blob: 5021a5fcc8192e0dea9073bd8ac670642840a5a5 [file] [log] [blame]
//===-- Benchmark memory specific tools -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This file complements the `benchmark` header with memory specific tools and
// benchmarking facilities.
#ifndef LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#define LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H
#include "LibcBenchmark.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Alignment.h"
#include <cstdint>
#include <random>
namespace llvm {
namespace libc_benchmarks {
//--------------
// Configuration
//--------------
// Specifies a range of sizes to explore.
struct SizeRange {
uint32_t From = 0; // Inclusive
uint32_t To = 1024; // Inclusive
uint32_t Step = 1;
};
// An object to define how to test a memory function.
struct StudyConfiguration {
// The number of run for the study.
uint32_t Runs = 1;
// The size of the buffers (1 buffer for memset but 2 for memcpy or memcmp).
// When testing small sizes, it's important to keep the total allocated
// size under the size of the L1 cache (usually 16 or 32KiB). The framework
// will also use 2KiB of additional L1 memory to store the function
// parameters.
uint32_t BufferSize = 8192;
// The range of sizes to exercise.
SizeRange Size;
MaybeAlign AddressAlignment; // Unset : Use start of buffer which is at
// least cache line aligned)
// 1 : Use random address,
// >1 : Use random address aligned to value.
// The value to use for memset.
uint8_t MemsetValue = 0;
// The mismatch position for memcmp.
uint32_t MemcmpMismatchAt = 0; // 0 : Buffer compare equal,
// >0 : Buffer compare different at byte N-1.
};
//--------
// Results
//--------
// The time to run one iteration of the function under test for the specified
// Size.
struct Measurement {
uint32_t Size = 0;
Duration Runtime = {};
};
// The measurements for a specific function.
struct FunctionMeasurements {
std::string Name;
std::vector<Measurement> Measurements;
};
// The root object containing all the data (configuration and measurements).
struct Study {
HostState Host;
BenchmarkOptions Options;
StudyConfiguration Configuration;
SmallVector<FunctionMeasurements, 4> Functions;
};
// Provides an aligned, dynamically allocated buffer.
class AlignedBuffer {
char *const Buffer = nullptr;
size_t Size = 0;
public:
static constexpr size_t Alignment = 1024;
explicit AlignedBuffer(size_t Size)
: Buffer(static_cast<char *>(aligned_alloc(1024, Size))), Size(Size) {}
~AlignedBuffer() { free(Buffer); }
inline char *operator+(size_t Index) { return Buffer + Index; }
inline const char *operator+(size_t Index) const { return Buffer + Index; }
inline char &operator[](size_t Index) { return Buffer[Index]; }
inline const char &operator[](size_t Index) const { return Buffer[Index]; }
inline char *begin() { return Buffer; }
inline char *end() { return Buffer + Size; }
};
// Implements the ParameterProvider abstraction needed by the `benchmark`
// function. This implementation makes sure that all parameters will fit into
// `StorageSize` bytes. The total memory accessed during benchmark should be
// less than the data L1 cache, that is the storage for the ParameterProvider
// and the memory buffers.
template <typename Context, size_t StorageSize = 8 * 1024>
class SmallParameterProvider {
using ParameterType = typename Context::ParameterType;
ByteConstrainedArray<ParameterType, StorageSize> Parameters;
size_t LastIterations;
Context &Ctx;
public:
explicit SmallParameterProvider(Context &C) : Ctx(C) {}
SmallParameterProvider(const SmallParameterProvider &) = delete;
SmallParameterProvider &operator=(const SmallParameterProvider &) = delete;
// Useful to compute the histogram of the size parameter.
CircularArrayRef<ParameterType> getLastBatch() const {
return cycle(Parameters, LastIterations);
}
// Implements the interface needed by the `benchmark` function.
CircularArrayRef<ParameterType> generateBatch(size_t Iterations) {
LastIterations = Iterations;
Ctx.Randomize(Parameters);
return getLastBatch();
}
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints.
class OffsetDistribution {
std::uniform_int_distribution<uint32_t> Distribution;
uint32_t Factor;
public:
explicit OffsetDistribution(const StudyConfiguration &Conf);
template <class Generator> uint32_t operator()(Generator &G) {
return Distribution(G) * Factor;
}
};
// Helper to generate random buffer offsets that satisfy the configuration
// constraints. It is specifically designed to benchmark `memcmp` functions
// where we may want the Nth byte to differ.
class MismatchOffsetDistribution {
std::uniform_int_distribution<size_t> MismatchIndexSelector;
llvm::SmallVector<uint32_t, 16> MismatchIndices;
const uint32_t MismatchAt;
public:
explicit MismatchOffsetDistribution(const StudyConfiguration &Conf);
explicit operator bool() const { return !MismatchIndices.empty(); }
const llvm::SmallVectorImpl<uint32_t> &getMismatchIndices() const {
return MismatchIndices;
}
template <class Generator> uint32_t operator()(Generator &G, uint32_t Size) {
const uint32_t MismatchIndex = MismatchIndices[MismatchIndexSelector(G)];
// We need to position the offset so that a mismatch occurs at MismatchAt.
if (Size >= MismatchAt)
return MismatchIndex - MismatchAt;
// Size is too small to trigger the mismatch.
return MismatchIndex - Size - 1;
}
};
} // namespace libc_benchmarks
} // namespace llvm
#endif // LLVM_LIBC_UTILS_BENCHMARK_MEMORY_BENCHMARK_H