchain default (which may be false).
MathErrno = TC.IsMathErrnoDefault();
AssociativeMath = false;
ReciprocalMath = false;
SignedZeros = true;
TrappingMath = false;
RoundingFPMath = false;
// -fno_fast_math restores default denormal and fpcontract handling
DenormalFPMath = DefaultDenormalFPMath;
DenormalFP32Math = llvm::DenormalMode::getIEEE();
FPContract = "";
break;
}
if (StrictFPModel) {
// If -ffp-model=strict has been specified on command line but
// subsequent options conflict then emit warning diagnostic.
if (HonorINFs && HonorNaNs &&
!AssociativeMath && !ReciprocalMath &&
SignedZeros && TrappingMath && RoundingFPMath &&
(FPContract.equals("off") || FPContract.empty()) &&
DenormalFPMath == llvm::DenormalMode::getIEEE() &&
DenormalFP32Math == llvm::DenormalMode::getIEEE())
// OK: Current Arg doesn't conflict with -ffp-model=strict
;
else {
StrictFPModel = false;
FPModel = "";
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< "-ffp-model=strict" <<
((A->getNumValues() == 0) ? A->getSpelling()
: Args.MakeArgString(A->getSpelling() + A->getValue()));
}
}
// If we handled this option claim it
A->claim();
}
if (!HonorINFs)
CmdArgs.push_back("-menable-no-infs");
if (!HonorNaNs)
CmdArgs.push_back("-menable-no-nans");
if (MathErrno)
CmdArgs.push_back("-fmath-errno");
if (!MathErrno && AssociativeMath && ReciprocalMath && !SignedZeros &&
!TrappingMath)
CmdArgs.push_back("-menable-unsafe-fp-math");
if (!SignedZeros)
CmdArgs.push_back("-fno-signed-zeros");
if (AssociativeMath && !SignedZeros && !TrappingMath)
CmdArgs.push_back("-mreassociate");
if (ReciprocalMath)
CmdArgs.push_back("-freciprocal-math");
if (TrappingMath) {
// FP Exception Behavior is also set to strict
assert(FPExceptionBehavior.equals("strict"));
}
// The default is IEEE.
if (DenormalFPMath != llvm::DenormalMode::getIEEE()) {
llvm::SmallString<64> DenormFlag;
llvm::raw_svector_ostream ArgStr(DenormFlag);
ArgStr << "-fdenormal-fp-math=" << DenormalFPMath;
CmdArgs.push_back(Args.MakeArgString(ArgStr.str()));
}
// Add f32 specific denormal mode flag if it's different.
if (DenormalFP32Math != DenormalFPMath) {
llvm::SmallString<64> DenormFlag;
llvm::raw_svector_ostream ArgStr(DenormFlag);
ArgStr << "-fdenormal-fp-math-f32=" << DenormalFP32Math;
CmdArgs.push_back(Args.MakeArgString(ArgStr.str()));
}
if (!FPContract.empty())
CmdArgs.push_back(Args.MakeArgString("-ffp-contract=" + FPContract));
if (!RoundingFPMath)
CmdArgs.push_back(Args.MakeArgString("-fno-rounding-math"));
if (RoundingFPMath && RoundingMathPresent)
CmdArgs.push_back(Args.MakeArgString("-frounding-math"));
if (!FPExceptionBehavior.empty())
CmdArgs.push_back(Args.MakeArgString("-ffp-exception-behavior=" +
FPExceptionBehavior));
ParseMRecip(D, Args, CmdArgs);
// -ffast-math enables the __FAST_MATH__ preprocessor macro, but check for the
// individual features enabled by -ffast-math instead of the option itself as
// that's consistent with gcc's behaviour.
if (!HonorINFs && !HonorNaNs && !MathErrno && AssociativeMath &&
ReciprocalMath && !SignedZeros && !TrappingMath && !RoundingFPMath) {
CmdArgs.push_back("-ffast-math");
if (FPModel.equals("fast")) {
if (FPContract.equals("fast"))
// All set, do nothing.
;
else if (FPContract.empty())
// Enable -ffp-contract=fast
CmdArgs.push_back(Args.MakeArgString("-ffp-contract=fast"));
else
D.Diag(clang::diag::warn_drv_overriding_flag_option)
<< "-ffp-model=fast"
<< Args.MakeArgString("-ffp-contract=" + FPContract);
}
}
// Handle __FINITE_MATH_ONLY__ similarly.
if (!HonorINFs && !HonorNaNs)
CmdArgs.push_back("-ffinite-math-only");
if (const Arg *A = Args.getLastArg(options::OPT_mfpmath_EQ)) {
CmdArgs.push_back("-mfpmath");
CmdArgs.push_back(A->getValue());
}
// Disable a codegen optimization for floating-point casts.
if (Args.hasFlag(options::OPT_fno_strict_float_cast_overflow,
options::OPT_fstrict_float_cast_overflow, false))
CmdArgs.push_back("-fno-strict-float-cast-overflow");
}
static void RenderAnalyzerOptions(const ArgList &Args, ArgStringList &CmdArgs,
const llvm::Triple &Triple,
const InputInfo &Input) {
// Enable region store model by default.
CmdArgs.push_back("-analyzer-store=region");
// Treat blocks as analysis entry points.
CmdArgs.push_back("-analyzer-opt-analyze-nested-blocks");
// Add default argument set.
if (!Args.hasArg(options::OPT__analyzer_no_default_checks)) {
CmdArgs.push_back("-analyzer-checker=core");
CmdArgs.push_back("-analyzer-checker=apiModeling");
if (!Triple.isWindowsMSVCEnvironment()) {
CmdArgs.push_back("-analyzer-checker=unix");
} else {
// Enable "unix" checkers that also work on Windows.
CmdArgs.push_back("-analyzer-checker=unix.API");
CmdArgs.push_back("-analyzer-checker=unix.Malloc");
CmdArgs.push_back("-analyzer-checker=unix.MallocSizeof");
CmdArgs.push_back("-analyzer-checker=unix.MismatchedDeallocator");
CmdArgs.push_back("-analyzer-checker=unix.cstring.BadSizeArg");
CmdArgs.push_back("-analyzer-checker=unix.cstring.NullArg");
}
// Disable some unix checkers for PS4.
if (Triple.isPS4CPU()) {
CmdArgs.push_back("-analyzer-disable-checker=unix.API");
CmdArgs.push_back("-analyzer-disable-checker=unix.Vfork");
}
if (Triple.isOSDarwin()) {
CmdArgs.push_back("-analyzer-checker=osx");
CmdArgs.push_back(
"-analyzer-checker=security.insecureAPI.decodeValueOfObjCType");
}
else if (Triple.isOSFuchsia())
CmdArgs.push_back("-analyzer-checker=fuchsia");
CmdArgs.push_back("-analyzer-checker=deadcode");
if (types::isCXX(Input.getType()))
CmdArgs.push_back("-analyzer-checker=cplusplus");
if (!Triple.isPS4CPU()) {
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.UncheckedReturn");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.getpw");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.gets");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mktemp");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.mkstemp");
CmdArgs.push_back("-analyzer-checker=security.insecureAPI.vfork");
}
// Default nullability checks.
CmdArgs.push_back("-analyzer-checker=nullability.NullPassedToNonnull");
CmdArgs.push_back("-analyzer-checker=nullability.NullReturnedFromNonnull");
}
// Set the output format. The default is plist, for (lame) historical reasons.
CmdArgs.push_back("-analyzer-output");
if (Arg *A = Args.getLastArg(options::OPT__analyzer_output))
CmdArgs.push_back(A->getValue());
else
CmdArgs.push_back("plist");
// Disable the presentation of standard compiler warnings when using
// --analyze. We only want to show static analyzer diagnostics or frontend
// errors.
CmdArgs.push_back("-w");
// Add -Xanalyzer arguments when running as analyzer.
Args.AddAllArgValues(CmdArgs, options::OPT_Xanalyzer);
}
static void RenderSSPOptions(const Driver &D, const ToolChain &TC,
const ArgList &Args, ArgStringList &CmdArgs,
bool KernelOrKext) {
const llvm::Triple &EffectiveTriple = TC.getEffectiveTriple();
// NVPTX doesn't support stack protectors; from the compiler's perspective, it
// doesn't even have a stack!
if (EffectiveTriple.isNVPTX())
return;
// -stack-protector=0 is default.
LangOptions::StackProtectorMode StackProtectorLevel = LangOptions::SSPOff;
LangOptions::StackProtectorMode DefaultStackProtectorLevel =
TC.GetDefaultStackProtectorLevel(KernelOrKext);
if (Arg *A = Args.getLastArg(options::OPT_fno_stack_protector,
options::OPT_fstack_protector_all,
options::OPT_fstack_protector_strong,
options::OPT_fstack_protector)) {
if (A->getOption().matches(options::OPT_fstack_protector))
StackProtectorLevel =
std::max<>(LangOptions::SSPOn, DefaultStackProtectorLevel);
else if (A->getOption().matches(options::OPT_fstack_protector_strong))
StackProtectorLevel = LangOptions::SSPStrong;
else if (A->getOption().matches(options::OPT_fstack_protector_all))
StackProtectorLevel = LangOptions::SSPReq;
} else {
StackProtectorLevel = DefaultStackProtectorLevel;
}
if (StackProtectorLevel) {
CmdArgs.push_back("-stack-protector");
CmdArgs.push_back(Args.MakeArgString(Twine(StackProtectorLevel)));
}
// --param ssp-buffer-size=
for (const Arg *A : Args.filtered(options::OPT__param)) {
StringRef Str(A->getValue());
if (Str.startswith("ssp-buffer-size=")) {
if (StackProtectorLevel) {
CmdArgs.push_back("-stack-protector-buffer-size");
// FIXME: Verify the argument is a valid integer.
CmdArgs.push_back(Args.MakeArgString(Str.drop_front(16)));
}
A->claim();
}
}
// First support "tls" and "global" for X86 target.
// TODO: Support "sysreg" for AArch64.
const std::string &TripleStr = EffectiveTriple.getTriple();
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86() && !EffectiveTriple.isAArch64())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
if (Value != "tls" && Value != "global") {
D.Diag(diag::err_drv_invalid_value_with_suggestion)
<< A->getOption().getName() << Value
<< "valid arguments to '-mstack-protector-guard=' are:tls global";
return;
}
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_offset_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
unsigned Offset;
if (Value.getAsInteger(10, Offset)) {
D.Diag(diag::err_drv_invalid_value) << A->getOption().getName() << Value;
return;
}
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_mstack_protector_guard_reg_EQ)) {
StringRef Value = A->getValue();
if (!EffectiveTriple.isX86())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
if (EffectiveTriple.isX86() && (Value != "fs" && Value != "gs")) {
D.Diag(diag::err_drv_invalid_value_with_suggestion)
<< A->getOption().getName() << Value
<< "for X86, valid arguments to '-mstack-protector-guard-reg=' are:fs gs";
return;
}
A->render(Args, CmdArgs);
}
}
static void RenderSCPOptions(const ToolChain &TC, const ArgList &Args,
ArgStringList &CmdArgs) {
const llvm::Triple &EffectiveTriple = TC.getEffectiveTriple();
if (!EffectiveTriple.isOSLinux())
return;
if (!EffectiveTriple.isX86() && !EffectiveTriple.isSystemZ() &&
!EffectiveTriple.isPPC64())
return;
if (Args.hasFlag(options::OPT_fstack_clash_protection,
options::OPT_fno_stack_clash_protection, false))
CmdArgs.push_back("-fstack-clash-protection");
}
static void RenderTrivialAutoVarInitOptions(const Driver &D,
const ToolChain &TC,
const ArgList &Args,
ArgStringList &CmdArgs) {
auto DefaultTrivialAutoVarInit = TC.GetDefaultTrivialAutoVarInit();
StringRef TrivialAutoVarInit = "";
for (const Arg *A : Args) {
switch (A->getOption().getID()) {
default:
continue;
case options::OPT_ftrivial_auto_var_init: {
A->claim();
StringRef Val = A->getValue();
if (Val == "uninitialized" || Val == "zero" || Val == "pattern")
TrivialAutoVarInit = Val;
else
D.Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Val;
break;
}
}
}
if (TrivialAutoVarInit.empty())
switch (DefaultTrivialAutoVarInit) {
case LangOptions::TrivialAutoVarInitKind::Uninitialized:
break;
case LangOptions::TrivialAutoVarInitKind::Pattern:
TrivialAutoVarInit = "pattern";
break;
case LangOptions::TrivialAutoVarInitKind::Zero:
TrivialAutoVarInit = "zero";
break;
}
if (!TrivialAutoVarInit.empty()) {
if (TrivialAutoVarInit == "zero" && !Args.hasArg(options::OPT_enable_trivial_var_init_zero))
D.Diag(diag::err_drv_trivial_auto_var_init_zero_disabled);
CmdArgs.push_back(
Args.MakeArgString("-ftrivial-auto-var-init=" + TrivialAutoVarInit));
}
if (Arg *A =
Args.getLastArg(options::OPT_ftrivial_auto_var_init_stop_after)) {
if (!Args.hasArg(options::OPT_ftrivial_auto_var_init) ||
StringRef(
Args.getLastArg(options::OPT_ftrivial_auto_var_init)->getValue()) ==
"uninitialized")
D.Diag(diag::err_drv_trivial_auto_var_init_stop_after_missing_dependency);
A->claim();
StringRef Val = A->getValue();
if (std::stoi(Val.str()) <= 0)
D.Diag(diag::err_drv_trivial_auto_var_init_stop_after_invalid_value);
CmdArgs.push_back(
Args.MakeArgString("-ftrivial-auto-var-init-stop-after=" + Val));
}
}
static void RenderOpenCLOptions(const ArgList &Args, ArgStringList &CmdArgs,
types::ID InputType) {
// cl-denorms-are-zero is not forwarded. It is translated into a generic flag
// for denormal flushing handling based on the target.
const unsigned ForwardedArguments[] = {
options::OPT_cl_opt_disable,
options::OPT_cl_strict_aliasing,
options::OPT_cl_single_precision_constant,
options::OPT_cl_finite_math_only,
options::OPT_cl_kernel_arg_info,
options::OPT_cl_unsafe_math_optimizations,
options::OPT_cl_fast_relaxed_math,
options::OPT_cl_mad_enable,
options::OPT_cl_no_signed_zeros,
options::OPT_cl_fp32_correctly_rounded_divide_sqrt,
options::OPT_cl_uniform_work_group_size
};
if (Arg *A = Args.getLastArg(options::OPT_cl_std_EQ)) {
std::string CLStdStr = std::string("-cl-std=") + A->getValue();
CmdArgs.push_back(Args.MakeArgString(CLStdStr));
}
for (const auto &Arg : ForwardedArguments)
if (const auto *A = Args.getLastArg(Arg))
CmdArgs.push_back(Args.MakeArgString(A->getOption().getPrefixedName()));
// Only add the default headers if we are compiling OpenCL sources.
if ((types::isOpenCL(InputType) || Args.hasArg(options::OPT_cl_std_EQ)) &&
!Args.hasArg(options::OPT_cl_no_stdinc)) {
CmdArgs.push_back("-finclude-default-header");
CmdArgs.push_back("-fdeclare-opencl-builtins");
}
}
static void RenderARCMigrateToolOptions(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
bool ARCMTEnabled = false;
if (!Args.hasArg(options::OPT_fno_objc_arc, options::OPT_fobjc_arc)) {
if (const Arg *A = Args.getLastArg(options::OPT_ccc_arcmt_check,
options::OPT_ccc_arcmt_modify,
options::OPT_ccc_arcmt_migrate)) {
ARCMTEnabled = true;
switch (A->getOption().getID()) {
default: llvm_unreachable("missed a case");
case options::OPT_ccc_arcmt_check:
CmdArgs.push_back("-arcmt-action=check");
break;
case options::OPT_ccc_arcmt_modify:
CmdArgs.push_back("-arcmt-action=modify");
break;
case options::OPT_ccc_arcmt_migrate:
CmdArgs.push_back("-arcmt-action=migrate");
CmdArgs.push_back("-mt-migrate-directory");
CmdArgs.push_back(A->getValue());
Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_report_output);
Args.AddLastArg(CmdArgs, options::OPT_arcmt_migrate_emit_arc_errors);
break;
}
}
} else {
Args.ClaimAllArgs(options::OPT_ccc_arcmt_check);
Args.ClaimAllArgs(options::OPT_ccc_arcmt_modify);
Args.ClaimAllArgs(options::OPT_ccc_arcmt_migrate);
}
if (const Arg *A = Args.getLastArg(options::OPT_ccc_objcmt_migrate)) {
if (ARCMTEnabled)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << "-ccc-arcmt-migrate";
CmdArgs.push_back("-mt-migrate-directory");
CmdArgs.push_back(A->getValue());
if (!Args.hasArg(options::OPT_objcmt_migrate_literals,
options::OPT_objcmt_migrate_subscripting,
options::OPT_objcmt_migrate_property)) {
// None specified, means enable them all.
CmdArgs.push_back("-objcmt-migrate-literals");
CmdArgs.push_back("-objcmt-migrate-subscripting");
CmdArgs.push_back("-objcmt-migrate-property");
} else {
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
}
} else {
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_literals);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_subscripting);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_all);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readonly_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_readwrite_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_property_dot_syntax);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_annotation);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_instancetype);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_nsmacros);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_protocol_conformance);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_atomic_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_returns_innerpointer_property);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_ns_nonatomic_iosonly);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_migrate_designated_init);
Args.AddLastArg(CmdArgs, options::OPT_objcmt_whitelist_dir_path);
}
}
static void RenderBuiltinOptions(const ToolChain &TC, const llvm::Triple &T,
const ArgList &Args, ArgStringList &CmdArgs) {
// -fbuiltin is default unless -mkernel is used.
bool UseBuiltins =
Args.hasFlag(options::OPT_fbuiltin, options::OPT_fno_builtin,
!Args.hasArg(options::OPT_mkernel));
if (!UseBuiltins)
CmdArgs.push_back("-fno-builtin");
// -ffreestanding implies -fno-builtin.
if (Args.hasArg(options::OPT_ffreestanding))
UseBuiltins = false;
// Process the -fno-builtin-* options.
for (const auto &Arg : Args) {
const Option &O = Arg->getOption();
if (!O.matches(options::OPT_fno_builtin_))
continue;
Arg->claim();
// If -fno-builtin is specified, then there's no need to pass the option to
// the frontend.
if (!UseBuiltins)
continue;
StringRef FuncName = Arg->getValue();
CmdArgs.push_back(Args.MakeArgString("-fno-builtin-" + FuncName));
}
// le32-specific flags:
// -fno-math-builtin: clang should not convert math builtins to intrinsics
// by default.
if (TC.getArch() == llvm::Triple::le32)
CmdArgs.push_back("-fno-math-builtin");
}
bool Driver::getDefaultModuleCachePath(SmallVectorImpl<char> &Result) {
if (llvm::sys::path::cache_directory(Result)) {
llvm::sys::path::append(Result, "clang");
llvm::sys::path::append(Result, "ModuleCache");
return true;
}
return false;
}
static void RenderModulesOptions(Compilation &C, const Driver &D,
const ArgList &Args, const InputInfo &Input,
const InputInfo &Output,
ArgStringList &CmdArgs, bool &HaveModules) {
// -fmodules enables the use of precompiled modules (off by default).
// Users can pass -fno-cxx-modules to turn off modules support for
// C++/Objective-C++ programs.
bool HaveClangModules = false;
if (Args.hasFlag(options::OPT_fmodules, options::OPT_fno_modules, false)) {
bool AllowedInCXX = Args.hasFlag(options::OPT_fcxx_modules,
options::OPT_fno_cxx_modules, true);
if (AllowedInCXX || !types::isCXX(Input.getType())) {
CmdArgs.push_back("-fmodules");
HaveClangModules = true;
}
}
HaveModules |= HaveClangModules;
if (Args.hasArg(options::OPT_fmodules_ts)) {
CmdArgs.push_back("-fmodules-ts");
HaveModules = true;
}
// -fmodule-maps enables implicit reading of module map files. By default,
// this is enabled if we are using Clang's flavor of precompiled modules.
if (Args.hasFlag(options::OPT_fimplicit_module_maps,
options::OPT_fno_implicit_module_maps, HaveClangModules))
CmdArgs.push_back("-fimplicit-module-maps");
// -fmodules-decluse checks that modules used are declared so (off by default)
if (Args.hasFlag(options::OPT_fmodules_decluse,
options::OPT_fno_modules_decluse, false))
CmdArgs.push_back("-fmodules-decluse");
// -fmodules-strict-decluse is like -fmodule-decluse, but also checks that
// all #included headers are part of modules.
if (Args.hasFlag(options::OPT_fmodules_strict_decluse,
options::OPT_fno_modules_strict_decluse, false))
CmdArgs.push_back("-fmodules-strict-decluse");
// -fno-implicit-modules turns off implicitly compiling modules on demand.
bool ImplicitModules = false;
if (!Args.hasFlag(options::OPT_fimplicit_modules,
options::OPT_fno_implicit_modules, HaveClangModules)) {
if (HaveModules)
CmdArgs.push_back("-fno-implicit-modules");
} else if (HaveModules) {
ImplicitModules = true;
// -fmodule-cache-path specifies where our implicitly-built module files
// should be written.
SmallString<128> Path;
if (Arg *A = Args.getLastArg(options::OPT_fmodules_cache_path))
Path = A->getValue();
bool HasPath = true;
if (C.isForDiagnostics()) {
// When generating crash reports, we want to emit the modules along with
// the reproduction sources, so we ignore any provided module path.
Path = Output.getFilename();
llvm::sys::path::replace_extension(Path, ".cache");
llvm::sys::path::append(Path, "modules");
} else if (Path.empty()) {
// No module path was provided: use the default.
HasPath = Driver::getDefaultModuleCachePath(Path);
}
// `HasPath` will only be false if getDefaultModuleCachePath() fails.
// That being said, that failure is unlikely and not caching is harmless.
if (HasPath) {
const char Arg[] = "-fmodules-cache-path=";
Path.insert(Path.begin(), Arg, Arg + strlen(Arg));
CmdArgs.push_back(Args.MakeArgString(Path));
}
}
if (HaveModules) {
// -fprebuilt-module-path specifies where to load the prebuilt module files.
for (const Arg *A : Args.filtered(options::OPT_fprebuilt_module_path)) {
CmdArgs.push_back(Args.MakeArgString(
std::string("-fprebuilt-module-path=") + A->getValue()));
A->claim();
}
if (Args.hasFlag(options::OPT_fprebuilt_implicit_modules,
options::OPT_fno_prebuilt_implicit_modules, false))
CmdArgs.push_back("-fprebuilt-implicit-modules");
if (Args.hasFlag(options::OPT_fmodules_validate_input_files_content,
options::OPT_fno_modules_validate_input_files_content,
false))
CmdArgs.push_back("-fvalidate-ast-input-files-content");
}
// -fmodule-name specifies the module that is currently being built (or
// used for header checking by -fmodule-maps).
Args.AddLastArg(CmdArgs, options::OPT_fmodule_name_EQ);
// -fmodule-map-file can be used to specify files containing module
// definitions.
Args.AddAllArgs(CmdArgs, options::OPT_fmodule_map_file);
// -fbuiltin-module-map can be used to load the clang
// builtin headers modulemap file.
if (Args.hasArg(options::OPT_fbuiltin_module_map)) {
SmallString<128> BuiltinModuleMap(D.ResourceDir);
llvm::sys::path::append(BuiltinModuleMap, "include");
llvm::sys::path::append(BuiltinModuleMap, "module.modulemap");
if (llvm::sys::fs::exists(BuiltinModuleMap))
CmdArgs.push_back(
Args.MakeArgString("-fmodule-map-file=" + BuiltinModuleMap));
}
// The -fmodule-file=<name>=<file> form specifies the mapping of module
// names to precompiled module files (the module is loaded only if used).
// The -fmodule-file=<file> form can be used to unconditionally load
// precompiled module files (whether used or not).
if (HaveModules)
Args.AddAllArgs(CmdArgs, options::OPT_fmodule_file);
else
Args.ClaimAllArgs(options::OPT_fmodule_file);
// When building modules and generating crashdumps, we need to dump a module
// dependency VFS alongside the output.
if (HaveClangModules && C.isForDiagnostics()) {
SmallString<128> VFSDir(Output.getFilename());
llvm::sys::path::replace_extension(VFSDir, ".cache");
// Add the cache directory as a temp so the crash diagnostics pick it up.
C.addTempFile(Args.MakeArgString(VFSDir));
llvm::sys::path::append(VFSDir, "vfs");
CmdArgs.push_back("-module-dependency-dir");
CmdArgs.push_back(Args.MakeArgString(VFSDir));
}
if (HaveClangModules)
Args.AddLastArg(CmdArgs, options::OPT_fmodules_user_build_path);
// Pass through all -fmodules-ignore-macro arguments.
Args.AddAllArgs(CmdArgs, options::OPT_fmodules_ignore_macro);
Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_interval);
Args.AddLastArg(CmdArgs, options::OPT_fmodules_prune_after);
Args.AddLastArg(CmdArgs, options::OPT_fbuild_session_timestamp);
if (Arg *A = Args.getLastArg(options::OPT_fbuild_session_file)) {
if (Args.hasArg(options::OPT_fbuild_session_timestamp))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A->getAsString(Args) << "-fbuild-session-timestamp";
llvm::sys::fs::file_status Status;
if (llvm::sys::fs::status(A->getValue(), Status))
D.Diag(diag::err_drv_no_such_file) << A->getValue();
CmdArgs.push_back(
Args.MakeArgString("-fbuild-session-timestamp=" +
Twine((uint64_t)Status.getLastModificationTime()
.time_since_epoch()
.count())));
}
if (Args.getLastArg(options::OPT_fmodules_validate_once_per_build_session)) {
if (!Args.getLastArg(options::OPT_fbuild_session_timestamp,
options::OPT_fbuild_session_file))
D.Diag(diag::err_drv_modules_validate_once_requires_timestamp);
Args.AddLastArg(CmdArgs,
options::OPT_fmodules_validate_once_per_build_session);
}
if (Args.hasFlag(options::OPT_fmodules_validate_system_headers,
options::OPT_fno_modules_validate_system_headers,
ImplicitModules))
CmdArgs.push_back("-fmodules-validate-system-headers");
Args.AddLastArg(CmdArgs, options::OPT_fmodules_disable_diagnostic_validation);
}
static void RenderCharacterOptions(const ArgList &Args, const llvm::Triple &T,
ArgStringList &CmdArgs) {
// -fsigned-char is default.
if (const Arg *A = Args.getLastArg(options::OPT_fsigned_char,
options::OPT_fno_signed_char,
options::OPT_funsigned_char,
options::OPT_fno_unsigned_char)) {
if (A->getOption().matches(options::OPT_funsigned_char) ||
A->getOption().matches(options::OPT_fno_signed_char)) {
CmdArgs.push_back("-fno-signed-char");
}
} else if (!isSignedCharDefault(T)) {
CmdArgs.push_back("-fno-signed-char");
}
// The default depends on the language standard.
Args.AddLastArg(CmdArgs, options::OPT_fchar8__t, options::OPT_fno_char8__t);
if (const Arg *A = Args.getLastArg(options::OPT_fshort_wchar,
options::OPT_fno_short_wchar)) {
if (A->getOption().matches(options::OPT_fshort_wchar)) {
CmdArgs.push_back("-fwchar-type=short");
CmdArgs.push_back("-fno-signed-wchar");
} else {
bool IsARM = T.isARM() || T.isThumb() || T.isAArch64();
CmdArgs.push_back("-fwchar-type=int");
if (T.isOSzOS() ||
(IsARM && !(T.isOSWindows() || T.isOSNetBSD() || T.isOSOpenBSD())))
CmdArgs.push_back("-fno-signed-wchar");
else
CmdArgs.push_back("-fsigned-wchar");
}
}
}
static void RenderObjCOptions(const ToolChain &TC, const Driver &D,
const llvm::Triple &T, const ArgList &Args,
ObjCRuntime &Runtime, bool InferCovariantReturns,
const InputInfo &Input, ArgStringList &CmdArgs) {
const llvm::Triple::ArchType Arch = TC.getArch();
// -fobjc-dispatch-method is only relevant with the nonfragile-abi, and legacy
// is the default. Except for deployment target of 10.5, next runtime is
// always legacy dispatch and -fno-objc-legacy-dispatch gets ignored silently.
if (Runtime.isNonFragile()) {
if (!Args.hasFlag(options::OPT_fobjc_legacy_dispatch,
options::OPT_fno_objc_legacy_dispatch,
Runtime.isLegacyDispatchDefaultForArch(Arch))) {
if (TC.UseObjCMixedDispatch())
CmdArgs.push_back("-fobjc-dispatch-method=mixed");
else
CmdArgs.push_back("-fobjc-dispatch-method=non-legacy");
}
}
// When ObjectiveC legacy runtime is in effect on MacOSX, turn on the option
// to do Array/Dictionary subscripting by default.
if (Arch == llvm::Triple::x86 && T.isMacOSX() &&
Runtime.getKind() == ObjCRuntime::FragileMacOSX && Runtime.isNeXTFamily())
CmdArgs.push_back("-fobjc-subscripting-legacy-runtime");
// Allow -fno-objc-arr to trump -fobjc-arr/-fobjc-arc.
// NOTE: This logic is duplicated in ToolChains.cpp.
if (isObjCAutoRefCount(Args)) {
TC.CheckObjCARC();
CmdArgs.push_back("-fobjc-arc");
// FIXME: It seems like this entire block, and several around it should be
// wrapped in isObjC, but for now we just use it here as this is where it
// was being used previously.
if (types::isCXX(Input.getType()) && types::isObjC(Input.getType())) {
if (TC.GetCXXStdlibType(Args) == ToolChain::CST_Libcxx)
CmdArgs.push_back("-fobjc-arc-cxxlib=libc++");
else
CmdArgs.push_back("-fobjc-arc-cxxlib=libstdc++");
}
// Allow the user to enable full exceptions code emission.
// We default off for Objective-C, on for Objective-C++.
if (Args.hasFlag(options::OPT_fobjc_arc_exceptions,
options::OPT_fno_objc_arc_exceptions,
/*Default=*/types::isCXX(Input.getType())))
CmdArgs.push_back("-fobjc-arc-exceptions");
}
// Silence warning for full exception code emission options when explicitly
// set to use no ARC.
if (Args.hasArg(options::OPT_fno_objc_arc)) {
Args.ClaimAllArgs(options::OPT_fobjc_arc_exceptions);
Args.ClaimAllArgs(options::OPT_fno_objc_arc_exceptions);
}
// Allow the user to control whether messages can be converted to runtime
// functions.
if (types::isObjC(Input.getType())) {
auto *Arg = Args.getLastArg(
options::OPT_fobjc_convert_messages_to_runtime_calls,
options::OPT_fno_objc_convert_messages_to_runtime_calls);
if (Arg &&
Arg->getOption().matches(
options::OPT_fno_objc_convert_messages_to_runtime_calls))
CmdArgs.push_back("-fno-objc-convert-messages-to-runtime-calls");
}
// -fobjc-infer-related-result-type is the default, except in the Objective-C
// rewriter.
if (InferCovariantReturns)
CmdArgs.push_back("-fno-objc-infer-related-result-type");
// Pass down -fobjc-weak or -fno-objc-weak if present.
if (types::isObjC(Input.getType())) {
auto WeakArg =
Args.getLastArg(options::OPT_fobjc_weak, options::OPT_fno_objc_weak);
if (!WeakArg) {
// nothing to do
} else if (!Runtime.allowsWeak()) {
if (WeakArg->getOption().matches(options::OPT_fobjc_weak))
D.Diag(diag::err_objc_weak_unsupported);
} else {
WeakArg->render(Args, CmdArgs);
}
}
}
static void RenderDiagnosticsOptions(const Driver &D, const ArgList &Args,
ArgStringList &CmdArgs) {
bool CaretDefault = true;
bool ColumnDefault = true;
if (const Arg *A = Args.getLastArg(options::OPT__SLASH_diagnostics_classic,
options::OPT__SLASH_diagnostics_column,
options::OPT__SLASH_diagnostics_caret)) {
switch (A->getOption().getID()) {
case options::OPT__SLASH_diagnostics_caret:
CaretDefault = true;
ColumnDefault = true;
break;
case options::OPT__SLASH_diagnostics_column:
CaretDefault = false;
ColumnDefault = true;
break;
case options::OPT__SLASH_diagnostics_classic:
CaretDefault = false;
ColumnDefault = false;
break;
}
}
// -fcaret-diagnostics is default.
if (!Args.hasFlag(options::OPT_fcaret_diagnostics,
options::OPT_fno_caret_diagnostics, CaretDefault))
CmdArgs.push_back("-fno-caret-diagnostics");
// -fdiagnostics-fixit-info is default, only pass non-default.
if (!Args.hasFlag(options::OPT_fdiagnostics_fixit_info,
options::OPT_fno_diagnostics_fixit_info))
CmdArgs.push_back("-fno-diagnostics-fixit-info");
// Enable -fdiagnostics-show-option by default.
if (!Args.hasFlag(options::OPT_fdiagnostics_show_option,
options::OPT_fno_diagnostics_show_option, true))
CmdArgs.push_back("-fno-diagnostics-show-option");
if (const Arg *A =
Args.getLastArg(options::OPT_fdiagnostics_show_category_EQ)) {
CmdArgs.push_back("-fdiagnostics-show-category");
CmdArgs.push_back(A->getValue());
}
if (Args.hasFlag(options::OPT_fdiagnostics_show_hotness,
options::OPT_fno_diagnostics_show_hotness, false))
CmdArgs.push_back("-fdiagnostics-show-hotness");
if (const Arg *A =
Args.getLastArg(options::OPT_fdiagnostics_hotness_threshold_EQ)) {
std::string Opt =
std::string("-fdiagnostics-hotness-threshold=") + A->getValue();
CmdArgs.push_back(Args.MakeArgString(Opt));
}
if (const Arg *A = Args.getLastArg(options::OPT_fdiagnostics_format_EQ)) {
CmdArgs.push_back("-fdiagnostics-format");
CmdArgs.push_back(A->getValue());
}
if (const Arg *A = Args.getLastArg(
options::OPT_fdiagnostics_show_note_include_stack,
options::OPT_fno_diagnostics_show_note_include_stack)) {
const Option &O = A->getOption();
if (O.matches(options::OPT_fdiagnostics_show_note_include_stack))
CmdArgs.push_back("-fdiagnostics-show-note-include-stack");
else
CmdArgs.push_back("-fno-diagnostics-show-note-include-stack");
}
// Color diagnostics are parsed by the driver directly from argv and later
// re-parsed to construct this job; claim any possible color diagnostic here
// to avoid warn_drv_unused_argument and diagnose bad
// OPT_fdiagnostics_color_EQ values.
for (const Arg *A : Args) {
const Option &O = A->getOption();
if (!O.matches(options::OPT_fcolor_diagnostics) &&
!O.matches(options::OPT_fdiagnostics_color) &&
!O.matches(options::OPT_fno_color_diagnostics) &&
!O.matches(options::OPT_fno_diagnostics_color) &&
!O.matches(options::OPT_fdiagnostics_color_EQ))
continue;
if (O.matches(options::OPT_fdiagnostics_color_EQ)) {
StringRef Value(A->getValue());
if (Value != "always" && Value != "never" && Value != "auto")
D.Diag(diag::err_drv_clang_unsupported)
<< ("-fdiagnostics-color=" + Value).str();
}
A->claim();
}
if (D.getDiags().getDiagnosticOptions().ShowColors)
CmdArgs.push_back("-fcolor-diagnostics");
if (Args.hasArg(options::OPT_fansi_escape_codes))
CmdArgs.push_back("-fansi-escape-codes");
if (!Args.hasFlag(options::OPT_fshow_source_location,
options::OPT_fno_show_source_location))
CmdArgs.push_back("-fno-show-source-location");
if (Args.hasArg(options::OPT_fdiagnostics_absolute_paths))
CmdArgs.push_back("-fdiagnostics-absolute-paths");
if (!Args.hasFlag(options::OPT_fshow_column, options::OPT_fno_show_column,
ColumnDefault))
CmdArgs.push_back("-fno-show-column");
if (!Args.hasFlag(options::OPT_fspell_checking,
options::OPT_fno_spell_checking))
CmdArgs.push_back("-fno-spell-checking");
}
enum class DwarfFissionKind { None, Split, Single };
static DwarfFissionKind getDebugFissionKind(const Driver &D,
const ArgList &Args, Arg *&Arg) {
Arg = Args.getLastArg(options::OPT_gsplit_dwarf, options::OPT_gsplit_dwarf_EQ,
options::OPT_gno_split_dwarf);
if (!Arg || Arg->getOption().matches(options::OPT_gno_split_dwarf))
return DwarfFissionKind::None;
if (Arg->getOption().matches(options::OPT_gsplit_dwarf))
return DwarfFissionKind::Split;
StringRef Value = Arg->getValue();
if (Value == "split")
return DwarfFissionKind::Split;
if (Value == "single")
return DwarfFissionKind::Single;
D.Diag(diag::err_drv_unsupported_option_argument)
<< Arg->getOption().getName() << Arg->getValue();
return DwarfFissionKind::None;
}
static void renderDwarfFormat(const Driver &D, const llvm::Triple &T,
const ArgList &Args, ArgStringList &CmdArgs,
unsigned DwarfVersion) {
auto *DwarfFormatArg =
Args.getLastArg(options::OPT_gdwarf64, options::OPT_gdwarf32);
if (!DwarfFormatArg)
return;
if (DwarfFormatArg->getOption().matches(options::OPT_gdwarf64)) {
if (DwarfVersion < 3)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "DWARFv3 or greater";
else if (!T.isArch64Bit())
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "64 bit architecture";
else if (!T.isOSBinFormatELF())
D.Diag(diag::err_drv_argument_only_allowed_with)
<< DwarfFormatArg->getAsString(Args) << "ELF platforms";
}
DwarfFormatArg->render(Args, CmdArgs);
}
static void renderDebugOptions(const ToolChain &TC, const Driver &D,
const llvm::Triple &T, const ArgList &Args,
bool EmitCodeView, bool IRInput,
ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind &DebugInfoKind,
DwarfFissionKind &DwarfFission) {
// These two forms of profiling info can't be used together.
if (const Arg *A1 = Args.getLastArg(options::OPT_fpseudo_probe_for_profiling))
if (const Arg *A2 = Args.getLastArg(options::OPT_fdebug_info_for_profiling))
D.Diag(diag::err_drv_argument_not_allowed_with)
<< A1->getAsString(Args) << A2->getAsString(Args);
if (Args.hasFlag(options::OPT_fdebug_info_for_profiling,
options::OPT_fno_debug_info_for_profiling, false) &&
checkDebugInfoOption(
Args.getLastArg(options::OPT_fdebug_info_for_profiling), Args, D, TC))
CmdArgs.push_back("-fdebug-info-for-profiling");
// The 'g' groups options involve a somewhat intricate sequence of decisions
// about what to pass from the driver to the frontend, but by the time they
// reach cc1 they've been factored into three well-defined orthogonal choices:
// * what level of debug info to generate
// * what dwarf version to write
// * what debugger tuning to use
// This avoids having to monkey around further in cc1 other than to disable
// codeview if not running in a Windows environment. Perhaps even that
// decision should be made in the driver as well though.
llvm::DebuggerKind DebuggerTuning = TC.getDefaultDebuggerTuning();
bool SplitDWARFInlining =
Args.hasFlag(options::OPT_fsplit_dwarf_inlining,
options::OPT_fno_split_dwarf_inlining, false);
// Normally -gsplit-dwarf is only useful with -gN. For IR input, Clang does
// object file generation and no IR generation, -gN should not be needed. So
// allow -gsplit-dwarf with either -gN or IR input.
if (IRInput || Args.hasArg(options::OPT_g_Group)) {
Arg *SplitDWARFArg;
DwarfFission = getDebugFissionKind(D, Args, SplitDWARFArg);
if (DwarfFission != DwarfFissionKind::None &&
!checkDebugInfoOption(SplitDWARFArg, Args, D, TC)) {
DwarfFission = DwarfFissionKind::None;
SplitDWARFInlining = false;
}
}
if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) {
DebugInfoKind = codegenoptions::LimitedDebugInfo;
// If the last option explicitly specified a debug-info level, use it.
if (checkDebugInfoOption(A, Args, D, TC) &&
A->getOption().matches(options::OPT_gN_Group)) {
DebugInfoKind = DebugLevelToInfoKind(*A);
// For -g0 or -gline-tables-only, drop -gsplit-dwarf. This gets a bit more
// complicated if you've disabled inline info in the skeleton CUs
// (SplitDWARFInlining) - then there's value in composing split-dwarf and
// line-tables-only, so let those compose naturally in that case.
if (DebugInfoKind == codegenoptions::NoDebugInfo ||
DebugInfoKind == codegenoptions::DebugDirectivesOnly ||
(DebugInfoKind == codegenoptions::DebugLineTablesOnly &&
SplitDWARFInlining))
DwarfFission = DwarfFissionKind::None;
}
}
// If a debugger tuning argument appeared, remember it.
if (const Arg *A =
Args.getLastArg(options::OPT_gTune_Group, options::OPT_ggdbN_Group)) {
if (checkDebugInfoOption(A, Args, D, TC)) {
if (A->getOption().matches(options::OPT_glldb))
DebuggerTuning = llvm::DebuggerKind::LLDB;
else if (A->getOption().matches(options::OPT_gsce))
DebuggerTuning = llvm::DebuggerKind::SCE;
else
DebuggerTuning = llvm::DebuggerKind::GDB;
}
}
// If a -gdwarf argument appeared, remember it.
const Arg *GDwarfN = getDwarfNArg(Args);
bool EmitDwarf = false;
if (GDwarfN) {
if (checkDebugInfoOption(GDwarfN, Args, D, TC))
EmitDwarf = true;
else
GDwarfN = nullptr;
}
if (const Arg *A = Args.getLastArg(options::OPT_gcodeview)) {
if (checkDebugInfoOption(A, Args, D, TC))
EmitCodeView = true;
}
// If the user asked for debug info but did not explicitly specify -gcodeview
// or -gdwarf, ask the toolchain for the default format.
if (!EmitCodeView && !EmitDwarf &&
DebugInfoKind != codegenoptions::NoDebugInfo) {
switch (TC.getDefaultDebugFormat()) {
case codegenoptions::DIF_CodeView:
EmitCodeView = true;
break;
case codegenoptions::DIF_DWARF:
EmitDwarf = true;
break;
}
}
unsigned RequestedDWARFVersion = 0; // DWARF version requested by the user
unsigned EffectiveDWARFVersion = 0; // DWARF version TC can generate. It may
// be lower than what the user wanted.
unsigned DefaultDWARFVersion = ParseDebugDefaultVersion(TC, Args);
if (EmitDwarf) {
// Start with the platform default DWARF version
RequestedDWARFVersion = TC.GetDefaultDwarfVersion();
assert(RequestedDWARFVersion &&
"toolchain default DWARF version must be nonzero");
// If the user specified a default DWARF version, that takes precedence
// over the platform default.
if (DefaultDWARFVersion)
RequestedDWARFVersion = DefaultDWARFVersion;
// Override with a user-specified DWARF version
if (GDwarfN)
if (auto ExplicitVersion = DwarfVersionNum(GDwarfN->getSpelling()))
RequestedDWARFVersion = ExplicitVersion;
// Clamp effective DWARF version to the max supported by the toolchain.
EffectiveDWARFVersion =
std::min(RequestedDWARFVersion, TC.getMaxDwarfVersion());
}
// -gline-directives-only supported only for the DWARF debug info.
if (RequestedDWARFVersion == 0 &&
DebugInfoKind == codegenoptions::DebugDirectivesOnly)
DebugInfoKind = codegenoptions::NoDebugInfo;
// We ignore flag -gstrict-dwarf for now.
// And we handle flag -grecord-gcc-switches later with DWARFDebugFlags.
Args.ClaimAllArgs(options::OPT_g_flags_Group);
// Column info is included by default for everything except SCE and
// CodeView. Clang doesn't track end columns, just starting columns, which,
// in theory, is fine for CodeView (and PDB). In practice, however, the
// Microsoft debuggers don't handle missing end columns well, so it's better
// not to include any column info.
if (const Arg *A = Args.getLastArg(options::OPT_gcolumn_info))
(void)checkDebugInfoOption(A, Args, D, TC);
if (!Args.hasFlag(options::OPT_gcolumn_info, options::OPT_gno_column_info,
!EmitCodeView && DebuggerTuning != llvm::DebuggerKind::SCE))
CmdArgs.push_back("-gno-column-info");
// FIXME: Move backend command line options to the module.
// If -gline-tables-only or -gline-directives-only is the last option it wins.
if (const Arg *A = Args.getLastArg(options::OPT_gmodules))
if (checkDebugInfoOption(A, Args, D, TC)) {
if (DebugInfoKind != codegenoptions::DebugLineTablesOnly &&
DebugInfoKind != codegenoptions::DebugDirectivesOnly) {
DebugInfoKind = codegenoptions::LimitedDebugInfo;
CmdArgs.push_back("-dwarf-ext-refs");
CmdArgs.push_back("-fmodule-format=obj");
}
}
if (T.isOSBinFormatELF() && SplitDWARFInlining)
CmdArgs.push_back("-fsplit-dwarf-inlining");
// After we've dealt with all combinations of things that could
// make DebugInfoKind be other than None or DebugLineTablesOnly,
// figure out if we need to "upgrade" it to standalone debug info.
// We parse these two '-f' options whether or not they will be used,
// to claim them even if you wrote "-fstandalone-debug -gline-tables-only"
bool NeedFullDebug = Args.hasFlag(
options::OPT_fstandalone_debug, options::OPT_fno_standalone_debug,
DebuggerTuning == llvm::DebuggerKind::LLDB ||
TC.GetDefaultStandaloneDebug());
if (const Arg *A = Args.getLastArg(options::OPT_fstandalone_debug))
(void)checkDebugInfoOption(A, Args, D, TC);
if (DebugInfoKind == codegenoptions::LimitedDebugInfo) {
if (Args.hasFlag(options::OPT_fno_eliminate_unused_debug_types,
options::OPT_feliminate_unused_debug_types, false))
DebugInfoKind = codegenoptions::UnusedTypeInfo;
else if (NeedFullDebug)
DebugInfoKind = codegenoptions::FullDebugInfo;
}
if (Args.hasFlag(options::OPT_gembed_source, options::OPT_gno_embed_source,
false)) {
// Source embedding is a vendor extension to DWARF v5. By now we have
// checked if a DWARF version was stated explicitly, and have otherwise
// fallen back to the target default, so if this is still not at least 5
// we emit an error.
const Arg *A = Args.getLastArg(options::OPT_gembed_source);
if (RequestedDWARFVersion < 5)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< A->getAsString(Args) << "-gdwarf-5";
else if (EffectiveDWARFVersion < 5)
// The toolchain has reduced allowed dwarf version, so we can't enable
// -gembed-source.
D.Diag(diag::warn_drv_dwarf_version_limited_by_target)
<< A->getAsString(Args) << TC.getTripleString() << 5
<< EffectiveDWARFVersion;
else if (checkDebugInfoOption(A, Args, D, TC))
CmdArgs.push_back("-gembed-source");
}
if (EmitCodeView) {
CmdArgs.push_back("-gcodeview");
// Emit codeview type hashes if requested.
if (Args.hasFlag(options::OPT_gcodeview_ghash,
options::OPT_gno_codeview_ghash, false)) {
CmdArgs.push_back("-gcodeview-ghash");
}
}
// Omit inline line tables if requested.
if (Args.hasFlag(options::OPT_gno_inline_line_tables,
options::OPT_ginline_line_tables, false)) {
CmdArgs.push_back("-gno-inline-line-tables");
}
// When emitting remarks, we need at least debug lines in the output.
if (willEmitRemarks(Args) &&
DebugInfoKind <= codegenoptions::DebugDirectivesOnly)
DebugInfoKind = codegenoptions::DebugLineTablesOnly;
// Adjust the debug info kind for the given toolchain.
TC.adjustDebugInfoKind(DebugInfoKind, Args);
RenderDebugEnablingArgs(Args, CmdArgs, DebugInfoKind, EffectiveDWARFVersion,
DebuggerTuning);
// -fdebug-macro turns on macro debug info generation.
if (Args.hasFlag(options::OPT_fdebug_macro, options::OPT_fno_debug_macro,
false))
if (checkDebugInfoOption(Args.getLastArg(options::OPT_fdebug_macro), Args,
D, TC))
CmdArgs.push_back("-debug-info-macro");
// -ggnu-pubnames turns on gnu style pubnames in the backend.
const auto *PubnamesArg =
Args.getLastArg(options::OPT_ggnu_pubnames, options::OPT_gno_gnu_pubnames,
options::OPT_gpubnames, options::OPT_gno_pubnames);
if (DwarfFission != DwarfFissionKind::None ||
(PubnamesArg && checkDebugInfoOption(PubnamesArg, Args, D, TC)))
if (!PubnamesArg ||
(!PubnamesArg->getOption().matches(options::OPT_gno_gnu_pubnames) &&
!PubnamesArg->getOption().matches(options::OPT_gno_pubnames)))
CmdArgs.push_back(PubnamesArg && PubnamesArg->getOption().matches(
options::OPT_gpubnames)
? "-gpubnames"
: "-ggnu-pubnames");
if (Args.hasFlag(options::OPT_fdebug_ranges_base_address,
options::OPT_fno_debug_ranges_base_address, false)) {
CmdArgs.push_back("-fdebug-ranges-base-address");
}
// -gdwarf-aranges turns on the emission of the aranges section in the
// backend.
// Always enabled for SCE tuning.
bool NeedAranges = DebuggerTuning == llvm::DebuggerKind::SCE;
if (const Arg *A = Args.getLastArg(options::OPT_gdwarf_aranges))
NeedAranges = checkDebugInfoOption(A, Args, D, TC) || NeedAranges;
if (NeedAranges) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-generate-arange-section");
}
if (Args.hasFlag(options::OPT_fforce_dwarf_frame,
options::OPT_fno_force_dwarf_frame, false))
CmdArgs.push_back("-fforce-dwarf-frame");
if (Args.hasFlag(options::OPT_fdebug_types_section,
options::OPT_fno_debug_types_section, false)) {
if (!(T.isOSBinFormatELF() || T.isOSBinFormatWasm())) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Args.getLastArg(options::OPT_fdebug_types_section)
->getAsString(Args)
<< T.getTriple();
} else if (checkDebugInfoOption(
Args.getLastArg(options::OPT_fdebug_types_section), Args, D,
TC)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-generate-type-units");
}
}
// Decide how to render forward declarations of template instantiations.
// SCE wants full descriptions, others just get them in the name.
if (DebuggerTuning == llvm::DebuggerKind::SCE)
CmdArgs.push_back("-debug-forward-template-params");
// Do we need to explicitly import anonymous namespaces into the parent
// scope?
if (DebuggerTuning == llvm::DebuggerKind::SCE)
CmdArgs.push_back("-dwarf-explicit-import");
renderDwarfFormat(D, T, Args, CmdArgs, EffectiveDWARFVersion);
RenderDebugInfoCompressionArgs(Args, CmdArgs, D, TC);
}
void Clang::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output, const InputInfoList &Inputs,
const ArgList &Args, const char *LinkingOutput) const {
const auto &TC = getToolChain();
const llvm::Triple &RawTriple = TC.getTriple();
const llvm::Triple &Triple = TC.getEffectiveTriple();
const std::string &TripleStr = Triple.getTriple();
bool KernelOrKext =
Args.hasArg(options::OPT_mkernel, options::OPT_fapple_kext);
const Driver &D = TC.getDriver();
ArgStringList CmdArgs;
// Check number of inputs for sanity. We need at least one input.
assert(Inputs.size() >= 1 && "Must have at least one input.");
// CUDA/HIP compilation may have multiple inputs (source file + results of
// device-side compilations). OpenMP device jobs also take the host IR as a
// second input. Module precompilation accepts a list of header files to
// include as part of the module. All other jobs are expected to have exactly
// one input.
bool IsCuda = JA.isOffloading(Action::OFK_Cuda);
bool IsHIP = JA.isOffloading(Action::OFK_HIP);
bool IsOpenMPDevice = JA.isDeviceOffloading(Action::OFK_OpenMP);
bool IsHeaderModulePrecompile = isa<HeaderModulePrecompileJobAction>(JA);
// A header module compilation doesn't have a main input file, so invent a
// fake one as a placeholder.
const char *ModuleName = [&]{
auto *ModuleNameArg = Args.getLastArg(options::OPT_fmodule_name_EQ);
return ModuleNameArg ? ModuleNameArg->getValue() : "";
}();
InputInfo HeaderModuleInput(Inputs[0].getType(), ModuleName, ModuleName);
const InputInfo &Input =
IsHeaderModulePrecompile ? HeaderModuleInput : Inputs[0];
InputInfoList ModuleHeaderInputs;
const InputInfo *CudaDeviceInput = nullptr;
const InputInfo *OpenMPDeviceInput = nullptr;
for (const InputInfo &I : Inputs) {
if (&I == &Input) {
// This is the primary input.
} else if (IsHeaderModulePrecompile &&
types::getPrecompiledType(I.getType()) == types::TY_PCH) {
types::ID Expected = HeaderModuleInput.getType();
if (I.getType() != Expected) {
D.Diag(diag::err_drv_module_header_wrong_kind)
<< I.getFilename() << types::getTypeName(I.getType())
<< types::getTypeName(Expected);
}
ModuleHeaderInputs.push_back(I);
} else if ((IsCuda || IsHIP) && !CudaDeviceInput) {
CudaDeviceInput = &I;
} else if (IsOpenMPDevice && !OpenMPDeviceInput) {
OpenMPDeviceInput = &I;
} else {
llvm_unreachable("unexpectedly given multiple inputs");
}
}
const llvm::Triple *AuxTriple =
(IsCuda || IsHIP) ? TC.getAuxTriple() : nullptr;
bool IsWindowsMSVC = RawTriple.isWindowsMSVCEnvironment();
bool IsIAMCU = RawTriple.isOSIAMCU();
// Adjust IsWindowsXYZ for CUDA/HIP compilations. Even when compiling in
// device mode (i.e., getToolchain().getTriple() is NVPTX/AMDGCN, not
// Windows), we need to pass Windows-specific flags to cc1.
if (IsCuda || IsHIP)
IsWindowsMSVC |= AuxTriple && AuxTriple->isWindowsMSVCEnvironment();
// C++ is not supported for IAMCU.
if (IsIAMCU && types::isCXX(Input.getType()))
D.Diag(diag::err_drv_clang_unsupported) << "C++ for IAMCU";
// Invoke ourselves in -cc1 mode.
//
// FIXME: Implement custom jobs for internal actions.
CmdArgs.push_back("-cc1");
// Add the "effective" target triple.
CmdArgs.push_back("-triple");
CmdArgs.push_back(Args.MakeArgString(TripleStr));
if (const Arg *MJ = Args.getLastArg(options::OPT_MJ)) {
DumpCompilationDatabase(C, MJ->getValue(), TripleStr, Output, Input, Args);
Args.ClaimAllArgs(options::OPT_MJ);
} else if (const Arg *GenCDBFragment =
Args.getLastArg(options::OPT_gen_cdb_fragment_path)) {
DumpCompilationDatabaseFragmentToDir(GenCDBFragment->getValue(), C,
TripleStr, Output, Input, Args);
Args.ClaimAllArgs(options::OPT_gen_cdb_fragment_path);
}
if (IsCuda || IsHIP) {
// We have to pass the triple of the host if compiling for a CUDA/HIP device
// and vice-versa.
std::string NormalizedTriple;
if (JA.isDeviceOffloading(Action::OFK_Cuda) ||
JA.isDeviceOffloading(Action::OFK_HIP))
NormalizedTriple = C.getSingleOffloadToolChain<Action::OFK_Host>()
->getTriple()
.normalize();
else {
// Host-side compilation.
NormalizedTriple =
(IsCuda ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
: C.getSingleOffloadToolChain<Action::OFK_HIP>())
->getTriple()
.normalize();
if (IsCuda) {
// We need to figure out which CUDA version we're compiling for, as that
// determines how we load and launch GPU kernels.
auto *CTC = static_cast<const toolchains::CudaToolChain *>(
C.getSingleOffloadToolChain<Action::OFK_Cuda>());
assert(CTC && "Expected valid CUDA Toolchain.");
if (CTC && CTC->CudaInstallation.version() != CudaVersion::UNKNOWN)
CmdArgs.push_back(Args.MakeArgString(
Twine("-target-sdk-version=") +
CudaVersionToString(CTC->CudaInstallation.version())));
}
}
CmdArgs.push_back("-aux-triple");
CmdArgs.push_back(Args.MakeArgString(NormalizedTriple));
}
if (Args.hasFlag(options::OPT_fsycl, options::OPT_fno_sycl, false)) {
CmdArgs.push_back("-fsycl-is-device");
if (Arg *A = Args.getLastArg(options::OPT_sycl_std_EQ)) {
A->render(Args, CmdArgs);
} else {
// Ensure the default version in SYCL mode is 1.2.1 (aka 2017)
CmdArgs.push_back("-sycl-std=2017");
}
}
if (IsOpenMPDevice) {
// We have to pass the triple of the host if compiling for an OpenMP device.
std::string NormalizedTriple =
C.getSingleOffloadToolChain<Action::OFK_Host>()
->getTriple()
.normalize();
CmdArgs.push_back("-aux-triple");
CmdArgs.push_back(Args.MakeArgString(NormalizedTriple));
}
if (Triple.isOSWindows() && (Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::thumb)) {
unsigned Offset = Triple.getArch() == llvm::Triple::arm ? 4 : 6;
unsigned Version = 0;
bool Failure =
Triple.getArchName().substr(Offset).consumeInteger(10, Version);
if (Failure || Version < 7)
D.Diag(diag::err_target_unsupported_arch) << Triple.getArchName()
<< TripleStr;
}
// Push all default warning arguments that are specific to
// the given target. These come before user provided warning options
// are provided.
TC.addClangWarningOptions(CmdArgs);
// FIXME: Subclass ToolChain for SPIR and move this to addClangWarningOptions.
if (Triple.isSPIR())
CmdArgs.push_back("-Wspir-compat");
// Select the appropriate action.
RewriteKind rewriteKind = RK_None;
// If CollectArgsForIntegratedAssembler() isn't called below, claim the args
// it claims when not running an assembler. Otherwise, clang would emit
// "argument unused" warnings for assembler flags when e.g. adding "-E" to
// flags while debugging something. That'd be somewhat inconvenient, and it's
// also inconsistent with most other flags -- we don't warn on
// -ffunction-sections not being used in -E mode either for example, even
// though it's not really used either.
if (!isa<AssembleJobAction>(JA)) {
// The args claimed here should match the args used in
// CollectArgsForIntegratedAssembler().
if (TC.useIntegratedAs()) {
Args.ClaimAllArgs(options::OPT_mrelax_all);
Args.ClaimAllArgs(options::OPT_mno_relax_all);
Args.ClaimAllArgs(options::OPT_mincremental_linker_compatible);
Args.ClaimAllArgs(options::OPT_mno_incremental_linker_compatible);
switch (C.getDefaultToolChain().getArch()) {
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
Args.ClaimAllArgs(options::OPT_mimplicit_it_EQ);
break;
default:
break;
}
}
Args.ClaimAllArgs(options::OPT_Wa_COMMA);
Args.ClaimAllArgs(options::OPT_Xassembler);
}
if (isa<AnalyzeJobAction>(JA)) {
assert(JA.getType() == types::TY_Plist && "Invalid output type.");
CmdArgs.push_back("-analyze");
} else if (isa<MigrateJobAction>(JA)) {
CmdArgs.push_back("-migrate");
} else if (isa<PreprocessJobAction>(JA)) {
if (Output.getType() == types::TY_Dependencies)
CmdArgs.push_back("-Eonly");
else {
CmdArgs.push_back("-E");
if (Args.hasArg(options::OPT_rewrite_objc) &&
!Args.hasArg(options::OPT_g_Group))
CmdArgs.push_back("-P");
}
} else if (isa<AssembleJobAction>(JA)) {
CmdArgs.push_back("-emit-obj");
CollectArgsForIntegratedAssembler(C, Args, CmdArgs, D);
// Also ignore explicit -force_cpusubtype_ALL option.
(void)Args.hasArg(options::OPT_force__cpusubtype__ALL);
} else if (isa<PrecompileJobAction>(JA)) {
if (JA.getType() == types::TY_Nothing)
CmdArgs.push_back("-fsyntax-only");
else if (JA.getType() == types::TY_ModuleFile)
CmdArgs.push_back(IsHeaderModulePrecompile
? "-emit-header-module"
: "-emit-module-interface");
else
CmdArgs.push_back("-emit-pch");
} else if (isa<VerifyPCHJobAction>(JA)) {
CmdArgs.push_back("-verify-pch");
} else {
assert((isa<CompileJobAction>(JA) || isa<BackendJobAction>(JA)) &&
"Invalid action for clang tool.");
if (JA.getType() == types::TY_Nothing) {
CmdArgs.push_back("-fsyntax-only");
} else if (JA.getType() == types::TY_LLVM_IR ||
JA.getType() == types::TY_LTO_IR) {
CmdArgs.push_back("-emit-llvm");
} else if (JA.getType() == types::TY_LLVM_BC ||
JA.getType() == types::TY_LTO_BC) {
CmdArgs.push_back("-emit-llvm-bc");
} else if (JA.getType() == types::TY_IFS ||
JA.getType() == types::TY_IFS_CPP) {
StringRef ArgStr =
Args.hasArg(options::OPT_interface_stub_version_EQ)
? Args.getLastArgValue(options::OPT_interface_stub_version_EQ)
: "experimental-ifs-v2";
CmdArgs.push_back("-emit-interface-stubs");
CmdArgs.push_back(
Args.MakeArgString(Twine("-interface-stub-version=") + ArgStr.str()));
} else if (JA.getType() == types::TY_PP_Asm) {
CmdArgs.push_back("-S");
} else if (JA.getType() == types::TY_AST) {
CmdArgs.push_back("-emit-pch");
} else if (JA.getType() == types::TY_ModuleFile) {
CmdArgs.push_back("-module-file-info");
} else if (JA.getType() == types::TY_RewrittenObjC) {
CmdArgs.push_back("-rewrite-objc");
rewriteKind = RK_NonFragile;
} else if (JA.getType() == types::TY_RewrittenLegacyObjC) {
CmdArgs.push_back("-rewrite-objc");
rewriteKind = RK_Fragile;
} else {
assert(JA.getType() == types::TY_PP_Asm && "Unexpected output type!");
}
// Preserve use-list order by default when emitting bitcode, so that
// loading the bitcode up in 'opt' or 'llc' and running passes gives the
// same result as running passes here. For LTO, we don't need to preserve
// the use-list order, since serialization to bitcode is part of the flow.
if (JA.getType() == types::TY_LLVM_BC)
CmdArgs.push_back("-emit-llvm-uselists");
// Device-side jobs do not support LTO.
bool isDeviceOffloadAction = !(JA.isDeviceOffloading(Action::OFK_None) ||
JA.isDeviceOffloading(Action::OFK_Host));
if (D.isUsingLTO() && !isDeviceOffloadAction) {
Args.AddLastArg(CmdArgs, options::OPT_flto, options::OPT_flto_EQ);
CmdArgs.push_back("-flto-unit");
}
}
if (const Arg *A = Args.getLastArg(options::OPT_fthinlto_index_EQ)) {
if (!types::isLLVMIR(Input.getType()))
D.Diag(diag::err_drv_arg_requires_bitcode_input) << A->getAsString(Args);
Args.AddLastArg(CmdArgs, options::OPT_fthinlto_index_EQ);
}
if (Args.getLastArg(options::OPT_fthin_link_bitcode_EQ))
Args.AddLastArg(CmdArgs, options::OPT_fthin_link_bitcode_EQ);
if (Args.getLastArg(options::OPT_save_temps_EQ))
Args.AddLastArg(CmdArgs, options::OPT_save_temps_EQ);
auto *MemProfArg = Args.getLastArg(options::OPT_fmemory_profile,
options::OPT_fmemory_profile_EQ,
options::OPT_fno_memory_profile);
if (MemProfArg &&
!MemProfArg->getOption().matches(options::OPT_fno_memory_profile))
MemProfArg->render(Args, CmdArgs);
// Embed-bitcode option.
// Only white-listed flags below are allowed to be embedded.
if (C.getDriver().embedBitcodeInObject() && !C.getDriver().isUsingLTO() &&
(isa<BackendJobAction>(JA) || isa<AssembleJobAction>(JA))) {
// Add flags implied by -fembed-bitcode.
Args.AddLastArg(CmdArgs, options::OPT_fembed_bitcode_EQ);
// Disable all llvm IR level optimizations.
CmdArgs.push_back("-disable-llvm-passes");
// Render target options.
TC.addClangTargetOptions(Args, CmdArgs, JA.getOffloadingDeviceKind());
// reject options that shouldn't be supported in bitcode
// also reject kernel/kext
static const constexpr unsigned kBitcodeOptionBlacklist[] = {
options::OPT_mkernel,
options::OPT_fapple_kext,
options::OPT_ffunction_sections,
options::OPT_fno_function_sections,
options::OPT_fdata_sections,
options::OPT_fno_data_sections,
options::OPT_fbasic_block_sections_EQ,
options::OPT_funique_internal_linkage_names,
options::OPT_fno_unique_internal_linkage_names,
options::OPT_funique_section_names,
options::OPT_fno_unique_section_names,
options::OPT_funique_basic_block_section_names,
options::OPT_fno_unique_basic_block_section_names,
options::OPT_mrestrict_it,
options::OPT_mno_restrict_it,
options::OPT_mstackrealign,
options::OPT_mno_stackrealign,
options::OPT_mstack_alignment,
options::OPT_mcmodel_EQ,
options::OPT_mlong_calls,
options::OPT_mno_long_calls,
options::OPT_ggnu_pubnames,
options::OPT_gdwarf_aranges,
options::OPT_fdebug_types_section,
options::OPT_fno_debug_types_section,
options::OPT_fdwarf_directory_asm,
options::OPT_fno_dwarf_directory_asm,
options::OPT_mrelax_all,
options::OPT_mno_relax_all,
options::OPT_ftrap_function_EQ,
options::OPT_ffixed_r9,
options::OPT_mfix_cortex_a53_835769,
options::OPT_mno_fix_cortex_a53_835769,
options::OPT_ffixed_x18,
options::OPT_mglobal_merge,
options::OPT_mno_global_merge,
options::OPT_mred_zone,
options::OPT_mno_red_zone,
options::OPT_Wa_COMMA,
options::OPT_Xassembler,
options::OPT_mllvm,
};
for (const auto &A : Args)
if (llvm::find(kBitcodeOptionBlacklist, A->getOption().getID()) !=
std::end(kBitcodeOptionBlacklist))
D.Diag(diag::err_drv_unsupported_embed_bitcode) << A->getSpelling();
// Render the CodeGen options that need to be passed.
if (!Args.hasFlag(options::OPT_foptimize_sibling_calls,
options::OPT_fno_optimize_sibling_calls))
CmdArgs.push_back("-mdisable-tail-calls");
RenderFloatingPointOptions(TC, D, isOptimizationLevelFast(Args), Args,
CmdArgs, JA);
// Render ABI arguments
switch (TC.getArch()) {
default: break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumbeb:
RenderARMABI(Triple, Args, CmdArgs);
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
RenderAArch64ABI(Triple, Args, CmdArgs);
break;
}
// Optimization level for CodeGen.
if (const Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4)) {
CmdArgs.push_back("-O3");
D.Diag(diag::warn_O4_is_O3);
} else {
A->render(Args, CmdArgs);
}
}
// Input/Output file.
if (Output.getType() == types::TY_Dependencies) {
// Handled with other dependency code.
} else if (Output.isFilename()) {
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
} else {
assert(Output.isNothing() && "Input output.");
}
for (const auto &II : Inputs) {
addDashXForInput(Args, II, CmdArgs);
if (II.isFilename())
CmdArgs.push_back(II.getFilename());
else
II.getInputArg().renderAsInput(Args, CmdArgs);
}
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::AtFileUTF8(), D.getClangProgramPath(),
CmdArgs, Inputs, Output));
return;
}
if (C.getDriver().embedBitcodeMarkerOnly() && !C.getDriver().isUsingLTO())
CmdArgs.push_back("-fembed-bitcode=marker");
// We normally speed up the clang process a bit by skipping destructors at
// exit, but when we're generating diagnostics we can rely on some of the
// cleanup.
if (!C.isForDiagnostics())
CmdArgs.push_back("-disable-free");
#ifdef NDEBUG
const bool IsAssertBuild = false;
#else
const bool IsAssertBuild = true;
#endif
// Disable the verification pass in -asserts builds.
if (!IsAssertBuild)
CmdArgs.push_back("-disable-llvm-verifier");
// Discard value names in assert builds unless otherwise specified.
if (Args.hasFlag(options::OPT_fdiscard_value_names,
options::OPT_fno_discard_value_names, !IsAssertBuild)) {
if (Args.hasArg(options::OPT_fdiscard_value_names) &&
(std::any_of(Inputs.begin(), Inputs.end(),
[](const clang::driver::InputInfo &II) {
return types::isLLVMIR(II.getType());
}))) {
D.Diag(diag::warn_ignoring_fdiscard_for_bitcode);
}
CmdArgs.push_back("-discard-value-names");
}
// Set the main file name, so that debug info works even with
// -save-temps.
CmdArgs.push_back("-main-file-name");
CmdArgs.push_back(getBaseInputName(Args, Input));
// Some flags which affect the language (via preprocessor
// defines).
if (Args.hasArg(options::OPT_static))
CmdArgs.push_back("-static-define");
if (Args.hasArg(options::OPT_municode))
CmdArgs.push_back("-DUNICODE");
if (isa<AnalyzeJobAction>(JA))
RenderAnalyzerOptions(Args, CmdArgs, Triple, Input);
if (isa<AnalyzeJobAction>(JA) ||
(isa<PreprocessJobAction>(JA) && Args.hasArg(options::OPT__analyze)))
CmdArgs.push_back("-setup-static-analyzer");
// Enable compatilibily mode to avoid analyzer-config related errors.
// Since we can't access frontend flags through hasArg, let's manually iterate
// through them.
bool FoundAnalyzerConfig = false;
for (auto Arg : Args.filtered(options::OPT_Xclang))
if (StringRef(Arg->getValue()) == "-analyzer-config") {
FoundAnalyzerConfig = true;
break;
}
if (!FoundAnalyzerConfig)
for (auto Arg : Args.filtered(options::OPT_Xanalyzer))
if (StringRef(Arg->getValue()) == "-analyzer-config") {
FoundAnalyzerConfig = true;
break;
}
if (FoundAnalyzerConfig)
CmdArgs.push_back("-analyzer-config-compatibility-mode=true");
CheckCodeGenerationOptions(D, Args);
unsigned FunctionAlignment = ParseFunctionAlignment(TC, Args);
assert(FunctionAlignment <= 31 && "function alignment will be truncated!");
if (FunctionAlignment) {
CmdArgs.push_back("-function-alignment");
CmdArgs.push_back(Args.MakeArgString(std::to_string(FunctionAlignment)));
}
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) = ParsePICArgs(TC, Args);
bool IsROPI = RelocationModel == llvm::Reloc::ROPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI;
bool IsRWPI = RelocationModel == llvm::Reloc::RWPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI;
if (Args.hasArg(options::OPT_mcmse) &&
!Args.hasArg(options::OPT_fallow_unsupported)) {
if (IsROPI)
D.Diag(diag::err_cmse_pi_are_incompatible) << IsROPI;
if (IsRWPI)
D.Diag(diag::err_cmse_pi_are_incompatible) << !IsRWPI;
}
if (IsROPI && types::isCXX(Input.getType()) &&
!Args.hasArg(options::OPT_fallow_unsupported))
D.Diag(diag::err_drv_ropi_incompatible_with_cxx);
const char *RMName = RelocationModelName(RelocationModel);
if (RMName) {
CmdArgs.push_back("-mrelocation-model");
CmdArgs.push_back(RMName);
}
if (PICLevel > 0) {
CmdArgs.push_back("-pic-level");
CmdArgs.push_back(PICLevel == 1 ? "1" : "2");
if (IsPIE)
CmdArgs.push_back("-pic-is-pie");
}
if (RelocationModel == llvm::Reloc::ROPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI)
CmdArgs.push_back("-fropi");
if (RelocationModel == llvm::Reloc::RWPI ||
RelocationModel == llvm::Reloc::ROPI_RWPI)
CmdArgs.push_back("-frwpi");
if (Arg *A = Args.getLastArg(options::OPT_meabi)) {
CmdArgs.push_back("-meabi");
CmdArgs.push_back(A->getValue());
}
// -fsemantic-interposition is forwarded to CC1: set the
// "SemanticInterposition" metadata to 1 (make some linkages interposable) and
// make default visibility external linkage definitions dso_preemptable.
//
// -fno-semantic-interposition: if the target supports .Lfoo$local local
// aliases (make default visibility external linkage definitions dso_local).
// This is the CC1 default for ELF to match COFF/Mach-O.
//
// Otherwise use Clang's traditional behavior: like
// -fno-semantic-interposition but local aliases are not used. So references
// can be interposed if not optimized out.
if (Triple.isOSBinFormatELF()) {
Arg *A = Args.getLastArg(options::OPT_fsemantic_interposition,
options::OPT_fno_semantic_interposition);
if (RelocationModel != llvm::Reloc::Static && !IsPIE) {
// The supported targets need to call AsmPrinter::getSymbolPreferLocal.
bool SupportsLocalAlias = Triple.isX86();
if (!A)
CmdArgs.push_back("-fhalf-no-semantic-interposition");
else if (A->getOption().matches(options::OPT_fsemantic_interposition))
A->render(Args, CmdArgs);
else if (!SupportsLocalAlias)
CmdArgs.push_back("-fhalf-no-semantic-interposition");
}
}
{
std::string Model;
if (Arg *A = Args.getLastArg(options::OPT_mthread_model)) {
if (!TC.isThreadModelSupported(A->getValue()))
D.Diag(diag::err_drv_invalid_thread_model_for_target)
<< A->getValue() << A->getAsString(Args);
Model = A->getValue();
} else
Model = TC.getThreadModel();
if (Model != "posix") {
CmdArgs.push_back("-mthread-model");
CmdArgs.push_back(Args.MakeArgString(Model));
}
}
Args.AddLastArg(CmdArgs, options::OPT_fveclib);
if (Args.hasFlag(options::OPT_fmerge_all_constants,
options::OPT_fno_merge_all_constants, false))
CmdArgs.push_back("-fmerge-all-constants");
if (Args.hasFlag(options::OPT_fno_delete_null_pointer_checks,
options::OPT_fdelete_null_pointer_checks, false))
CmdArgs.push_back("-fno-delete-null-pointer-checks");
// LLVM Code Generator Options.
for (const Arg *A : Args.filtered(options::OPT_frewrite_map_file_EQ)) {
StringRef Map = A->getValue();
if (!llvm::sys::fs::exists(Map)) {
D.Diag(diag::err_drv_no_such_file) << Map;
} else {
A->render(Args, CmdArgs);
A->claim();
}
}
if (Arg *A = Args.getLastArg(options::OPT_mabi_EQ_vec_extabi,
options::OPT_mabi_EQ_vec_default)) {
if (!Triple.isOSAIX())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
if (A->getOption().getID() == options::OPT_mabi_EQ_vec_extabi)
CmdArgs.push_back("-mabi=vec-extabi");
else
D.Diag(diag::err_aix_default_altivec_abi);
}
if (Arg *A = Args.getLastArg(options::OPT_Wframe_larger_than_EQ)) {
StringRef v = A->getValue();
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-warn-stack-size=" + v));
A->claim();
}
if (!Args.hasFlag(options::OPT_fjump_tables, options::OPT_fno_jump_tables,
true))
CmdArgs.push_back("-fno-jump-tables");
if (Args.hasFlag(options::OPT_fprofile_sample_accurate,
options::OPT_fno_profile_sample_accurate, false))
CmdArgs.push_back("-fprofile-sample-accurate");
if (!Args.hasFlag(options::OPT_fpreserve_as_comments,
options::OPT_fno_preserve_as_comments, true))
CmdArgs.push_back("-fno-preserve-as-comments");
if (Arg *A = Args.getLastArg(options::OPT_mregparm_EQ)) {
CmdArgs.push_back("-mregparm");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_maix_struct_return,
options::OPT_msvr4_struct_return)) {
if (!TC.getTriple().isPPC32()) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
} else if (A->getOption().matches(options::OPT_maix_struct_return)) {
CmdArgs.push_back("-maix-struct-return");
} else {
assert(A->getOption().matches(options::OPT_msvr4_struct_return));
CmdArgs.push_back("-msvr4-struct-return");
}
}
if (Arg *A = Args.getLastArg(options::OPT_fpcc_struct_return,
options::OPT_freg_struct_return)) {
if (TC.getArch() != llvm::Triple::x86) {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getSpelling() << RawTriple.str();
} else if (A->getOption().matches(options::OPT_fpcc_struct_return)) {
CmdArgs.push_back("-fpcc-struct-return");
} else {
assert(A->getOption().matches(options::OPT_freg_struct_return));
CmdArgs.push_back("-freg-struct-return");
}
}
if (Args.hasFlag(options::OPT_mrtd, options::OPT_mno_rtd, false))
CmdArgs.push_back("-fdefault-calling-conv=stdcall");
if (Args.hasArg(options::OPT_fenable_matrix)) {
// enable-matrix is needed by both the LangOpts and by LLVM.
CmdArgs.push_back("-fenable-matrix");
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-matrix");
}
CodeGenOptions::FramePointerKind FPKeepKind =
getFramePointerKind(Args, RawTriple);
const char *FPKeepKindStr = nullptr;
switch (FPKeepKind) {
case CodeGenOptions::FramePointerKind::None:
FPKeepKindStr = "-mframe-pointer=none";
break;
case CodeGenOptions::FramePointerKind::NonLeaf:
FPKeepKindStr = "-mframe-pointer=non-leaf";
break;
case CodeGenOptions::FramePointerKind::All:
FPKeepKindStr = "-mframe-pointer=all";
break;
}
assert(FPKeepKindStr && "unknown FramePointerKind");
CmdArgs.push_back(FPKeepKindStr);
if (!Args.hasFlag(options::OPT_fzero_initialized_in_bss,
options::OPT_fno_zero_initialized_in_bss, true))
CmdArgs.push_back("-fno-zero-initialized-in-bss");
bool OFastEnabled = isOptimizationLevelFast(Args);
// If -Ofast is the optimization level, then -fstrict-aliasing should be
// enabled. This alias option is being used to simplify the hasFlag logic.
OptSpecifier StrictAliasingAliasOption =
OFastEnabled ? options::OPT_Ofast : options::OPT_fstrict_aliasing;
// We turn strict aliasing off by default if we're in CL mode, since MSVC
// doesn't do any TBAA.
bool TBAAOnByDefault = !D.IsCLMode();
if (!Args.hasFlag(options::OPT_fstrict_aliasing, StrictAliasingAliasOption,
options::OPT_fno_strict_aliasing, TBAAOnByDefault))
CmdArgs.push_back("-relaxed-aliasing");
if (!Args.hasFlag(options::OPT_fstruct_path_tbaa,
options::OPT_fno_struct_path_tbaa))
CmdArgs.push_back("-no-struct-path-tbaa");
if (Args.hasFlag(options::OPT_fstrict_enums, options::OPT_fno_strict_enums,
false))
CmdArgs.push_back("-fstrict-enums");
if (!Args.hasFlag(options::OPT_fstrict_return, options::OPT_fno_strict_return,
true))
CmdArgs.push_back("-fno-strict-return");
if (Args.hasFlag(options::OPT_fallow_editor_placeholders,
options::OPT_fno_allow_editor_placeholders, false))
CmdArgs.push_back("-fallow-editor-placeholders");
if (Args.hasFlag(options::OPT_fstrict_vtable_pointers,
options::OPT_fno_strict_vtable_pointers,
false))
CmdArgs.push_back("-fstrict-vtable-pointers");
if (Args.hasFlag(options::OPT_fforce_emit_vtables,
options::OPT_fno_force_emit_vtables,
false))
CmdArgs.push_back("-fforce-emit-vtables");
if (!Args.hasFlag(options::OPT_foptimize_sibling_calls,
options::OPT_fno_optimize_sibling_calls))
CmdArgs.push_back("-mdisable-tail-calls");
if (Args.hasFlag(options::OPT_fno_escaping_block_tail_calls,
options::OPT_fescaping_block_tail_calls, false))
CmdArgs.push_back("-fno-escaping-block-tail-calls");
Args.AddLastArg(CmdArgs, options::OPT_ffine_grained_bitfield_accesses,
options::OPT_fno_fine_grained_bitfield_accesses);
Args.AddLastArg(CmdArgs, options::OPT_fexperimental_relative_cxx_abi_vtables,
options::OPT_fno_experimental_relative_cxx_abi_vtables);
// Handle segmented stacks.
if (Args.hasArg(options::OPT_fsplit_stack))
CmdArgs.push_back("-split-stacks");
RenderFloatingPointOptions(TC, D, OFastEnabled, Args, CmdArgs, JA);
if (Arg *A = Args.getLastArg(options::OPT_mdouble_EQ)) {
if (TC.getArch() == llvm::Triple::avr)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_LongDouble_Group)) {
if (TC.getTriple().isX86())
A->render(Args, CmdArgs);
else if (TC.getTriple().isPPC() &&
(A->getOption().getID() != options::OPT_mlong_double_80))
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
// Decide whether to use verbose asm. Verbose assembly is the default on
// toolchains which have the integrated assembler on by default.
bool IsIntegratedAssemblerDefault = TC.IsIntegratedAssemblerDefault();
if (!Args.hasFlag(options::OPT_fverbose_asm, options::OPT_fno_verbose_asm,
IsIntegratedAssemblerDefault))
CmdArgs.push_back("-fno-verbose-asm");
// Parse 'none' or '$major.$minor'. Disallow -fbinutils-version=0 because we
// use that to indicate the MC default in the backend.
if (Arg *A = Args.getLastArg(options::OPT_fbinutils_version_EQ)) {
StringRef V = A->getValue();
unsigned Num;
if (V == "none")
A->render(Args, CmdArgs);
else if (!V.consumeInteger(10, Num) && Num > 0 &&
(V.empty() || (V.consume_front(".") &&
!V.consumeInteger(10, Num) && V.empty())))
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_invalid_argument_to_option)
<< A->getValue() << A->getOption().getName();
}
if (!TC.useIntegratedAs())
CmdArgs.push_back("-no-integrated-as");
if (Args.hasArg(options::OPT_fdebug_pass_structure)) {
CmdArgs.push_back("-mdebug-pass");
CmdArgs.push_back("Structure");
}
if (Args.hasArg(options::OPT_fdebug_pass_arguments)) {
CmdArgs.push_back("-mdebug-pass");
CmdArgs.push_back("Arguments");
}
// Enable -mconstructor-aliases except on darwin, where we have to work around
// a linker bug (see <rdar://problem/7651567>), and CUDA/AMDGPU device code,
// where aliases aren't supported. Similarly, aliases aren't yet supported
// for AIX.
if (!RawTriple.isOSDarwin() && !RawTriple.isNVPTX() &&
!RawTriple.isAMDGPU() && !RawTriple.isOSAIX())
CmdArgs.push_back("-mconstructor-aliases");
// Darwin's kernel doesn't support guard variables; just die if we
// try to use them.
if (KernelOrKext && RawTriple.isOSDarwin())
CmdArgs.push_back("-fforbid-guard-variables");
if (Args.hasFlag(options::OPT_mms_bitfields, options::OPT_mno_ms_bitfields,
Triple.isWindowsGNUEnvironment())) {
CmdArgs.push_back("-mms-bitfields");
}
// Non-PIC code defaults to -fdirect-access-external-data while PIC code
// defaults to -fno-direct-access-external-data. Pass the option if different
// from the default.
if (Arg *A = Args.getLastArg(options::OPT_fdirect_access_external_data,
options::OPT_fno_direct_access_external_data))
if (A->getOption().matches(options::OPT_fdirect_access_external_data) !=
(PICLevel == 0))
A->render(Args, CmdArgs);
if (Args.hasFlag(options::OPT_fno_plt, options::OPT_fplt, false)) {
CmdArgs.push_back("-fno-plt");
}
// -fhosted is default.
// TODO: Audit uses of KernelOrKext and see where it'd be more appropriate to
// use Freestanding.
bool Freestanding =
Args.hasFlag(options::OPT_ffreestanding, options::OPT_fhosted, false) ||
KernelOrKext;
if (Freestanding)
CmdArgs.push_back("-ffreestanding");
// This is a coarse approximation of what llvm-gcc actually does, both
// -fasynchronous-unwind-tables and -fnon-call-exceptions interact in more
// complicated ways.
bool UnwindTables =
Args.hasFlag(options::OPT_fasynchronous_unwind_tables,
options::OPT_fno_asynchronous_unwind_tables,
(TC.IsUnwindTablesDefault(Args) ||
TC.getSanitizerArgs().needsUnwindTables()) &&
!Freestanding);
UnwindTables = Args.hasFlag(options::OPT_funwind_tables,
options::OPT_fno_unwind_tables, UnwindTables);
if (UnwindTables)
CmdArgs.push_back("-munwind-tables");
// Prepare `-aux-target-cpu` and `-aux-target-feature` unless
// `--gpu-use-aux-triple-only` is specified.
if (!Args.getLastArg(options::OPT_gpu_use_aux_triple_only) &&
((IsCuda && JA.isDeviceOffloading(Action::OFK_Cuda)) ||
(IsHIP && JA.isDeviceOffloading(Action::OFK_HIP)))) {
const ArgList &HostArgs =
C.getArgsForToolChain(nullptr, StringRef(), Action::OFK_None);
std::string HostCPU =
getCPUName(HostArgs, *TC.getAuxTriple(), /*FromAs*/ false);
if (!HostCPU.empty()) {
CmdArgs.push_back("-aux-target-cpu");
CmdArgs.push_back(Args.MakeArgString(HostCPU));
}
getTargetFeatures(D, *TC.getAuxTriple(), HostArgs, CmdArgs,
/*ForAS*/ false, /*IsAux*/ true);
}
TC.addClangTargetOptions(Args, CmdArgs, JA.getOffloadingDeviceKind());
// FIXME: Handle -mtune=.
(void)Args.hasArg(options::OPT_mtune_EQ);
if (Arg *A = Args.getLastArg(options::OPT_mcmodel_EQ)) {
StringRef CM = A->getValue();
if (CM == "small" || CM == "kernel" || CM == "medium" || CM == "large" ||
CM == "tiny")
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_invalid_argument_to_option)
<< CM << A->getOption().getName();
}
if (Arg *A = Args.getLastArg(options::OPT_mtls_size_EQ)) {
StringRef Value = A->getValue();
unsigned TLSSize = 0;
Value.getAsInteger(10, TLSSize);
if (!Triple.isAArch64() || !Triple.isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getOption().getName() << TripleStr;
if (TLSSize != 12 && TLSSize != 24 && TLSSize != 32 && TLSSize != 48)
D.Diag(diag::err_drv_invalid_int_value)
<< A->getOption().getName() << Value;
Args.AddLastArg(CmdArgs, options::OPT_mtls_size_EQ);
}
// Add the target cpu
std::string CPU = getCPUName(Args, Triple, /*FromAs*/ false);
if (!CPU.empty()) {
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPU));
}
RenderTargetOptions(Triple, Args, KernelOrKext, CmdArgs);
// These two are potentially updated by AddClangCLArgs.
codegenoptions::DebugInfoKind DebugInfoKind = codegenoptions::NoDebugInfo;
bool EmitCodeView = false;
// Add clang-cl arguments.
types::ID InputType = Input.getType();
if (D.IsCLMode())
AddClangCLArgs(Args, InputType, CmdArgs, &DebugInfoKind, &EmitCodeView);
DwarfFissionKind DwarfFission = DwarfFissionKind::None;
renderDebugOptions(TC, D, RawTriple, Args, EmitCodeView,
types::isLLVMIR(InputType), CmdArgs, DebugInfoKind,
DwarfFission);
// Add the split debug info name to the command lines here so we
// can propagate it to the backend.
bool SplitDWARF = (DwarfFission != DwarfFissionKind::None) &&
(TC.getTriple().isOSBinFormatELF() ||
TC.getTriple().isOSBinFormatWasm()) &&
(isa<AssembleJobAction>(JA) || isa<CompileJobAction>(JA) ||
isa<BackendJobAction>(JA));
if (SplitDWARF) {
const char *SplitDWARFOut = SplitDebugName(JA, Args, Input, Output);
CmdArgs.push_back("-split-dwarf-file");
CmdArgs.push_back(SplitDWARFOut);
if (DwarfFission == DwarfFissionKind::Split) {
CmdArgs.push_back("-split-dwarf-output");
CmdArgs.push_back(SplitDWARFOut);
}
}
// Pass the linker version in use.
if (Arg *A = Args.getLastArg(options::OPT_mlinker_version_EQ)) {
CmdArgs.push_back("-target-linker-version");
CmdArgs.push_back(A->getValue());
}
// Explicitly error on some things we know we don't support and can't just
// ignore.
if (!Args.hasArg(options::OPT_fallow_unsupported)) {
Arg *Unsupported;
if (types::isCXX(InputType) && RawTriple.isOSDarwin() &&
TC.getArch() == llvm::Triple::x86) {
if ((Unsupported = Args.getLastArg(options::OPT_fapple_kext)) ||
(Unsupported = Args.getLastArg(options::OPT_mkernel)))
D.Diag(diag::err_drv_clang_unsupported_opt_cxx_darwin_i386)
<< Unsupported->getOption().getName();
}
// The faltivec option has been superseded by the maltivec option.
if ((Unsupported = Args.getLastArg(options::OPT_faltivec)))
D.Diag(diag::err_drv_clang_unsupported_opt_faltivec)
<< Unsupported->getOption().getName()
<< "please use -maltivec and include altivec.h explicitly";
if ((Unsupported = Args.getLastArg(options::OPT_fno_altivec)))
D.Diag(diag::err_drv_clang_unsupported_opt_faltivec)
<< Unsupported->getOption().getName() << "please use -mno-altivec";
}
Args.AddAllArgs(CmdArgs, options::OPT_v);
if (Args.getLastArg(options::OPT_H)) {
CmdArgs.push_back("-H");
CmdArgs.push_back("-sys-header-deps");
}
if (D.CCPrintHeaders && !D.CCGenDiagnostics) {
CmdArgs.push_back("-header-include-file");
CmdArgs.push_back(D.CCPrintHeadersFilename ? D.CCPrintHeadersFilename
: "-");
CmdArgs.push_back("-sys-header-deps");
}
Args.AddLastArg(CmdArgs, options::OPT_P);
Args.AddLastArg(CmdArgs, options::OPT_print_ivar_layout);
if (D.CCLogDiagnostics && !D.CCGenDiagnostics) {
CmdArgs.push_back("-diagnostic-log-file");
CmdArgs.push_back(D.CCLogDiagnosticsFilename ? D.CCLogDiagnosticsFilename
: "-");
}
// Give the gen diagnostics more chances to succeed, by avoiding intentional
// crashes.
if (D.CCGenDiagnostics)
CmdArgs.push_back("-disable-pragma-debug-crash");
bool UseSeparateSections = isUseSeparateSections(Triple);
if (Args.hasFlag(options::OPT_ffunction_sections,
options::OPT_fno_function_sections, UseSeparateSections)) {
CmdArgs.push_back("-ffunction-sections");
}
if (Arg *A = Args.getLastArg(options::OPT_fbasic_block_sections_EQ)) {
if (Triple.isX86() && Triple.isOSBinFormatELF()) {
StringRef Val = A->getValue();
if (Val != "all" && Val != "labels" && Val != "none" &&
!Val.startswith("list="))
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
else
A->render(Args, CmdArgs);
} else {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
bool HasDefaultDataSections = Triple.isOSBinFormatXCOFF();
if (Args.hasFlag(options::OPT_fdata_sections, options::OPT_fno_data_sections,
UseSeparateSections || HasDefaultDataSections)) {
CmdArgs.push_back("-fdata-sections");
}
if (!Args.hasFlag(options::OPT_funique_section_names,
options::OPT_fno_unique_section_names, true))
CmdArgs.push_back("-fno-unique-section-names");
if (Args.hasFlag(options::OPT_funique_internal_linkage_names,
options::OPT_fno_unique_internal_linkage_names, false))
CmdArgs.push_back("-funique-internal-linkage-names");
if (Args.hasFlag(options::OPT_funique_basic_block_section_names,
options::OPT_fno_unique_basic_block_section_names, false))
CmdArgs.push_back("-funique-basic-block-section-names");
if (Arg *A = Args.getLastArg(options::OPT_fsplit_machine_functions,
options::OPT_fno_split_machine_functions)) {
// This codegen pass is only available on x86-elf targets.
if (Triple.isX86() && Triple.isOSBinFormatELF()) {
if (A->getOption().matches(options::OPT_fsplit_machine_functions))
A->render(Args, CmdArgs);
} else {
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
Args.AddLastArg(CmdArgs, options::OPT_finstrument_functions,
options::OPT_finstrument_functions_after_inlining,
options::OPT_finstrument_function_entry_bare);
// NVPTX/AMDGCN doesn't support PGO or coverage. There's no runtime support
// for sampling, overhead of call arc collection is way too high and there's
// no way to collect the output.
if (!Triple.isNVPTX() && !Triple.isAMDGCN())
addPGOAndCoverageFlags(TC, C, D, Output, Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fclang_abi_compat_EQ);
// Add runtime flag for PS4 when PGO, coverage, or sanitizers are enabled.
if (RawTriple.isPS4CPU() &&
!Args.hasArg(options::OPT_nostdlib, options::OPT_nodefaultlibs)) {
PS4cpu::addProfileRTArgs(TC, Args, CmdArgs);
PS4cpu::addSanitizerArgs(TC, CmdArgs);
}
// Pass options for controlling the default header search paths.
if (Args.hasArg(options::OPT_nostdinc)) {
CmdArgs.push_back("-nostdsysteminc");
CmdArgs.push_back("-nobuiltininc");
} else {
if (Args.hasArg(options::OPT_nostdlibinc))
CmdArgs.push_back("-nostdsysteminc");
Args.AddLastArg(CmdArgs, options::OPT_nostdincxx);
Args.AddLastArg(CmdArgs, options::OPT_nobuiltininc);
}
// Pass the path to compiler resource files.
CmdArgs.push_back("-resource-dir");
CmdArgs.push_back(D.ResourceDir.c_str());
Args.AddLastArg(CmdArgs, options::OPT_working_directory);
RenderARCMigrateToolOptions(D, Args, CmdArgs);
// Add preprocessing options like -I, -D, etc. if we are using the
// preprocessor.
//
// FIXME: Support -fpreprocessed
if (types::getPreprocessedType(InputType) != types::TY_INVALID)
AddPreprocessingOptions(C, JA, D, Args, CmdArgs, Output, Inputs);
// Don't warn about "clang -c -DPIC -fPIC test.i" because libtool.m4 assumes
// that "The compiler can only warn and ignore the option if not recognized".
// When building with ccache, it will pass -D options to clang even on
// preprocessed inputs and configure concludes that -fPIC is not supported.
Args.ClaimAllArgs(options::OPT_D);
// Manually translate -O4 to -O3; let clang reject others.
if (Arg *A = Args.getLastArg(options::OPT_O_Group)) {
if (A->getOption().matches(options::OPT_O4)) {
CmdArgs.push_back("-O3");
D.Diag(diag::warn_O4_is_O3);
} else {
A->render(Args, CmdArgs);
}
}
// Warn about ignored options to clang.
for (const Arg *A :
Args.filtered(options::OPT_clang_ignored_gcc_optimization_f_Group)) {
D.Diag(diag::warn_ignored_gcc_optimization) << A->getAsString(Args);
A->claim();
}
for (const Arg *A :
Args.filtered(options::OPT_clang_ignored_legacy_options_Group)) {
D.Diag(diag::warn_ignored_clang_option) << A->getAsString(Args);
A->claim();
}
claimNoWarnArgs(Args);
Args.AddAllArgs(CmdArgs, options::OPT_R_Group);
Args.AddAllArgs(CmdArgs, options::OPT_W_Group);
if (Args.hasFlag(options::OPT_pedantic, options::OPT_no_pedantic, false))
CmdArgs.push_back("-pedantic");
Args.AddLastArg(CmdArgs, options::OPT_pedantic_errors);
Args.AddLastArg(CmdArgs, options::OPT_w);
// Fixed point flags
if (Args.hasFlag(options::OPT_ffixed_point, options::OPT_fno_fixed_point,
/*Default=*/false))
Args.AddLastArg(CmdArgs, options::OPT_ffixed_point);
// Handle -{std, ansi, trigraphs} -- take the last of -{std, ansi}
// (-ansi is equivalent to -std=c89 or -std=c++98).
//
// If a std is supplied, only add -trigraphs if it follows the
// option.
bool ImplyVCPPCVer = false;
bool ImplyVCPPCXXVer = false;
const Arg *Std = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi);
if (Std) {
if (Std->getOption().matches(options::OPT_ansi))
if (types::isCXX(InputType))
CmdArgs.push_back("-std=c++98");
else
CmdArgs.push_back("-std=c89");
else
Std->render(Args, CmdArgs);
// If -f(no-)trigraphs appears after the language standard flag, honor it.
if (Arg *A = Args.getLastArg(options::OPT_std_EQ, options::OPT_ansi,
options::OPT_ftrigraphs,
options::OPT_fno_trigraphs))
if (A != Std)
A->render(Args, CmdArgs);
} else {
// Honor -std-default.
//
// FIXME: Clang doesn't correctly handle -std= when the input language
// doesn't match. For the time being just ignore this for C++ inputs;
// eventually we want to do all the standard defaulting here instead of
// splitting it between the driver and clang -cc1.
if (!types::isCXX(InputType)) {
if (!Args.hasArg(options::OPT__SLASH_std)) {
Args.AddAllArgsTranslated(CmdArgs, options::OPT_std_default_EQ, "-std=",
/*Joined=*/true);
} else
ImplyVCPPCVer = true;
}
else if (IsWindowsMSVC)
ImplyVCPPCXXVer = true;
Args.AddLastArg(CmdArgs, options::OPT_ftrigraphs,
options::OPT_fno_trigraphs);
// HIP headers has minimum C++ standard requirements. Therefore set the
// default language standard.
if (IsHIP)
CmdArgs.push_back(IsWindowsMSVC ? "-std=c++14" : "-std=c++11");
}
// GCC's behavior for -Wwrite-strings is a bit strange:
// * In C, this "warning flag" changes the types of string literals from
// 'char[N]' to 'const char[N]', and thus triggers an unrelated warning
// for the discarded qualifier.
// * In C++, this is just a normal warning flag.
//
// Implementing this warning correctly in C is hard, so we follow GCC's
// behavior for now. FIXME: Directly diagnose uses of a string literal as
// a non-const char* in C, rather than using this crude hack.
if (!types::isCXX(InputType)) {
// FIXME: This should behave just like a warning flag, and thus should also
// respect -Weverything, -Wno-everything, -Werror=write-strings, and so on.
Arg *WriteStrings =
Args.getLastArg(options::OPT_Wwrite_strings,
options::OPT_Wno_write_strings, options::OPT_w);
if (WriteStrings &&
WriteStrings->getOption().matches(options::OPT_Wwrite_strings))
CmdArgs.push_back("-fconst-strings");
}
// GCC provides a macro definition '__DEPRECATED' when -Wdeprecated is active
// during C++ compilation, which it is by default. GCC keeps this define even
// in the presence of '-w', match this behavior bug-for-bug.
if (types::isCXX(InputType) &&
Args.hasFlag(options::OPT_Wdeprecated, options::OPT_Wno_deprecated,
true)) {
CmdArgs.push_back("-fdeprecated-macro");
}
// Translate GCC's misnamer '-fasm' arguments to '-fgnu-keywords'.
if (Arg *Asm = Args.getLastArg(options::OPT_fasm, options::OPT_fno_asm)) {
if (Asm->getOption().matches(options::OPT_fasm))
CmdArgs.push_back("-fgnu-keywords");
else
CmdArgs.push_back("-fno-gnu-keywords");
}
if (ShouldDisableDwarfDirectory(Args, TC))
CmdArgs.push_back("-fno-dwarf-directory-asm");
if (!ShouldEnableAutolink(Args, TC, JA))
CmdArgs.push_back("-fno-autolink");
// Add in -fdebug-compilation-dir if necessary.
addDebugCompDirArg(Args, CmdArgs, D.getVFS());
addDebugPrefixMapArg(D, Args, CmdArgs);
if (Arg *A = Args.getLastArg(options::OPT_ftemplate_depth_,
options::OPT_ftemplate_depth_EQ)) {
CmdArgs.push_back("-ftemplate-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_foperator_arrow_depth_EQ)) {
CmdArgs.push_back("-foperator-arrow-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_depth_EQ)) {
CmdArgs.push_back("-fconstexpr-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_steps_EQ)) {
CmdArgs.push_back("-fconstexpr-steps");
CmdArgs.push_back(A->getValue());
}
if (Args.hasArg(options::OPT_fexperimental_new_constant_interpreter))
CmdArgs.push_back("-fexperimental-new-constant-interpreter");
if (Arg *A = Args.getLastArg(options::OPT_fbracket_depth_EQ)) {
CmdArgs.push_back("-fbracket-depth");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_Wlarge_by_value_copy_EQ,
options::OPT_Wlarge_by_value_copy_def)) {
if (A->getNumValues()) {
StringRef bytes = A->getValue();
CmdArgs.push_back(Args.MakeArgString("-Wlarge-by-value-copy=" + bytes));
} else
CmdArgs.push_back("-Wlarge-by-value-copy=64"); // default value
}
if (Args.hasArg(options::OPT_relocatable_pch))
CmdArgs.push_back("-relocatable-pch");
if (const Arg *A = Args.getLastArg(options::OPT_fcf_runtime_abi_EQ)) {
static const char *kCFABIs[] = {
"standalone", "objc", "swift", "swift-5.0", "swift-4.2", "swift-4.1",
};
if (find(kCFABIs, StringRef(A->getValue())) == std::end(kCFABIs))
D.Diag(diag::err_drv_invalid_cf_runtime_abi) << A->getValue();
else
A->render(Args, CmdArgs);
}
if (Arg *A = Args.getLastArg(options::OPT_fconstant_string_class_EQ)) {
CmdArgs.push_back("-fconstant-string-class");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_ftabstop_EQ)) {
CmdArgs.push_back("-ftabstop");
CmdArgs.push_back(A->getValue());
}
if (Args.hasFlag(options::OPT_fstack_size_section,
options::OPT_fno_stack_size_section, RawTriple.isPS4()))
CmdArgs.push_back("-fstack-size-section");
CmdArgs.push_back("-ferror-limit");
if (Arg *A = Args.getLastArg(options::OPT_ferror_limit_EQ))
CmdArgs.push_back(A->getValue());
else
CmdArgs.push_back("19");
if (Arg *A = Args.getLastArg(options::OPT_fmacro_backtrace_limit_EQ)) {
CmdArgs.push_back("-fmacro-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_ftemplate_backtrace_limit_EQ)) {
CmdArgs.push_back("-ftemplate-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fconstexpr_backtrace_limit_EQ)) {
CmdArgs.push_back("-fconstexpr-backtrace-limit");
CmdArgs.push_back(A->getValue());
}
if (Arg *A = Args.getLastArg(options::OPT_fspell_checking_limit_EQ)) {
CmdArgs.push_back("-fspell-checking-limit");
CmdArgs.push_back(A->getValue());
}
// Pass -fmessage-length=.
unsigned MessageLength = 0;
if (Arg *A = Args.getLastArg(options::OPT_fmessage_length_EQ)) {
StringRef V(A->getValue());
if (V.getAsInteger(0, MessageLength))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< V << A->getOption().getName();
} else {
// If -fmessage-length=N was not specified, determine whether this is a
// terminal and, if so, implicitly define -fmessage-length appropriately.
MessageLength = llvm::sys::Process::StandardErrColumns();
}
if (MessageLength != 0)
CmdArgs.push_back(
Args.MakeArgString("-fmessage-length=" + Twine(MessageLength)));
// -fvisibility= and -fvisibility-ms-compat are of a piece.
if (const Arg *A = Args.getLastArg(options::OPT_fvisibility_EQ,
options::OPT_fvisibility_ms_compat)) {
if (A->getOption().matches(options::OPT_fvisibility_EQ)) {
CmdArgs.push_back("-fvisibility");
CmdArgs.push_back(A->getValue());
} else {
assert(A->getOption().matches(options::OPT_fvisibility_ms_compat));
CmdArgs.push_back("-fvisibility");
CmdArgs.push_back("hidden");
CmdArgs.push_back("-ftype-visibility");
CmdArgs.push_back("default");
}
}
if (!RawTriple.isPS4())
if (const Arg *A =
Args.getLastArg(options::OPT_fvisibility_from_dllstorageclass,
options::OPT_fno_visibility_from_dllstorageclass)) {
if (A->getOption().matches(
options::OPT_fvisibility_from_dllstorageclass)) {
CmdArgs.push_back("-fvisibility-from-dllstorageclass");
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_dllexport_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_nodllstorageclass_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_externs_dllimport_EQ);
Args.AddLastArg(CmdArgs,
options::OPT_fvisibility_externs_nodllstorageclass_EQ);
}
}
if (const Arg *A = Args.getLastArg(options::OPT_mignore_xcoff_visibility)) {
if (Triple.isOSAIX())
CmdArgs.push_back("-mignore-xcoff-visibility");
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_inlines_hidden);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_inlines_hidden_static_local_var,
options::OPT_fno_visibility_inlines_hidden_static_local_var);
Args.AddLastArg(CmdArgs, options::OPT_fvisibility_global_new_delete_hidden);
Args.AddLastArg(CmdArgs, options::OPT_ftlsmodel_EQ);
// Forward -f (flag) options which we can pass directly.
Args.AddLastArg(CmdArgs, options::OPT_femit_all_decls);
Args.AddLastArg(CmdArgs, options::OPT_fheinous_gnu_extensions);
Args.AddLastArg(CmdArgs, options::OPT_fdigraphs, options::OPT_fno_digraphs);
Args.AddLastArg(CmdArgs, options::OPT_fno_operator_names);
Args.AddLastArg(CmdArgs, options::OPT_femulated_tls,
options::OPT_fno_emulated_tls);
// AltiVec-like language extensions aren't relevant for assembling.
if (!isa<PreprocessJobAction>(JA) || Output.getType() != types::TY_PP_Asm)
Args.AddLastArg(CmdArgs, options::OPT_fzvector);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_show_template_tree);
Args.AddLastArg(CmdArgs, options::OPT_fno_elide_type);
// Forward flags for OpenMP. We don't do this if the current action is an
// device offloading action other than OpenMP.
if (Args.hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
options::OPT_fno_openmp, false) &&
(JA.isDeviceOffloading(Action::OFK_None) ||
JA.isDeviceOffloading(Action::OFK_OpenMP))) {
switch (D.getOpenMPRuntime(Args)) {
case Driver::OMPRT_OMP:
case Driver::OMPRT_IOMP5:
// Clang can generate useful OpenMP code for these two runtime libraries.
CmdArgs.push_back("-fopenmp");
// If no option regarding the use of TLS in OpenMP codegeneration is
// given, decide a default based on the target. Otherwise rely on the
// options and pass the right information to the frontend.
if (!Args.hasFlag(options::OPT_fopenmp_use_tls,
options::OPT_fnoopenmp_use_tls, /*Default=*/true))
CmdArgs.push_back("-fnoopenmp-use-tls");
Args.AddLastArg(CmdArgs, options::OPT_fopenmp_simd,
options::OPT_fno_openmp_simd);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_enable_irbuilder);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_version_EQ);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_cuda_number_of_sm_EQ);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_cuda_blocks_per_sm_EQ);
Args.AddAllArgs(CmdArgs,
options::OPT_fopenmp_cuda_teams_reduction_recs_num_EQ);
if (Args.hasFlag(options::OPT_fopenmp_optimistic_collapse,
options::OPT_fno_openmp_optimistic_collapse,
/*Default=*/false))
CmdArgs.push_back("-fopenmp-optimistic-collapse");
// When in OpenMP offloading mode with NVPTX target, forward
// cuda-mode flag
if (Args.hasFlag(options::OPT_fopenmp_cuda_mode,
options::OPT_fno_openmp_cuda_mode, /*Default=*/false))
CmdArgs.push_back("-fopenmp-cuda-mode");
// When in OpenMP offloading mode with NVPTX target, forward
// cuda-parallel-target-regions flag
if (Args.hasFlag(options::OPT_fopenmp_cuda_parallel_target_regions,
options::OPT_fno_openmp_cuda_parallel_target_regions,
/*Default=*/true))
CmdArgs.push_back("-fopenmp-cuda-parallel-target-regions");
// When in OpenMP offloading mode with NVPTX target, check if full runtime
// is required.
if (Args.hasFlag(options::OPT_fopenmp_cuda_force_full_runtime,
options::OPT_fno_openmp_cuda_force_full_runtime,
/*Default=*/false))
CmdArgs.push_back("-fopenmp-cuda-force-full-runtime");
break;
default:
// By default, if Clang doesn't know how to generate useful OpenMP code
// for a specific runtime library, we just don't pass the '-fopenmp' flag
// down to the actual compilation.
// FIXME: It would be better to have a mode which *only* omits IR
// generation based on the OpenMP support so that we get consistent
// semantic analysis, etc.
break;
}
} else {
Args.AddLastArg(CmdArgs, options::OPT_fopenmp_simd,
options::OPT_fno_openmp_simd);
Args.AddAllArgs(CmdArgs, options::OPT_fopenmp_version_EQ);
}
const SanitizerArgs &Sanitize = TC.getSanitizerArgs();
Sanitize.addArgs(TC, Args, CmdArgs, InputType);
const XRayArgs &XRay = TC.getXRayArgs();
XRay.addArgs(TC, Args, CmdArgs, InputType);
for (const auto &Filename :
Args.getAllArgValues(options::OPT_fprofile_list_EQ)) {
if (D.getVFS().exists(Filename))
CmdArgs.push_back(Args.MakeArgString("-fprofile-list=" + Filename));
else
D.Diag(clang::diag::err_drv_no_such_file) << Filename;
}
if (Arg *A = Args.getLastArg(options::OPT_fpatchable_function_entry_EQ)) {
StringRef S0 = A->getValue(), S = S0;
unsigned Size, Offset = 0;
if (!Triple.isAArch64() && !Triple.isRISCV() && !Triple.isX86())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
else if (S.consumeInteger(10, Size) ||
(!S.empty() && (!S.consume_front(",") ||
S.consumeInteger(10, Offset) || !S.empty())))
D.Diag(diag::err_drv_invalid_argument_to_option)
<< S0 << A->getOption().getName();
else if (Size < Offset)
D.Diag(diag::err_drv_unsupported_fpatchable_function_entry_argument);
else {
CmdArgs.push_back(Args.MakeArgString(A->getSpelling() + Twine(Size)));
CmdArgs.push_back(Args.MakeArgString(
"-fpatchable-function-entry-offset=" + Twine(Offset)));
}
}
if (TC.SupportsProfiling()) {
Args.AddLastArg(CmdArgs, options::OPT_pg);
llvm::Triple::ArchType Arch = TC.getArch();
if (Arg *A = Args.getLastArg(options::OPT_mfentry)) {
if (Arch == llvm::Triple::systemz || TC.getTriple().isX86())
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_mnop_mcount)) {
if (Arch == llvm::Triple::systemz)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
if (Arg *A = Args.getLastArg(options::OPT_mrecord_mcount)) {
if (Arch == llvm::Triple::systemz)
A->render(Args, CmdArgs);
else
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< A->getAsString(Args) << TripleStr;
}
}
if (Args.getLastArg(options::OPT_fapple_kext) ||
(Args.hasArg(options::OPT_mkernel) && types::isCXX(InputType)))
CmdArgs.push_back("-fapple-kext");
Args.AddLastArg(CmdArgs, options::OPT_flax_vector_conversions_EQ);
Args.AddLastArg(CmdArgs, options::OPT_fobjc_sender_dependent_dispatch);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_print_source_range_info);
Args.AddLastArg(CmdArgs, options::OPT_fdiagnostics_parseable_fixits);
Args.AddLastArg(CmdArgs, options::OPT_ftime_report);
Args.AddLastArg(CmdArgs, options::OPT_ftime_report_EQ);
Args.AddLastArg(CmdArgs, options::OPT_ftime_trace);
Args.AddLastArg(CmdArgs, options::OPT_ftime_trace_granularity_EQ);
Args.AddLastArg(CmdArgs, options::OPT_ftrapv);
Args.AddLastArg(CmdArgs, options::OPT_malign_double);
Args.AddLastArg(CmdArgs, options::OPT_fno_temp_file);
if (Arg *A = Args.getLastArg(options::OPT_ftrapv_handler_EQ)) {
CmdArgs.push_back("-ftrapv-handler");
CmdArgs.push_back(A->getValue());
}
Args.AddLastArg(CmdArgs, options::OPT_ftrap_function_EQ);
// -fno-strict-overflow implies -fwrapv if it isn't disabled, but
// -fstrict-overflow won't turn off an explicitly enabled -fwrapv.
if (Arg *A = Args.getLastArg(options::OPT_fwrapv, options::OPT_fno_wrapv)) {
if (A->getOption().matches(options::OPT_fwrapv))
CmdArgs.push_back("-fwrapv");
} else if (Arg *A = Args.getLastArg(options::OPT_fstrict_overflow,
options::OPT_fno_strict_overflow)) {
if (A->getOption().matches(options::OPT_fno_strict_overflow))
CmdArgs.push_back("-fwrapv");
}
if (Arg *A = Args.getLastArg(options::OPT_freroll_loops,
options::OPT_fno_reroll_loops))
if (A->getOption().matches(options::OPT_freroll_loops))
CmdArgs.push_back("-freroll-loops");
Args.AddLastArg(CmdArgs, options::OPT_ffinite_loops,
options::OPT_fno_finite_loops);
Args.AddLastArg(CmdArgs, options::OPT_fwritable_strings);
Args.AddLastArg(CmdArgs, options::OPT_funroll_loops,
options::OPT_fno_unroll_loops);
Args.AddLastArg(CmdArgs, options::OPT_pthread);
if (Args.hasFlag(options::OPT_mspeculative_load_hardening,
options::OPT_mno_speculative_load_hardening, false))
CmdArgs.push_back(Args.MakeArgString("-mspeculative-load-hardening"));
RenderSSPOptions(D, TC, Args, CmdArgs, KernelOrKext);
RenderSCPOptions(TC, Args, CmdArgs);
RenderTrivialAutoVarInitOptions(D, TC, Args, CmdArgs);
// Translate -mstackrealign
if (Args.hasFlag(options::OPT_mstackrealign, options::OPT_mno_stackrealign,
false))
CmdArgs.push_back(Args.MakeArgString("-mstackrealign"));
if (Args.hasArg(options::OPT_mstack_alignment)) {
StringRef alignment = Args.getLastArgValue(options::OPT_mstack_alignment);
CmdArgs.push_back(Args.MakeArgString("-mstack-alignment=" + alignment));
}
if (Args.hasArg(options::OPT_mstack_probe_size)) {
StringRef Size = Args.getLastArgValue(options::OPT_mstack_probe_size);
if (!Size.empty())
CmdArgs.push_back(Args.MakeArgString("-mstack-probe-size=" + Size));
else
CmdArgs.push_back("-mstack-probe-size=0");
}
if (!Args.hasFlag(options::OPT_mstack_arg_probe,
options::OPT_mno_stack_arg_probe, true))
CmdArgs.push_back(Args.MakeArgString("-mno-stack-arg-probe"));
if (Arg *A = Args.getLastArg(options::OPT_mrestrict_it,
options::OPT_mno_restrict_it)) {
if (A->getOption().matches(options::OPT_mrestrict_it)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-restrict-it");
} else {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-no-restrict-it");
}
} else if (Triple.isOSWindows() &&
(Triple.getArch() == llvm::Triple::arm ||
Triple.getArch() == llvm::Triple::thumb)) {
// Windows on ARM expects restricted IT blocks
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-restrict-it");
}
// Forward -cl options to -cc1
RenderOpenCLOptions(Args, CmdArgs, InputType);
if (IsHIP) {
if (Args.hasFlag(options::OPT_fhip_new_launch_api,
options::OPT_fno_hip_new_launch_api, true))
CmdArgs.push_back("-fhip-new-launch-api");
if (Args.hasFlag(options::OPT_fgpu_allow_device_init,
options::OPT_fno_gpu_allow_device_init, false))
CmdArgs.push_back("-fgpu-allow-device-init");
}
if (IsCuda || IsHIP) {
if (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
CmdArgs.push_back("-fgpu-rdc");
if (Args.hasFlag(options::OPT_fgpu_defer_diag,
options::OPT_fno_gpu_defer_diag, false))
CmdArgs.push_back("-fgpu-defer-diag");
if (Args.hasFlag(options::OPT_fgpu_exclude_wrong_side_overloads,
options::OPT_fno_gpu_exclude_wrong_side_overloads,
false)) {
CmdArgs.push_back("-fgpu-exclude-wrong-side-overloads");
CmdArgs.push_back("-fgpu-defer-diag");
}
}
if (Arg *A = Args.getLastArg(options::OPT_fcf_protection_EQ)) {
CmdArgs.push_back(
Args.MakeArgString(Twine("-fcf-protection=") + A->getValue()));
}
// Forward -f options with positive and negative forms; we translate
// these by hand.
if (Arg *A = getLastProfileSampleUseArg(Args)) {
auto *PGOArg = Args.getLastArg(
options::OPT_fprofile_generate, options::OPT_fprofile_generate_EQ,
options::OPT_fcs_profile_generate, options::OPT_fcs_profile_generate_EQ,
options::OPT_fprofile_use, options::OPT_fprofile_use_EQ);
if (PGOArg)
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "SampleUse with PGO options";
StringRef fname = A->getValue();
if (!llvm::sys::fs::exists(fname))
D.Diag(diag::err_drv_no_such_file) << fname;
else
A->render(Args, CmdArgs);
}
Args.AddLastArg(CmdArgs, options::OPT_fprofile_remapping_file_EQ);
if (Args.hasFlag(options::OPT_fpseudo_probe_for_profiling,
options::OPT_fno_pseudo_probe_for_profiling, false))
CmdArgs.push_back("-fpseudo-probe-for-profiling");
RenderBuiltinOptions(TC, RawTriple, Args, CmdArgs);
if (!Args.hasFlag(options::OPT_fassume_sane_operator_new,
options::OPT_fno_assume_sane_operator_new))
CmdArgs.push_back("-fno-assume-sane-operator-new");
// -fblocks=0 is default.
if (Args.hasFlag(options::OPT_fblocks, options::OPT_fno_blocks,
TC.IsBlocksDefault()) ||
(Args.hasArg(options::OPT_fgnu_runtime) &&
Args.hasArg(options::OPT_fobjc_nonfragile_abi) &&
!Args.hasArg(options::OPT_fno_blocks))) {
CmdArgs.push_back("-fblocks");
if (!Args.hasArg(options::OPT_fgnu_runtime) && !TC.hasBlocksRuntime())
CmdArgs.push_back("-fblocks-runtime-optional");
}
// -fencode-extended-block-signature=1 is default.
if (TC.IsEncodeExtendedBlockSignatureDefault())
CmdArgs.push_back("-fencode-extended-block-signature");
if (Args.hasFlag(options::OPT_fcoroutines_ts, options::OPT_fno_coroutines_ts,
false) &&
types::isCXX(InputType)) {
CmdArgs.push_back("-fcoroutines-ts");
}
Args.AddLastArg(CmdArgs, options::OPT_fdouble_square_bracket_attributes,
options::OPT_fno_double_square_bracket_attributes);
// -faccess-control is default.
if (Args.hasFlag(options::OPT_fno_access_control,
options::OPT_faccess_control, false))
CmdArgs.push_back("-fno-access-control");
// -felide-constructors is the default.
if (Args.hasFlag(options::OPT_fno_elide_constructors,
options::OPT_felide_constructors, false))
CmdArgs.push_back("-fno-elide-constructors");
ToolChain::RTTIMode RTTIMode = TC.getRTTIMode();
if (KernelOrKext || (types::isCXX(InputType) &&
(RTTIMode == ToolChain::RM_Disabled)))
CmdArgs.push_back("-fno-rtti");
// -fshort-enums=0 is default for all architectures except Hexagon and z/OS.
if (Args.hasFlag(options::OPT_fshort_enums, options::OPT_fno_short_enums,
TC.getArch() == llvm::Triple::hexagon || Triple.isOSzOS()))
CmdArgs.push_back("-fshort-enums");
RenderCharacterOptions(Args, AuxTriple ? *AuxTriple : RawTriple, CmdArgs);
// -fuse-cxa-atexit is default.
if (!Args.hasFlag(
options::OPT_fuse_cxa_atexit, options::OPT_fno_use_cxa_atexit,
!RawTriple.isOSAIX() && !RawTriple.isOSWindows() &&
TC.getArch() != llvm::Triple::xcore &&
((RawTriple.getVendor() != llvm::Triple::MipsTechnologies) ||
RawTriple.hasEnvironment())) ||
KernelOrKext)
CmdArgs.push_back("-fno-use-cxa-atexit");
if (Args.hasFlag(options::OPT_fregister_global_dtors_with_atexit,
options::OPT_fno_register_global_dtors_with_atexit,
RawTriple.isOSDarwin() && !KernelOrKext))
CmdArgs.push_back("-fregister-global-dtors-with-atexit");
// -fno-use-line-directives is default.
if (Args.hasFlag(options::OPT_fuse_line_directives,
options::OPT_fno_use_line_directives, false))
CmdArgs.push_back("-fuse-line-directives");
// -fms-extensions=0 is default.
if (Args.hasFlag(options::OPT_fms_extensions, options::OPT_fno_ms_extensions,
IsWindowsMSVC))
CmdArgs.push_back("-fms-extensions");
// -fms-compatibility=0 is default.
bool IsMSVCCompat = Args.hasFlag(
options::OPT_fms_compatibility, options::OPT_fno_ms_compatibility,
(IsWindowsMSVC && Args.hasFlag(options::OPT_fms_extensions,
options::OPT_fno_ms_extensions, true)));
if (IsMSVCCompat)
CmdArgs.push_back("-fms-compatibility");
// Handle -fgcc-version, if present.
VersionTuple GNUCVer;
if (Arg *A = Args.getLastArg(options::OPT_fgnuc_version_EQ)) {
// Check that the version has 1 to 3 components and the minor and patch
// versions fit in two decimal digits.
StringRef Val = A->getValue();
Val = Val.empty() ? "0" : Val; // Treat "" as 0 or disable.
bool Invalid = GNUCVer.tryParse(Val);
unsigned Minor = GNUCVer.getMinor().getValueOr(0);
unsigned Patch = GNUCVer.getSubminor().getValueOr(0);
if (Invalid || GNUCVer.getBuild() || Minor >= 100 || Patch >= 100) {
D.Diag(diag::err_drv_invalid_value)
<< A->getAsString(Args) << A->getValue();
}
} else if (!IsMSVCCompat) {
// Imitate GCC 4.2.1 by default if -fms-compatibility is not in effect.
GNUCVer = VersionTuple(4, 2, 1);
}
if (!GNUCVer.empty()) {
CmdArgs.push_back(
Args.MakeArgString("-fgnuc-version=" + GNUCVer.getAsString()));
}
VersionTuple MSVT = TC.computeMSVCVersion(&D, Args);
if (!MSVT.empty())
CmdArgs.push_back(
Args.MakeArgString("-fms-compatibility-version=" + MSVT.getAsString()));
bool IsMSVC2015Compatible = MSVT.getMajor() >= 19;
if (ImplyVCPPCVer) {
StringRef LanguageStandard;
if (const Arg *StdArg = Args.getLastArg(options::OPT__SLASH_std)) {
Std = StdArg;
LanguageStandard = llvm::StringSwitch<StringRef>(StdArg->getValue())
.Case("c11", "-std=c11")
.Case("c17", "-std=c17")
.Default("");
if (LanguageStandard.empty())
D.Diag(clang::diag::warn_drv_unused_argument)
<< StdArg->getAsString(Args);
}
CmdArgs.push_back(LanguageStandard.data());
}
if (ImplyVCPPCXXVer) {
StringRef LanguageStandard;
if (const Arg *StdArg = Args.getLastArg(options::OPT__SLASH_std)) {
Std = StdArg;
LanguageStandard = llvm::StringSwitch<StringRef>(StdArg->getValue())
.Case("c++14", "-std=c++14")
.Case("c++17", "-std=c++17")
.Case("c++latest", "-std=c++20")
.Default("");
if (LanguageStandard.empty())
D.Diag(clang::diag::warn_drv_unused_argument)
<< StdArg->getAsString(Args);
}
if (LanguageStandard.empty()) {
if (IsMSVC2015Compatible)
LanguageStandard = "-std=c++14";
else
LanguageStandard = "-std=c++11";
}
CmdArgs.push_back(LanguageStandard.data());
}
// -fno-borland-extensions is default.
if (Args.hasFlag(options::OPT_fborland_extensions,
options::OPT_fno_borland_extensions, false))
CmdArgs.push_back("-fborland-extensions");
// -fno-declspec is default, except for PS4.
if (Args.hasFlag(options::OPT_fdeclspec, options::OPT_fno_declspec,
RawTriple.isPS4()))
CmdArgs.push_back("-fdeclspec");
else if (Args.hasArg(options::OPT_fno_declspec))
CmdArgs.push_back("-fno-declspec"); // Explicitly disabling __declspec.
// -fthreadsafe-static is default, except for MSVC compatibility versions less
// than 19.
if (!Args.hasFlag(options::OPT_fthreadsafe_statics,
options::OPT_fno_threadsafe_statics,
!IsWindowsMSVC || IsMSVC2015Compatible))
CmdArgs.push_back("-fno-threadsafe-statics");
// -fno-delayed-template-parsing is default, except when targeting MSVC.
// Many old Windows SDK versions require this to parse.
// FIXME: MSVC introduced /Zc:twoPhase- to disable this behavior in their
// compiler. We should be able to disable this by default at some point.
if (Args.hasFlag(options::OPT_fdelayed_template_parsing,
options::OPT_fno_delayed_template_parsing, IsWindowsMSVC))
CmdArgs.push_back("-fdelayed-template-parsing");
// -fgnu-keywords default varies depending on language; only pass if
// specified.
Args.AddLastArg(CmdArgs, options::OPT_fgnu_keywords,
options::OPT_fno_gnu_keywords);
if (Args.hasFlag(options::OPT_fgnu89_inline, options::OPT_fno_gnu89_inline,
false))
CmdArgs.push_back("-fgnu89-inline");
if (Args.hasArg(options::OPT_fno_inline))
CmdArgs.push_back("-fno-inline");
Args.AddLastArg(CmdArgs, options::OPT_finline_functions,
options::OPT_finline_hint_functions,
options::OPT_fno_inline_functions);
// FIXME: Find a better way to determine whether the language has modules
// support by default, or just assume that all languages do.
bool HaveModules =
Std && (Std->containsValue("c++2a") || Std->containsValue("c++20") ||
Std->containsValue("c++latest"));
RenderModulesOptions(C, D, Args, Input, Output, CmdArgs, HaveModules);
if (Args.hasFlag(options::OPT_fpch_validate_input_files_content,
options::OPT_fno_pch_validate_input_files_content, false))
CmdArgs.push_back("-fvalidate-ast-input-files-content");
if (Args.hasFlag(options::OPT_fpch_instantiate_templates,
options::OPT_fno_pch_instantiate_templates, false))
CmdArgs.push_back("-fpch-instantiate-templates");
if (Args.hasFlag(options::OPT_fpch_codegen, options::OPT_fno_pch_codegen,
false))
CmdArgs.push_back("-fmodules-codegen");
if (Args.hasFlag(options::OPT_fpch_debuginfo, options::OPT_fno_pch_debuginfo,
false))
CmdArgs.push_back("-fmodules-debuginfo");
Args.AddLastArg(CmdArgs, options::OPT_flegacy_pass_manager,
options::OPT_fno_legacy_pass_manager);
ObjCRuntime Runtime = AddObjCRuntimeArgs(Args, Inputs, CmdArgs, rewriteKind);
RenderObjCOptions(TC, D, RawTriple, Args, Runtime, rewriteKind != RK_None,
Input, CmdArgs);
if (types::isObjC(Input.getType()) &&
Args.hasFlag(options::OPT_fobjc_encode_cxx_class_template_spec,
options::OPT_fno_objc_encode_cxx_class_template_spec,
!Runtime.isNeXTFamily()))
CmdArgs.push_back("-fobjc-encode-cxx-class-template-spec");
if (Args.hasFlag(options::OPT_fapplication_extension,
options::OPT_fno_application_extension, false))
CmdArgs.push_back("-fapplication-extension");
// Handle GCC-style exception args.
bool EH = false;
if (!C.getDriver().IsCLMode())
EH = addExceptionArgs(Args, InputType, TC, KernelOrKext, Runtime, CmdArgs);
// Handle exception personalities
Arg *A = Args.getLastArg(
options::OPT_fsjlj_exceptions, options::OPT_fseh_exceptions,
options::OPT_fdwarf_exceptions, options::OPT_fwasm_exceptions);
if (A) {
const Option &Opt = A->getOption();
if (Opt.matches(options::OPT_fsjlj_exceptions))
CmdArgs.push_back("-exception-model=sjlj");
if (Opt.matches(options::OPT_fseh_exceptions))
CmdArgs.push_back("-exception-model=seh");
if (Opt.matches(options::OPT_fdwarf_exceptions))
CmdArgs.push_back("-exception-model=dwarf");
if (Opt.matches(options::OPT_fwasm_exceptions))
CmdArgs.push_back("-exception-model=wasm");
} else {
switch (TC.GetExceptionModel(Args)) {
default:
break;
case llvm::ExceptionHandling::DwarfCFI:
CmdArgs.push_back("-exception-model=dwarf");
break;
case llvm::ExceptionHandling::SjLj:
CmdArgs.push_back("-exception-model=sjlj");
break;
case llvm::ExceptionHandling::WinEH:
CmdArgs.push_back("-exception-model=seh");
break;
}
}
// C++ "sane" operator new.
if (!Args.hasFlag(options::OPT_fassume_sane_operator_new,
options::OPT_fno_assume_sane_operator_new))
CmdArgs.push_back("-fno-assume-sane-operator-new");
// -frelaxed-template-template-args is off by default, as it is a severe
// breaking change until a corresponding change to template partial ordering
// is provided.
if (Args.hasFlag(options::OPT_frelaxed_template_template_args,
options::OPT_fno_relaxed_template_template_args, false))
CmdArgs.push_back("-frelaxed-template-template-args");
// -fsized-deallocation is off by default, as it is an ABI-breaking change for
// most platforms.
if (Args.hasFlag(options::OPT_fsized_deallocation,
options::OPT_fno_sized_deallocation, false))
CmdArgs.push_back("-fsized-deallocation");
// -faligned-allocation is on by default in C++17 onwards and otherwise off
// by default.
if (Arg *A = Args.getLastArg(options::OPT_faligned_allocation,
options::OPT_fno_aligned_allocation,
options::OPT_faligned_new_EQ)) {
if (A->getOption().matches(options::OPT_fno_aligned_allocation))
CmdArgs.push_back("-fno-aligned-allocation");
else
CmdArgs.push_back("-faligned-allocation");
}
// The default new alignment can be specified using a dedicated option or via
// a GCC-compatible option that also turns on aligned allocation.
if (Arg *A = Args.getLastArg(options::OPT_fnew_alignment_EQ,
options::OPT_faligned_new_EQ))
CmdArgs.push_back(
Args.MakeArgString(Twine("-fnew-alignment=") + A->getValue()));
// -fconstant-cfstrings is default, and may be subject to argument translation
// on Darwin.
if (!Args.hasFlag(options::OPT_fconstant_cfstrings,
options::OPT_fno_constant_cfstrings) ||
!Args.hasFlag(options::OPT_mconstant_cfstrings,
options::OPT_mno_constant_cfstrings))
CmdArgs.push_back("-fno-constant-cfstrings");
// -fno-pascal-strings is default, only pass non-default.
if (Args.hasFlag(options::OPT_fpascal_strings,
options::OPT_fno_pascal_strings, false))
CmdArgs.push_back("-fpascal-strings");
// Honor -fpack-struct= and -fpack-struct, if given. Note that
// -fno-pack-struct doesn't apply to -fpack-struct=.
if (Arg *A = Args.getLastArg(options::OPT_fpack_struct_EQ)) {
std::string PackStructStr = "-fpack-struct=";
PackStructStr += A->getValue();
CmdArgs.push_back(Args.MakeArgString(PackStructStr));
} else if (Args.hasFlag(options::OPT_fpack_struct,
options::OPT_fno_pack_struct, false)) {
CmdArgs.push_back("-fpack-struct=1");
}
// Handle -fmax-type-align=N and -fno-type-align
bool SkipMaxTypeAlign = Args.hasArg(options::OPT_fno_max_type_align);
if (Arg *A = Args.getLastArg(options::OPT_fmax_type_align_EQ)) {
if (!SkipMaxTypeAlign) {
std::string MaxTypeAlignStr = "-fmax-type-align=";
MaxTypeAlignStr += A->getValue();
CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
}
} else if (RawTriple.isOSDarwin()) {
if (!SkipMaxTypeAlign) {
std::string MaxTypeAlignStr = "-fmax-type-align=16";
CmdArgs.push_back(Args.MakeArgString(MaxTypeAlignStr));
}
}
if (!Args.hasFlag(options::OPT_Qy, options::OPT_Qn, true))
CmdArgs.push_back("-Qn");
// -fno-common is the default, set -fcommon only when that flag is set.
if (Args.hasFlag(options::OPT_fcommon, options::OPT_fno_common, false))
CmdArgs.push_back("-fcommon");
// -fsigned-bitfields is default, and clang doesn't yet support
// -funsigned-bitfields.
if (!Args.hasFlag(options::OPT_fsigned_bitfields,
options::OPT_funsigned_bitfields))
D.Diag(diag::warn_drv_clang_unsupported)
<< Args.getLastArg(options::OPT_funsigned_bitfields)->getAsString(Args);
// -fsigned-bitfields is default, and clang doesn't support -fno-for-scope.
if (!Args.hasFlag(options::OPT_ffor_scope, options::OPT_fno_for_scope))
D.Diag(diag::err_drv_clang_unsupported)
<< Args.getLastArg(options::OPT_fno_for_scope)->getAsString(Args);
// -finput_charset=UTF-8 is default. Reject others
if (Arg *inputCharset = Args.getLastArg(options::OPT_finput_charset_EQ)) {
StringRef value = inputCharset->getValue();
if (!value.equals_lower("utf-8"))
D.Diag(diag::err_drv_invalid_value) << inputCharset->getAsString(Args)
<< value;
}
// -fexec_charset=UTF-8 is default. Reject others
if (Arg *execCharset = Args.getLastArg(options::OPT_fexec_charset_EQ)) {
StringRef value = execCharset->getValue();
if (!value.equals_lower("utf-8"))
D.Diag(diag::err_drv_invalid_value) << execCharset->getAsString(Args)
<< value;
}
RenderDiagnosticsOptions(D, Args, CmdArgs);
// -fno-asm-blocks is default.
if (Args.hasFlag(options::OPT_fasm_blocks, options::OPT_fno_asm_blocks,
false))
CmdArgs.push_back("-fasm-blocks");
// -fgnu-inline-asm is default.
if (!Args.hasFlag(options::OPT_fgnu_inline_asm,
options::OPT_fno_gnu_inline_asm, true))
CmdArgs.push_back("-fno-gnu-inline-asm");
// Enable vectorization per default according to the optimization level
// selected. For optimization levels that want vectorization we use the alias
// option to simplify the hasFlag logic.
bool EnableVec = shouldEnableVectorizerAtOLevel(Args, false);
OptSpecifier VectorizeAliasOption =
EnableVec ? options::OPT_O_Group : options::OPT_fvectorize;
if (Args.hasFlag(options::OPT_fvectorize, VectorizeAliasOption,
options::OPT_fno_vectorize, EnableVec))
CmdArgs.push_back("-vectorize-loops");
// -fslp-vectorize is enabled based on the optimization level selected.
bool EnableSLPVec = shouldEnableVectorizerAtOLevel(Args, true);
OptSpecifier SLPVectAliasOption =
EnableSLPVec ? options::OPT_O_Group : options::OPT_fslp_vectorize;
if (Args.hasFlag(options::OPT_fslp_vectorize, SLPVectAliasOption,
options::OPT_fno_slp_vectorize, EnableSLPVec))
CmdArgs.push_back("-vectorize-slp");
ParseMPreferVectorWidth(D, Args, CmdArgs);
Args.AddLastArg(CmdArgs, options::OPT_fshow_overloads_EQ);
Args.AddLastArg(CmdArgs,
options::OPT_fsanitize_undefined_strip_path_components_EQ);
// -fdollars-in-identifiers default varies depending on platform and
// language; only pass if specified.
if (Arg *A = Args.getLastArg(options::OPT_fdollars_in_identifiers,
options::OPT_fno_dollars_in_identifiers)) {
if (A->getOption().matches(options::OPT_fdollars_in_identifiers))
CmdArgs.push_back("-fdollars-in-identifiers");
else
CmdArgs.push_back("-fno-dollars-in-identifiers");
}
// -funit-at-a-time is default, and we don't support -fno-unit-at-a-time for
// practical purposes.
if (Arg *A = Args.getLastArg(options::OPT_funit_at_a_time,
options::OPT_fno_unit_at_a_time)) {
if (A->getOption().matches(options::OPT_fno_unit_at_a_time))
D.Diag(diag::warn_drv_clang_unsupported) << A->getAsString(Args);
}
if (Args.hasFlag(options::OPT_fapple_pragma_pack,
options::OPT_fno_apple_pragma_pack, false))
CmdArgs.push_back("-fapple-pragma-pack");
if (Args.hasFlag(options::OPT_fxl_pragma_pack,
options::OPT_fno_xl_pragma_pack, RawTriple.isOSAIX()))
CmdArgs.push_back("-fxl-pragma-pack");
// Remarks can be enabled with any of the `-f.*optimization-record.*` flags.
if (willEmitRemarks(Args) && checkRemarksOptions(D, Args, Triple))
renderRemarksOptions(Args, CmdArgs, Triple, Input, Output, JA);
bool RewriteImports = Args.hasFlag(options::OPT_frewrite_imports,
options::OPT_fno_rewrite_imports, false);
if (RewriteImports)
CmdArgs.push_back("-frewrite-imports");
// Enable rewrite includes if the user's asked for it or if we're generating
// diagnostics.
// TODO: Once -module-dependency-dir works with -frewrite-includes it'd be
// nice to enable this when doing a crashdump for modules as well.
if (Args.hasFlag(options::OPT_frewrite_includes,
options::OPT_fno_rewrite_includes, false) ||
(C.isForDiagnostics() && !HaveModules))
CmdArgs.push_back("-frewrite-includes");
// Only allow -traditional or -traditional-cpp outside in preprocessing modes.
if (Arg *A = Args.getLastArg(options::OPT_traditional,
options::OPT_traditional_cpp)) {
if (isa<PreprocessJobAction>(JA))
CmdArgs.push_back("-traditional-cpp");
else
D.Diag(diag::err_drv_clang_unsupported) << A->getAsString(Args);
}
Args.AddLastArg(CmdArgs, options::OPT_dM);
Args.AddLastArg(CmdArgs, options::OPT_dD);
Args.AddLastArg(CmdArgs, options::OPT_fmax_tokens_EQ);
// Handle serialized diagnostics.
if (Arg *A = Args.getLastArg(options::OPT__serialize_diags)) {
CmdArgs.push_back("-serialize-diagnostic-file");
CmdArgs.push_back(Args.MakeArgString(A->getValue()));
}
if (Args.hasArg(options::OPT_fretain_comments_from_system_headers))
CmdArgs.push_back("-fretain-comments-from-system-headers");
// Forward -fcomment-block-commands to -cc1.
Args.AddAllArgs(CmdArgs, options::OPT_fcomment_block_commands);
// Forward -fparse-all-comments to -cc1.
Args.AddAllArgs(CmdArgs, options::OPT_fparse_all_comments);
// Turn -fplugin=name.so into -load name.so
for (const Arg *A : Args.filtered(options::OPT_fplugin_EQ)) {
CmdArgs.push_back("-load");
CmdArgs.push_back(A->getValue());
A->claim();
}
// Forward -fpass-plugin=name.so to -cc1.
for (const Arg *A : Args.filtered(options::OPT_fpass_plugin_EQ)) {
CmdArgs.push_back(
Args.MakeArgString(Twine("-fpass-plugin=") + A->getValue()));
A->claim();
}
// Setup statistics file output.
SmallString<128> StatsFile = getStatsFileName(Args, Output, Input, D);
if (!StatsFile.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-stats-file=") + StatsFile));
// Forward -Xclang arguments to -cc1, and -mllvm arguments to the LLVM option
// parser.
// -finclude-default-header flag is for preprocessor,
// do not pass it to other cc1 commands when save-temps is enabled
if (C.getDriver().isSaveTempsEnabled() &&
!isa<PreprocessJobAction>(JA)) {
for (auto Arg : Args.filtered(options::OPT_Xclang)) {
Arg->claim();
if (StringRef(Arg->getValue()) != "-finclude-default-header")
CmdArgs.push_back(Arg->getValue());
}
}
else {
Args.AddAllArgValues(CmdArgs, options::OPT_Xclang);
}
for (const Arg *A : Args.filtered(options::OPT_mllvm)) {
A->claim();
// We translate this by hand to the -cc1 argument, since nightly test uses
// it and developers have been trained to spell it with -mllvm. Both
// spellings are now deprecated and should be removed.
if (StringRef(A->getValue(0)) == "-disable-llvm-optzns") {
CmdArgs.push_back("-disable-llvm-optzns");
} else {
A->render(Args, CmdArgs);
}
}
// With -save-temps, we want to save the unoptimized bitcode output from the
// CompileJobAction, use -disable-llvm-passes to get pristine IR generated
// by the frontend.
// When -fembed-bitcode is enabled, optimized bitcode is emitted because it
// has slightly different breakdown between stages.
// FIXME: -fembed-bitcode -save-temps will save optimized bitcode instead of
// pristine IR generated by the frontend. Ideally, a new compile action should
// be added so both IR can be captured.
if ((C.getDriver().isSaveTempsEnabled() ||
JA.isHostOffloading(Action::OFK_OpenMP)) &&
!(C.getDriver().embedBitcodeInObject() && !C.getDriver().isUsingLTO()) &&
isa<CompileJobAction>(JA))
CmdArgs.push_back("-disable-llvm-passes");
Args.AddAllArgs(CmdArgs, options::OPT_undef);
const char *Exec = D.getClangProgramPath();
// Optionally embed the -cc1 level arguments into the debug info or a
// section, for build analysis.
// Also record command line arguments into the debug info if
// -grecord-gcc-switches options is set on.
// By default, -gno-record-gcc-switches is set on and no recording.
auto GRecordSwitches =
Args.hasFlag(options::OPT_grecord_command_line,
options::OPT_gno_record_command_line, false);
auto FRecordSwitches =
Args.hasFlag(options::OPT_frecord_command_line,
options::OPT_fno_record_command_line, false);
if (FRecordSwitches && !Triple.isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Args.getLastArg(options::OPT_frecord_command_line)->getAsString(Args)
<< TripleStr;
if (TC.UseDwarfDebugFlags() || GRecordSwitches || FRecordSwitches) {
ArgStringList OriginalArgs;
for (const auto &Arg : Args)
Arg->render(Args, OriginalArgs);
SmallString<256> Flags;
EscapeSpacesAndBackslashes(Exec, Flags);
for (const char *OriginalArg : OriginalArgs) {
SmallString<128> EscapedArg;
EscapeSpacesAndBackslashes(OriginalArg, EscapedArg);
Flags += " ";
Flags += EscapedArg;
}
auto FlagsArgString = Args.MakeArgString(Flags);
if (TC.UseDwarfDebugFlags() || GRecordSwitches) {
CmdArgs.push_back("-dwarf-debug-flags");
CmdArgs.push_back(FlagsArgString);
}
if (FRecordSwitches) {
CmdArgs.push_back("-record-command-line");
CmdArgs.push_back(FlagsArgString);
}
}
// Host-side cuda compilation receives all device-side outputs in a single
// fatbin as Inputs[1]. Include the binary with -fcuda-include-gpubinary.
if ((IsCuda || IsHIP) && CudaDeviceInput) {
CmdArgs.push_back("-fcuda-include-gpubinary");
CmdArgs.push_back(CudaDeviceInput->getFilename());
if (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
CmdArgs.push_back("-fgpu-rdc");
}
if (IsCuda) {
if (Args.hasFlag(options::OPT_fcuda_short_ptr,
options::OPT_fno_cuda_short_ptr, false))
CmdArgs.push_back("-fcuda-short-ptr");
}
if (IsCuda || IsHIP) {
// Determine the original source input.
const Action *SourceAction = &JA;
while (SourceAction->getKind() != Action::InputClass) {
assert(!SourceAction->getInputs().empty() && "unexpected root action!");
SourceAction = SourceAction->getInputs()[0];
}
auto CUID = cast<InputAction>(SourceAction)->getId();
if (!CUID.empty())
CmdArgs.push_back(Args.MakeArgString(Twine("-cuid=") + Twine(CUID)));
}
if (IsHIP)
CmdArgs.push_back("-fcuda-allow-variadic-functions");
// OpenMP offloading device jobs take the argument -fopenmp-host-ir-file-path
// to specify the result of the compile phase on the host, so the meaningful
// device declarations can be identified. Also, -fopenmp-is-device is passed
// along to tell the frontend that it is generating code for a device, so that
// only the relevant declarations are emitted.
if (IsOpenMPDevice) {
CmdArgs.push_back("-fopenmp-is-device");
if (OpenMPDeviceInput) {
CmdArgs.push_back("-fopenmp-host-ir-file-path");
CmdArgs.push_back(Args.MakeArgString(OpenMPDeviceInput->getFilename()));
}
}
if (Triple.isAMDGPU()) {
handleAMDGPUCodeObjectVersionOptions(D, Args, CmdArgs);
if (Args.hasFlag(options::OPT_munsafe_fp_atomics,
options::OPT_mno_unsafe_fp_atomics, /*Default=*/false))
CmdArgs.push_back("-munsafe-fp-atomics");
}
// For all the host OpenMP offloading compile jobs we need to pass the targets
// information using -fopenmp-targets= option.
if (JA.isHostOffloading(Action::OFK_OpenMP)) {
SmallString<128> TargetInfo("-fopenmp-targets=");
Arg *Tgts = Args.getLastArg(options::OPT_fopenmp_targets_EQ);
assert(Tgts && Tgts->getNumValues() &&
"OpenMP offloading has to have targets specified.");
for (unsigned i = 0; i < Tgts->getNumValues(); ++i) {
if (i)
TargetInfo += ',';
// We need to get the string from the triple because it may be not exactly
// the same as the one we get directly from the arguments.
llvm::Triple T(Tgts->getValue(i));
TargetInfo += T.getTriple();
}
CmdArgs.push_back(Args.MakeArgString(TargetInfo.str()));
}
bool VirtualFunctionElimination =
Args.hasFlag(options::OPT_fvirtual_function_elimination,
options::OPT_fno_virtual_function_elimination, false);
if (VirtualFunctionElimination) {
// VFE requires full LTO (currently, this might be relaxed to allow ThinLTO
// in the future).
if (D.getLTOMode() != LTOK_Full)
D.Diag(diag::err_drv_argument_only_allowed_with)
<< "-fvirtual-function-elimination"
<< "-flto=full";
CmdArgs.push_back("-fvirtual-function-elimination");
}
// VFE requires whole-program-vtables, and enables it by default.
bool WholeProgramVTables = Args.hasFlag(
options::OPT_fwhole_program_vtables,
options::OPT_fno_whole_program_vtables, VirtualFunctionElimination);
if (VirtualFunctionElimination && !WholeProgramVTables) {
D.Diag(diag::err_drv_argument_not_allowed_with)
<< "-fno-whole-program-vtables"
<< "-fvirtual-function-elimination";
}
if (WholeProgramVTables) {
if (!D.isUsingLTO())
D.Diag(diag::err_drv_argument_only_allowed_with)
<< "-fwhole-program-vtables"
<< "-flto";
CmdArgs.push_back("-fwhole-program-vtables");
}
bool DefaultsSplitLTOUnit =
(WholeProgramVTables || Sanitize.needsLTO()) &&
(D.getLTOMode() == LTOK_Full || TC.canSplitThinLTOUnit());
bool SplitLTOUnit =
Args.hasFlag(options::OPT_fsplit_lto_unit,
options::OPT_fno_split_lto_unit, DefaultsSplitLTOUnit);
if (Sanitize.needsLTO() && !SplitLTOUnit)
D.Diag(diag::err_drv_argument_not_allowed_with) << "-fno-split-lto-unit"
<< "-fsanitize=cfi";
if (SplitLTOUnit)
CmdArgs.push_back("-fsplit-lto-unit");
if (Arg *A = Args.getLastArg(options::OPT_fglobal_isel,
options::OPT_fno_global_isel)) {
CmdArgs.push_back("-mllvm");
if (A->getOption().matches(options::OPT_fglobal_isel)) {
CmdArgs.push_back("-global-isel=1");
// GISel is on by default on AArch64 -O0, so don't bother adding
// the fallback remarks for it. Other combinations will add a warning of
// some kind.
bool IsArchSupported = Triple.getArch() == llvm::Triple::aarch64;
bool IsOptLevelSupported = false;
Arg *A = Args.getLastArg(options::OPT_O_Group);
if (Triple.getArch() == llvm::Triple::aarch64) {
if (!A || A->getOption().matches(options::OPT_O0))
IsOptLevelSupported = true;
}
if (!IsArchSupported || !IsOptLevelSupported) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-global-isel-abort=2");
if (!IsArchSupported)
D.Diag(diag::warn_drv_global_isel_incomplete) << Triple.getArchName();
else
D.Diag(diag::warn_drv_global_isel_incomplete_opt);
}
} else {
CmdArgs.push_back("-global-isel=0");
}
}
if (Args.hasArg(options::OPT_forder_file_instrumentation)) {
CmdArgs.push_back("-forder-file-instrumentation");
// Enable order file instrumentation when ThinLTO is not on. When ThinLTO is
// on, we need to pass these flags as linker flags and that will be handled
// outside of the compiler.
if (!D.isUsingLTO()) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-enable-order-file-instrumentation");
}
}
if (Arg *A = Args.getLastArg(options::OPT_fforce_enable_int128,
options::OPT_fno_force_enable_int128)) {
if (A->getOption().matches(options::OPT_fforce_enable_int128))
CmdArgs.push_back("-fforce-enable-int128");
}
if (Args.hasFlag(options::OPT_fkeep_static_consts,
options::OPT_fno_keep_static_consts, false))
CmdArgs.push_back("-fkeep-static-consts");
if (Args.hasFlag(options::OPT_fcomplete_member_pointers,
options::OPT_fno_complete_member_pointers, false))
CmdArgs.push_back("-fcomplete-member-pointers");
if (!Args.hasFlag(options::OPT_fcxx_static_destructors,
options::OPT_fno_cxx_static_destructors, true))
CmdArgs.push_back("-fno-c++-static-destructors");
addMachineOutlinerArgs(D, Args, CmdArgs, Triple, /*IsLTO=*/false);
if (Arg *A = Args.getLastArg(options::OPT_moutline_atomics,
options::OPT_mno_outline_atomics)) {
if (A->getOption().matches(options::OPT_moutline_atomics)) {
// Option -moutline-atomics supported for AArch64 target only.
if (!Triple.isAArch64()) {
D.Diag(diag::warn_drv_moutline_atomics_unsupported_opt)
<< Triple.getArchName();
} else {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+outline-atomics");
}
} else {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("-outline-atomics");
}
} else if (Triple.isAArch64() &&
getToolChain().IsAArch64OutlineAtomicsDefault(Args)) {
CmdArgs.push_back("-target-feature");
CmdArgs.push_back("+outline-atomics");
}
if (Args.hasFlag(options::OPT_faddrsig, options::OPT_fno_addrsig,
(TC.getTriple().isOSBinFormatELF() ||
TC.getTriple().isOSBinFormatCOFF()) &&
!TC.getTriple().isPS4() && !TC.getTriple().isVE() &&
!TC.getTriple().isOSNetBSD() &&
!Distro(D.getVFS(), TC.getTriple()).IsGentoo() &&
!TC.getTriple().isAndroid() && TC.useIntegratedAs()))
CmdArgs.push_back("-faddrsig");
if ((Triple.isOSBinFormatELF() || Triple.isOSBinFormatMachO()) &&
(EH || UnwindTables || DebugInfoKind != codegenoptions::NoDebugInfo))
CmdArgs.push_back("-D__GCC_HAVE_DWARF2_CFI_ASM=1");
if (Arg *A = Args.getLastArg(options::OPT_fsymbol_partition_EQ)) {
std::string Str = A->getAsString(Args);
if (!TC.getTriple().isOSBinFormatELF())
D.Diag(diag::err_drv_unsupported_opt_for_target)
<< Str << TC.getTripleString();
CmdArgs.push_back(Args.MakeArgString(Str));
}
// Add the "-o out -x type src.c" flags last. This is done primarily to make
// the -cc1 command easier to edit when reproducing compiler crashes.
if (Output.getType() == types::TY_Dependencies) {
// Handled with other dependency code.
} else if (Output.isFilename()) {
if (Output.getType() == clang::driver::types::TY_IFS_CPP ||
Output.getType() == clang::driver::types::TY_IFS) {
SmallString<128> OutputFilename(Output.getFilename());
llvm::sys::path::replace_extension(OutputFilename, "ifs");
CmdArgs.push_back("-o");
CmdArgs.push_back(Args.MakeArgString(OutputFilename));
} else {
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
}
} else {
assert(Output.isNothing() && "Invalid output.");
}
addDashXForInput(Args, Input, CmdArgs);
ArrayRef<InputInfo> FrontendInputs = Input;
if (IsHeaderModulePrecompile)
FrontendInputs = ModuleHeaderInputs;
else if (Input.isNothing())
FrontendInputs = {};
for (const InputInfo &Input : FrontendInputs) {
if (Input.isFilename())
CmdArgs.push_back(Input.getFilename());
else
Input.getInputArg().renderAsInput(Args, CmdArgs);
}
if (D.CC1Main && !D.CCGenDiagnostics) {
// Invoke the CC1 directly in this process
C.addCommand(std::make_unique<CC1Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
} else {
C.addCommand(std::make_unique<Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
}
// Make the compile command echo its inputs for /showFilenames.
if (Output.getType() == types::TY_Object &&
Args.hasFlag(options::OPT__SLASH_showFilenames,
options::OPT__SLASH_showFilenames_, false)) {
C.getJobs().getJobs().back()->PrintInputFilenames = true;
}
if (Arg *A = Args.getLastArg(options::OPT_pg))
if (FPKeepKind == CodeGenOptions::FramePointerKind::None &&
!Args.hasArg(options::OPT_mfentry))
D.Diag(diag::err_drv_argument_not_allowed_with) << "-fomit-frame-pointer"
<< A->getAsString(Args);
// Claim some arguments which clang supports automatically.
// -fpch-preprocess is used with gcc to add a special marker in the output to
// include the PCH file.
Args.ClaimAllArgs(options::OPT_fpch_preprocess);
// Claim some arguments which clang doesn't support, but we don't
// care to warn the user about.
Args.ClaimAllArgs(options::OPT_clang_ignored_f_Group);
Args.ClaimAllArgs(options::OPT_clang_ignored_m_Group);
// Disable warnings for clang -E -emit-llvm foo.c
Args.ClaimAllArgs(options::OPT_emit_llvm);
}
Clang::Clang(const ToolChain &TC)
// CAUTION! The first constructor argument ("clang") is not arbitrary,
// as it is for other tools. Some operations on a Tool actually test
// whether that tool is Clang based on the Tool's Name as a string.
: Tool("clang", "clang frontend", TC) {}
Clang::~Clang() {}
/// Add options related to the Objective-C runtime/ABI.
///
/// Returns true if the runtime is non-fragile.
ObjCRuntime Clang::AddObjCRuntimeArgs(const ArgList &args,
const InputInfoList &inputs,
ArgStringList &cmdArgs,
RewriteKind rewriteKind) const {
// Look for the controlling runtime option.
Arg *runtimeArg =
args.getLastArg(options::OPT_fnext_runtime, options::OPT_fgnu_runtime,
options::OPT_fobjc_runtime_EQ);
// Just forward -fobjc-runtime= to the frontend. This supercedes
// options about fragility.
if (runtimeArg &&
runtimeArg->getOption().matches(options::OPT_fobjc_runtime_EQ)) {
ObjCRuntime runtime;
StringRef value = runtimeArg->getValue();
if (runtime.tryParse(value)) {
getToolChain().getDriver().Diag(diag::err_drv_unknown_objc_runtime)
<< value;
}
if ((runtime.getKind() == ObjCRuntime::GNUstep) &&
(runtime.getVersion() >= VersionTuple(2, 0)))
if (!getToolChain().getTriple().isOSBinFormatELF() &&
!getToolChain().getTriple().isOSBinFormatCOFF()) {
getToolChain().getDriver().Diag(
diag::err_drv_gnustep_objc_runtime_incompatible_binary)
<< runtime.getVersion().getMajor();
}
runtimeArg->render(args, cmdArgs);
return runtime;
}
// Otherwise, we'll need the ABI "version". Version numbers are
// slightly confusing for historical reasons:
// 1 - Traditional "fragile" ABI
// 2 - Non-fragile ABI, version 1
// 3 - Non-fragile ABI, version 2
unsigned objcABIVersion = 1;
// If -fobjc-abi-version= is present, use that to set the version.
if (Arg *abiArg = args.getLastArg(options::OPT_fobjc_abi_version_EQ)) {
StringRef value = abiArg->getValue();
if (value == "1")
objcABIVersion = 1;
else if (value == "2")
objcABIVersion = 2;
else if (value == "3")
objcABIVersion = 3;
else
getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported) << value;
} else {
// Otherwise, determine if we are using the non-fragile ABI.
bool nonFragileABIIsDefault =
(rewriteKind == RK_NonFragile ||
(rewriteKind == RK_None &&
getToolChain().IsObjCNonFragileABIDefault()));
if (args.hasFlag(options::OPT_fobjc_nonfragile_abi,
options::OPT_fno_objc_nonfragile_abi,
nonFragileABIIsDefault)) {
// Determine the non-fragile ABI version to use.
#ifdef DISABLE_DEFAULT_NONFRAGILEABI_TWO
unsigned nonFragileABIVersion = 1;
#else
unsigned nonFragileABIVersion = 2;
#endif
if (Arg *abiArg =
args.getLastArg(options::OPT_fobjc_nonfragile_abi_version_EQ)) {
StringRef value = abiArg->getValue();
if (value == "1")
nonFragileABIVersion = 1;
else if (value == "2")
nonFragileABIVersion = 2;
else
getToolChain().getDriver().Diag(diag::err_drv_clang_unsupported)
<< value;
}
objcABIVersion = 1 + nonFragileABIVersion;
} else {
objcABIVersion = 1;
}
}
// We don't actually care about the ABI version other than whether
// it's non-fragile.
bool isNonFragile = objcABIVersion != 1;
// If we have no runtime argument, ask the toolchain for its default runtime.
// However, the rewriter only really supports the Mac runtime, so assume that.
ObjCRuntime runtime;
if (!runtimeArg) {
switch (rewriteKind) {
case RK_None:
runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
break;
case RK_Fragile:
runtime = ObjCRuntime(ObjCRuntime::FragileMacOSX, VersionTuple());
break;
case RK_NonFragile:
runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
break;
}
// -fnext-runtime
} else if (runtimeArg->getOption().matches(options::OPT_fnext_runtime)) {
// On Darwin, make this use the default behavior for the toolchain.
if (getToolChain().getTriple().isOSDarwin()) {
runtime = getToolChain().getDefaultObjCRuntime(isNonFragile);
// Otherwise, build for a generic macosx port.
} else {
runtime = ObjCRuntime(ObjCRuntime::MacOSX, VersionTuple());
}
// -fgnu-runtime
} else {
assert(runtimeArg->getOption().matches(options::OPT_fgnu_runtime));
// Legacy behaviour is to target the gnustep runtime if we are in
// non-fragile mode or the GCC runtime in fragile mode.
if (isNonFragile)
runtime = ObjCRuntime(ObjCRuntime::GNUstep, VersionTuple(2, 0));
else
runtime = ObjCRuntime(ObjCRuntime::GCC, VersionTuple());
}
if (llvm::any_of(inputs, [](const InputInfo &input) {
return types::isObjC(input.getType());
}))
cmdArgs.push_back(
args.MakeArgString("-fobjc-runtime=" + runtime.getAsString()));
return runtime;
}
static bool maybeConsumeDash(const std::string &EH, size_t &I) {
bool HaveDash = (I + 1 < EH.size() && EH[I + 1] == '-');
I += HaveDash;
return !HaveDash;
}
namespace {
struct EHFlags {
bool Synch = false;
bool Asynch = false;
bool NoUnwindC = false;
};
} // end anonymous namespace
/// /EH controls whether to run destructor cleanups when exceptions are
/// thrown. There are three modifiers:
/// - s: Cleanup after "synchronous" exceptions, aka C++ exceptions.
/// - a: Cleanup after "asynchronous" exceptions, aka structured exceptions.
/// The 'a' modifier is unimplemented and fundamentally hard in LLVM IR.
/// - c: Assume that extern "C" functions are implicitly nounwind.
/// The default is /EHs-c-, meaning cleanups are disabled.
static EHFlags parseClangCLEHFlags(const Driver &D, const ArgList &Args) {
EHFlags EH;
std::vector<std::string> EHArgs =
Args.getAllArgValues(options::OPT__SLASH_EH);
for (auto EHVal : EHArgs) {
for (size_t I = 0, E = EHVal.size(); I != E; ++I) {
switch (EHVal[I]) {
case 'a':
EH.Asynch = maybeConsumeDash(EHVal, I);
if (EH.Asynch)
EH.Synch = false;
continue;
case 'c':
EH.NoUnwindC = maybeConsumeDash(EHVal, I);
continue;
case 's':
EH.Synch = maybeConsumeDash(EHVal, I);
if (EH.Synch)
EH.Asynch = false;
continue;
default:
break;
}
D.Diag(clang::diag::err_drv_invalid_value) << "/EH" << EHVal;
break;
}
}
// The /GX, /GX- flags are only processed if there are not /EH flags.
// The default is that /GX is not specified.
if (EHArgs.empty() &&
Args.hasFlag(options::OPT__SLASH_GX, options::OPT__SLASH_GX_,
/*Default=*/false)) {
EH.Synch = true;
EH.NoUnwindC = true;
}
return EH;
}
void Clang::AddClangCLArgs(const ArgList &Args, types::ID InputType,
ArgStringList &CmdArgs,
codegenoptions::DebugInfoKind *DebugInfoKind,
bool *EmitCodeView) const {
unsigned RTOptionID = options::OPT__SLASH_MT;
bool isNVPTX = getToolChain().getTriple().isNVPTX();
if (Args.hasArg(options::OPT__SLASH_LDd))
// The /LDd option implies /MTd. The dependent lib part can be overridden,
// but defining _DEBUG is sticky.
RTOptionID = options::OPT__SLASH_MTd;
if (Arg *A = Args.getLastArg(options::OPT__SLASH_M_Group))
RTOptionID = A->getOption().getID();
StringRef FlagForCRT;
switch (RTOptionID) {
case options::OPT__SLASH_MD:
if (Args.hasArg(options::OPT__SLASH_LDd))
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-D_DLL");
FlagForCRT = "--dependent-lib=msvcrt";
break;
case options::OPT__SLASH_MDd:
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-D_DLL");
FlagForCRT = "--dependent-lib=msvcrtd";
break;
case options::OPT__SLASH_MT:
if (Args.hasArg(options::OPT__SLASH_LDd))
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-flto-visibility-public-std");
FlagForCRT = "--dependent-lib=libcmt";
break;
case options::OPT__SLASH_MTd:
CmdArgs.push_back("-D_DEBUG");
CmdArgs.push_back("-D_MT");
CmdArgs.push_back("-flto-visibility-public-std");
FlagForCRT = "--dependent-lib=libcmtd";
break;
default:
llvm_unreachable("Unexpected option ID.");
}
if (Args.hasArg(options::OPT__SLASH_Zl)) {
CmdArgs.push_back("-D_VC_NODEFAULTLIB");
} else {
CmdArgs.push_back(FlagForCRT.data());
// This provides POSIX compatibility (maps 'open' to '_open'), which most
// users want. The /Za flag to cl.exe turns this off, but it's not
// implemented in clang.
CmdArgs.push_back("--dependent-lib=oldnames");
}
if (Arg *ShowIncludes =
Args.getLastArg(options::OPT__SLASH_showIncludes,
options::OPT__SLASH_showIncludes_user)) {
CmdArgs.push_back("--show-includes");
if (ShowIncludes->getOption().matches(options::OPT__SLASH_showIncludes))
CmdArgs.push_back("-sys-header-deps");
}
// This controls whether or not we emit RTTI data for polymorphic types.
if (Args.hasFlag(options::OPT__SLASH_GR_, options::OPT__SLASH_GR,
/*Default=*/false))
CmdArgs.push_back("-fno-rtti-data");
// This controls whether or not we emit stack-protector instrumentation.
// In MSVC, Buffer Security Check (/GS) is on by default.
if (!isNVPTX && Args.hasFlag(options::OPT__SLASH_GS, options::OPT__SLASH_GS_,
/*Default=*/true)) {
CmdArgs.push_back("-stack-protector");
CmdArgs.push_back(Args.MakeArgString(Twine(LangOptions::SSPStrong)));
}
// Emit CodeView if -Z7 or -gline-tables-only are present.
if (Arg *DebugInfoArg = Args.getLastArg(options::OPT__SLASH_Z7,
options::OPT_gline_tables_only)) {
*EmitCodeView = true;
if (DebugInfoArg->getOption().matches(options::OPT__SLASH_Z7))
*DebugInfoKind = codegenoptions::LimitedDebugInfo;
else
*DebugInfoKind = codegenoptions::DebugLineTablesOnly;
} else {
*EmitCodeView = false;
}
const Driver &D = getToolChain().getDriver();
EHFlags EH = parseClangCLEHFlags(D, Args);
if (!isNVPTX && (EH.Synch || EH.Asynch)) {
if (types::isCXX(InputType))
CmdArgs.push_back("-fcxx-exceptions");
CmdArgs.push_back("-fexceptions");
}
if (types::isCXX(InputType) && EH.Synch && EH.NoUnwindC)
CmdArgs.push_back("-fexternc-nounwind");
// /EP should expand to -E -P.
if (Args.hasArg(options::OPT__SLASH_EP)) {
CmdArgs.push_back("-E");
CmdArgs.push_back("-P");
}
unsigned VolatileOptionID;
if (getToolChain().getTriple().isX86())
VolatileOptionID = options::OPT__SLASH_volatile_ms;
else
VolatileOptionID = options::OPT__SLASH_volatile_iso;
if (Arg *A = Args.getLastArg(options::OPT__SLASH_volatile_Group))
VolatileOptionID = A->getOption().getID();
if (VolatileOptionID == options::OPT__SLASH_volatile_ms)
CmdArgs.push_back("-fms-volatile");
if (Args.hasFlag(options::OPT__SLASH_Zc_dllexportInlines_,
options::OPT__SLASH_Zc_dllexportInlines,
false)) {
CmdArgs.push_back("-fno-dllexport-inlines");
}
Arg *MostGeneralArg = Args.getLastArg(options::OPT__SLASH_vmg);
Arg *BestCaseArg = Args.getLastArg(options::OPT__SLASH_vmb);
if (MostGeneralArg && BestCaseArg)
D.Diag(clang::diag::err_drv_argument_not_allowed_with)
<< MostGeneralArg->getAsString(Args) << BestCaseArg->getAsString(Args);
if (MostGeneralArg) {
Arg *SingleArg = Args.getLastArg(options::OPT__SLASH_vms);
Arg *MultipleArg = Args.getLastArg(options::OPT__SLASH_vmm);
Arg *VirtualArg = Args.getLastArg(options::OPT__SLASH_vmv);
Arg *FirstConflict = SingleArg ? SingleArg : MultipleArg;
Arg *SecondConflict = VirtualArg ? VirtualArg : MultipleArg;
if (FirstConflict && SecondConflict && FirstConflict != SecondConflict)
D.Diag(clang::diag::err_drv_argument_not_allowed_with)
<< FirstConflict->getAsString(Args)
<< SecondConflict->getAsString(Args);
if (SingleArg)
CmdArgs.push_back("-fms-memptr-rep=single");
else if (MultipleArg)
CmdArgs.push_back("-fms-memptr-rep=multiple");
else
CmdArgs.push_back("-fms-memptr-rep=virtual");
}
// Parse the default calling convention options.
if (Arg *CCArg =
Args.getLastArg(options::OPT__SLASH_Gd, options::OPT__SLASH_Gr,
options::OPT__SLASH_Gz, options::OPT__SLASH_Gv,
options::OPT__SLASH_Gregcall)) {
unsigned DCCOptId = CCArg->getOption().getID();
const char *DCCFlag = nullptr;
bool ArchSupported = !isNVPTX;
llvm::Triple::ArchType Arch = getToolChain().getArch();
switch (DCCOptId) {
case options::OPT__SLASH_Gd:
DCCFlag = "-fdefault-calling-conv=cdecl";
break;
case options::OPT__SLASH_Gr:
ArchSupported = Arch == llvm::Triple::x86;
DCCFlag = "-fdefault-calling-conv=fastcall";
break;
case options::OPT__SLASH_Gz:
ArchSupported = Arch == llvm::Triple::x86;
DCCFlag = "-fdefault-calling-conv=stdcall";
break;
case options::OPT__SLASH_Gv:
ArchSupported = Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64;
DCCFlag = "-fdefault-calling-conv=vectorcall";
break;
case options::OPT__SLASH_Gregcall:
ArchSupported = Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64;
DCCFlag = "-fdefault-calling-conv=regcall";
break;
}
// MSVC doesn't warn if /Gr or /Gz is used on x64, so we don't either.
if (ArchSupported && DCCFlag)
CmdArgs.push_back(DCCFlag);
}
Args.AddLastArg(CmdArgs, options::OPT_vtordisp_mode_EQ);
if (!Args.hasArg(options::OPT_fdiagnostics_format_EQ)) {
CmdArgs.push_back("-fdiagnostics-format");
CmdArgs.push_back("msvc");
}
if (Arg *A = Args.getLastArg(options::OPT__SLASH_guard)) {
StringRef GuardArgs = A->getValue();
// The only valid options are "cf", "cf,nochecks", "cf-", "ehcont" and
// "ehcont-".
if (GuardArgs.equals_lower("cf")) {
// Emit CFG instrumentation and the table of address-taken functions.
CmdArgs.push_back("-cfguard");
} else if (GuardArgs.equals_lower("cf,nochecks")) {
// Emit only the table of address-taken functions.
CmdArgs.push_back("-cfguard-no-checks");
} else if (GuardArgs.equals_lower("ehcont")) {
// Emit EH continuation table.
CmdArgs.push_back("-ehcontguard");
} else if (GuardArgs.equals_lower("cf-") ||
GuardArgs.equals_lower("ehcont-")) {
// Do nothing, but we might want to emit a security warning in future.
} else {
D.Diag(diag::err_drv_invalid_value) << A->getSpelling() << GuardArgs;
}
}
}
const char *Clang::getBaseInputName(const ArgList &Args,
const InputInfo &Input) {
return Args.MakeArgString(llvm::sys::path::filename(Input.getBaseInput()));
}
const char *Clang::getBaseInputStem(const ArgList &Args,
const InputInfoList &Inputs) {
const char *Str = getBaseInputName(Args, Inputs[0]);
if (const char *End = strrchr(Str, '.'))
return Args.MakeArgString(std::string(Str, End));
return Str;
}
const char *Clang::getDependencyFileName(const ArgList &Args,
const InputInfoList &Inputs) {
// FIXME: Think about this more.
if (Arg *OutputOpt = Args.getLastArg(options::OPT_o)) {
SmallString<128> OutputFilename(OutputOpt->getValue());
llvm::sys::path::replace_extension(OutputFilename, llvm::Twine('d'));
return Args.MakeArgString(OutputFilename);
}
return Args.MakeArgString(Twine(getBaseInputStem(Args, Inputs)) + ".d");
}
// Begin ClangAs
void ClangAs::AddMIPSTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
StringRef CPUName;
StringRef ABIName;
const llvm::Triple &Triple = getToolChain().getTriple();
mips::getMipsCPUAndABI(Args, Triple, CPUName, ABIName);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
}
void ClangAs::AddX86TargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
addX86AlignBranchArgs(getToolChain().getDriver(), Args, CmdArgs,
/*IsLTO=*/false);
if (Arg *A = Args.getLastArg(options::OPT_masm_EQ)) {
StringRef Value = A->getValue();
if (Value == "intel" || Value == "att") {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back(Args.MakeArgString("-x86-asm-syntax=" + Value));
} else {
getToolChain().getDriver().Diag(diag::err_drv_unsupported_option_argument)
<< A->getOption().getName() << Value;
}
}
}
void ClangAs::AddRISCVTargetArgs(const ArgList &Args,
ArgStringList &CmdArgs) const {
const llvm::Triple &Triple = getToolChain().getTriple();
StringRef ABIName = riscv::getRISCVABI(Args, Triple);
CmdArgs.push_back("-target-abi");
CmdArgs.push_back(ABIName.data());
}
void ClangAs::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output, const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
ArgStringList CmdArgs;
assert(Inputs.size() == 1 && "Unexpected number of inputs.");
const InputInfo &Input = Inputs[0];
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
const std::string &TripleStr = Triple.getTriple();
const auto &D = getToolChain().getDriver();
// Don't warn about "clang -w -c foo.s"
Args.ClaimAllArgs(options::OPT_w);
// and "clang -emit-llvm -c foo.s"
Args.ClaimAllArgs(options::OPT_emit_llvm);
claimNoWarnArgs(Args);
// Invoke ourselves in -cc1as mode.
//
// FIXME: Implement custom jobs for internal actions.
CmdArgs.push_back("-cc1as");
// Add the "effective" target triple.
CmdArgs.push_back("-triple");
CmdArgs.push_back(Args.MakeArgString(TripleStr));
// Set the output mode, we currently only expect to be used as a real
// assembler.
CmdArgs.push_back("-filetype");
CmdArgs.push_back("obj");
// Set the main file name, so that debug info works even with
// -save-temps or preprocessed assembly.
CmdArgs.push_back("-main-file-name");
CmdArgs.push_back(Clang::getBaseInputName(Args, Input));
// Add the target cpu
std::string CPU = getCPUName(Args, Triple, /*FromAs*/ true);
if (!CPU.empty()) {
CmdArgs.push_back("-target-cpu");
CmdArgs.push_back(Args.MakeArgString(CPU));
}
// Add the target features
getTargetFeatures(D, Triple, Args, CmdArgs, true);
// Ignore explicit -force_cpusubtype_ALL option.
(void)Args.hasArg(options::OPT_force__cpusubtype__ALL);
// Pass along any -I options so we get proper .include search paths.
Args.AddAllArgs(CmdArgs, options::OPT_I_Group);
// Determine the original source input.
const Action *SourceAction = &JA;
while (SourceAction->getKind() != Action::InputClass) {
assert(!SourceAction->getInputs().empty() && "unexpected root action!");
SourceAction = SourceAction->getInputs()[0];
}
// Forward -g and handle debug info related flags, assuming we are dealing
// with an actual assembly file.
bool WantDebug = false;
Args.ClaimAllArgs(options::OPT_g_Group);
if (Arg *A = Args.getLastArg(options::OPT_g_Group))
WantDebug = !A->getOption().matches(options::OPT_g0) &&
!A->getOption().matches(options::OPT_ggdb0);
unsigned DwarfVersion = ParseDebugDefaultVersion(getToolChain(), Args);
if (const Arg *GDwarfN = getDwarfNArg(Args))
DwarfVersion = DwarfVersionNum(GDwarfN->getSpelling());
if (DwarfVersion == 0)
DwarfVersion = getToolChain().GetDefaultDwarfVersion();
codegenoptions::DebugInfoKind DebugInfoKind = codegenoptions::NoDebugInfo;
if (SourceAction->getType() == types::TY_Asm ||
SourceAction->getType() == types::TY_PP_Asm) {
// You might think that it would be ok to set DebugInfoKind outside of
// the guard for source type, however there is a test which asserts
// that some assembler invocation receives no -debug-info-kind,
// and it's not clear whether that test is just overly restrictive.
DebugInfoKind = (WantDebug ? codegenoptions::LimitedDebugInfo
: codegenoptions::NoDebugInfo);
// Add the -fdebug-compilation-dir flag if needed.
addDebugCompDirArg(Args, CmdArgs, C.getDriver().getVFS());
addDebugPrefixMapArg(getToolChain().getDriver(), Args, CmdArgs);
// Set the AT_producer to the clang version when using the integrated
// assembler on assembly source files.
CmdArgs.push_back("-dwarf-debug-producer");
CmdArgs.push_back(Args.MakeArgString(getClangFullVersion()));
// And pass along -I options
Args.AddAllArgs(CmdArgs, options::OPT_I);
}
RenderDebugEnablingArgs(Args, CmdArgs, DebugInfoKind, DwarfVersion,
llvm::DebuggerKind::Default);
renderDwarfFormat(D, Triple, Args, CmdArgs, DwarfVersion);
RenderDebugInfoCompressionArgs(Args, CmdArgs, D, getToolChain());
// Handle -fPIC et al -- the relocation-model affects the assembler
// for some targets.
llvm::Reloc::Model RelocationModel;
unsigned PICLevel;
bool IsPIE;
std::tie(RelocationModel, PICLevel, IsPIE) =
ParsePICArgs(getToolChain(), Args);
const char *RMName = RelocationModelName(RelocationModel);
if (RMName) {
CmdArgs.push_back("-mrelocation-model");
CmdArgs.push_back(RMName);
}
// Optionally embed the -cc1as level arguments into the debug info, for build
// analysis.
if (getToolChain().UseDwarfDebugFlags()) {
ArgStringList OriginalArgs;
for (const auto &Arg : Args)
Arg->render(Args, OriginalArgs);
SmallString<256> Flags;
const char *Exec = getToolChain().getDriver().getClangProgramPath();
EscapeSpacesAndBackslashes(Exec, Flags);
for (const char *OriginalArg : OriginalArgs) {
SmallString<128> EscapedArg;
EscapeSpacesAndBackslashes(OriginalArg, EscapedArg);
Flags += " ";
Flags += EscapedArg;
}
CmdArgs.push_back("-dwarf-debug-flags");
CmdArgs.push_back(Args.MakeArgString(Flags));
}
// FIXME: Add -static support, once we have it.
// Add target specific flags.
switch (getToolChain().getArch()) {
default:
break;
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
AddMIPSTargetArgs(Args, CmdArgs);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
AddX86TargetArgs(Args, CmdArgs);
break;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
// This isn't in AddARMTargetArgs because we want to do this for assembly
// only, not C/C++.
if (Args.hasFlag(options::OPT_mdefault_build_attributes,
options::OPT_mno_default_build_attributes, true)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-arm-add-build-attributes");
}
break;
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
if (Args.hasArg(options::OPT_mmark_bti_property)) {
CmdArgs.push_back("-mllvm");
CmdArgs.push_back("-aarch64-mark-bti-property");
}
break;
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
AddRISCVTargetArgs(Args, CmdArgs);
break;
}
// Consume all the warning flags. Usually this would be handled more
// gracefully by -cc1 (warning about unknown warning flags, etc) but -cc1as
// doesn't handle that so rather than warning about unused flags that are
// actually used, we'll lie by omission instead.
// FIXME: Stop lying and consume only the appropriate driver flags
Args.ClaimAllArgs(options::OPT_W_Group);
CollectArgsForIntegratedAssembler(C, Args, CmdArgs,
getToolChain().getDriver());
Args.AddAllArgs(CmdArgs, options::OPT_mllvm);
assert(Output.isFilename() && "Unexpected lipo output.");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
const llvm::Triple &T = getToolChain().getTriple();
Arg *A;
if (getDebugFissionKind(D, Args, A) == DwarfFissionKind::Split &&
T.isOSBinFormatELF()) {
CmdArgs.push_back("-split-dwarf-output");
CmdArgs.push_back(SplitDebugName(JA, Args, Input, Output));
}
if (Triple.isAMDGPU())
handleAMDGPUCodeObjectVersionOptions(D, Args, CmdArgs);
assert(Input.isFilename() && "Invalid input.");
CmdArgs.push_back(Input.getFilename());
const char *Exec = getToolChain().getDriver().getClangProgramPath();
if (D.CC1Main && !D.CCGenDiagnostics) {
// Invoke cc1as directly in this process.
C.addCommand(std::make_unique<CC1Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
} else {
C.addCommand(std::make_unique<Command>(JA, *this,
ResponseFileSupport::AtFileUTF8(),
Exec, CmdArgs, Inputs, Output));
}
}
// Begin OffloadBundler
void OffloadBundler::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const llvm::opt::ArgList &TCArgs,
const char *LinkingOutput) const {
// The version with only one output is expected to refer to a bundling job.
assert(isa<OffloadBundlingJobAction>(JA) && "Expecting bundling job!");
// The bundling command looks like this:
// clang-offload-bundler -type=bc
// -targets=host-triple,openmp-triple1,openmp-triple2
// -outputs=input_file
// -inputs=unbundle_file_host,unbundle_file_tgt1,unbundle_file_tgt2"
ArgStringList CmdArgs;
// Get the type.
CmdArgs.push_back(TCArgs.MakeArgString(
Twine("-type=") + types::getTypeTempSuffix(Output.getType())));
assert(JA.getInputs().size() == Inputs.size() &&
"Not have inputs for all dependence actions??");
// Get the targets.
SmallString<128> Triples;
Triples += "-targets=";
for (unsigned I = 0; I < Inputs.size(); ++I) {
if (I)
Triples += ',';
// Find ToolChain for this input.
Action::OffloadKind CurKind = Action::OFK_Host;
const ToolChain *CurTC = &getToolChain();
const Action *CurDep = JA.getInputs()[I];
if (const auto *OA = dyn_cast<OffloadAction>(CurDep)) {
CurTC = nullptr;
OA->doOnEachDependence([&](Action *A, const ToolChain *TC, const char *) {
assert(CurTC == nullptr && "Expected one dependence!");
CurKind = A->getOffloadingDeviceKind();
CurTC = TC;
});
}
Triples += Action::GetOffloadKindName(CurKind);
Triples += '-';
Triples += CurTC->getTriple().normalize();
if (CurKind == Action::OFK_HIP && CurDep->getOffloadingArch()) {
Triples += '-';
Triples += CurDep->getOffloadingArch();
}
}
CmdArgs.push_back(TCArgs.MakeArgString(Triples));
// Get bundled file command.
CmdArgs.push_back(
TCArgs.MakeArgString(Twine("-outputs=") + Output.getFilename()));
// Get unbundled files command.
SmallString<128> UB;
UB += "-inputs=";
for (unsigned I = 0; I < Inputs.size(); ++I) {
if (I)
UB += ',';
// Find ToolChain for this input.
const ToolChain *CurTC = &getToolChain();
if (const auto *OA = dyn_cast<OffloadAction>(JA.getInputs()[I])) {
CurTC = nullptr;
OA->doOnEachDependence([&](Action *, const ToolChain *TC, const char *) {
assert(CurTC == nullptr && "Expected one dependence!");
CurTC = TC;
});
}
UB += CurTC->getInputFilename(Inputs[I]);
}
CmdArgs.push_back(TCArgs.MakeArgString(UB));
// All the inputs are encoded as commands.
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
TCArgs.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, None, Output));
}
void OffloadBundler::ConstructJobMultipleOutputs(
Compilation &C, const JobAction &JA, const InputInfoList &Outputs,
const InputInfoList &Inputs, const llvm::opt::ArgList &TCArgs,
const char *LinkingOutput) const {
// The version with multiple outputs is expected to refer to a unbundling job.
auto &UA = cast<OffloadUnbundlingJobAction>(JA);
// The unbundling command looks like this:
// clang-offload-bundler -type=bc
// -targets=host-triple,openmp-triple1,openmp-triple2
// -inputs=input_file
// -outputs=unbundle_file_host,unbundle_file_tgt1,unbundle_file_tgt2"
// -unbundle
ArgStringList CmdArgs;
assert(Inputs.size() == 1 && "Expecting to unbundle a single file!");
InputInfo Input = Inputs.front();
// Get the type.
CmdArgs.push_back(TCArgs.MakeArgString(
Twine("-type=") + types::getTypeTempSuffix(Input.getType())));
// Get the targets.
SmallString<128> Triples;
Triples += "-targets=";
auto DepInfo = UA.getDependentActionsInfo();
for (unsigned I = 0; I < DepInfo.size(); ++I) {
if (I)
Triples += ',';
auto &Dep = DepInfo[I];
Triples += Action::GetOffloadKindName(Dep.DependentOffloadKind);
Triples += '-';
Triples += Dep.DependentToolChain->getTriple().normalize();
if (Dep.DependentOffloadKind == Action::OFK_HIP &&
!Dep.DependentBoundArch.empty()) {
Triples += '-';
Triples += Dep.DependentBoundArch;
}
}
CmdArgs.push_back(TCArgs.MakeArgString(Triples));
// Get bundled file command.
CmdArgs.push_back(
TCArgs.MakeArgString(Twine("-inputs=") + Input.getFilename()));
// Get unbundled files command.
SmallString<128> UB;
UB += "-outputs=";
for (unsigned I = 0; I < Outputs.size(); ++I) {
if (I)
UB += ',';
UB += DepInfo[I].DependentToolChain->getInputFilename(Outputs[I]);
}
CmdArgs.push_back(TCArgs.MakeArgString(UB));
CmdArgs.push_back("-unbundle");
CmdArgs.push_back("-allow-missing-bundles");
// All the inputs are encoded as commands.
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
TCArgs.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, None, Outputs));
}
void OffloadWrapper::ConstructJob(Compilation &C, const JobAction &JA,
const InputInfo &Output,
const InputInfoList &Inputs,
const ArgList &Args,
const char *LinkingOutput) const {
ArgStringList CmdArgs;
const llvm::Triple &Triple = getToolChain().getEffectiveTriple();
// Add the "effective" target triple.
CmdArgs.push_back("-target");
CmdArgs.push_back(Args.MakeArgString(Triple.getTriple()));
// Add the output file name.
assert(Output.isFilename() && "Invalid output.");
CmdArgs.push_back("-o");
CmdArgs.push_back(Output.getFilename());
// Add inputs.
for (const InputInfo &I : Inputs) {
assert(I.isFilename() && "Invalid input.");
CmdArgs.push_back(I.getFilename());
}
C.addCommand(std::make_unique<Command>(
JA, *this, ResponseFileSupport::None(),
Args.MakeArgString(getToolChain().GetProgramPath(getShortName())),
CmdArgs, Inputs, Output));
}