New ThreadPlanSingleThreadTimeout to resolve potential deadlock in single thread stepping (#90930)

This PR introduces a new `ThreadPlanSingleThreadTimeout` that will be
used to address potential deadlock during single-thread stepping.

While debugging a target with a non-trivial number of threads (around
5000 threads in one example target), we noticed that a simple step over
can take as long as 10 seconds. Enabling single-thread stepping mode
significantly reduces the stepping time to around 3 seconds. However,
this can introduce deadlock if we try to step over a method that depends
on other threads to release a lock.

To address this issue, we introduce a new
`ThreadPlanSingleThreadTimeout` that can be controlled by the
`target.process.thread.single-thread-plan-timeout` setting during
single-thread stepping mode. The concept involves counting the elapsed
time since the last internal stop to detect overall stepping progress.
Once a timeout occurs, we assume the target is not making progress due
to a potential deadlock, as mentioned above. We then send a new async
interrupt, resume all threads, and `ThreadPlanSingleThreadTimeout`
completes its task.

To support this design, the major changes made in this PR are:
1. `ThreadPlanSingleThreadTimeout` is popped during every internal stop
and reset (re-pushed) to the top of the stack (as a leaf node) during
resume. This is achieved by always returning `true` from
`ThreadPlanSingleThreadTimeout::DoPlanExplainsStop()` and
`ThreadPlanSingleThreadTimeout::MischiefManaged()`.
2. A new thread-specific async interrupt stop is introduced, which can
be detected/consumed by `ThreadPlanSingleThreadTimeout`.
3. The clearing of branch breakpoints in the range thread plan has been
moved from `DoPlanExplainsStop()` to `ShouldStop()`, as it is not
guaranteed that it will be called.

The detailed design is discussed in the RFC below:

[https://discourse.llvm.org/t/improve-single-thread-stepping/74599](https://discourse.llvm.org/t/improve-single-thread-stepping/74599)

---------

Co-authored-by: jeffreytan81 <jeffreytan@fb.com>
30 files changed
tree: 17e83bb61d8354b9502fa2e0935d7a9360bf7892
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.