| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "AArch64ErrataFix.h" |
| #include "ARMErrataFix.h" |
| #include "CallGraphSort.h" |
| #include "Config.h" |
| #include "InputFiles.h" |
| #include "LinkerScript.h" |
| #include "MapFile.h" |
| #include "OutputSections.h" |
| #include "Relocations.h" |
| #include "SymbolTable.h" |
| #include "Symbols.h" |
| #include "SyntheticSections.h" |
| #include "Target.h" |
| #include "lld/Common/Arrays.h" |
| #include "lld/Common/CommonLinkerContext.h" |
| #include "lld/Common/Filesystem.h" |
| #include "lld/Common/Strings.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/Support/BLAKE3.h" |
| #include "llvm/Support/Parallel.h" |
| #include "llvm/Support/RandomNumberGenerator.h" |
| #include "llvm/Support/TimeProfiler.h" |
| #include "llvm/Support/xxhash.h" |
| #include <climits> |
| |
| #define DEBUG_TYPE "lld" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support; |
| using namespace llvm::support::endian; |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| LLVM_ELF_IMPORT_TYPES_ELFT(ELFT) |
| |
| Writer() : buffer(errorHandler().outputBuffer) {} |
| |
| void run(); |
| |
| private: |
| void addSectionSymbols(); |
| void sortSections(); |
| void resolveShfLinkOrder(); |
| void finalizeAddressDependentContent(); |
| void optimizeBasicBlockJumps(); |
| void sortInputSections(); |
| void sortOrphanSections(); |
| void finalizeSections(); |
| void checkExecuteOnly(); |
| void setReservedSymbolSections(); |
| |
| SmallVector<PhdrEntry *, 0> createPhdrs(Partition &part); |
| void addPhdrForSection(Partition &part, unsigned shType, unsigned pType, |
| unsigned pFlags); |
| void assignFileOffsets(); |
| void assignFileOffsetsBinary(); |
| void setPhdrs(Partition &part); |
| void checkSections(); |
| void fixSectionAlignments(); |
| void openFile(); |
| void writeTrapInstr(); |
| void writeHeader(); |
| void writeSections(); |
| void writeSectionsBinary(); |
| void writeBuildId(); |
| |
| std::unique_ptr<FileOutputBuffer> &buffer; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSection &osec); |
| |
| uint64_t fileSize; |
| uint64_t sectionHeaderOff; |
| }; |
| } // anonymous namespace |
| |
| static bool needsInterpSection() { |
| return !config->relocatable && !config->shared && |
| !config->dynamicLinker.empty() && script->needsInterpSection(); |
| } |
| |
| template <class ELFT> void elf::writeResult() { |
| Writer<ELFT>().run(); |
| } |
| |
| static void removeEmptyPTLoad(SmallVector<PhdrEntry *, 0> &phdrs) { |
| auto it = std::stable_partition( |
| phdrs.begin(), phdrs.end(), [&](const PhdrEntry *p) { |
| if (p->p_type != PT_LOAD) |
| return true; |
| if (!p->firstSec) |
| return false; |
| uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr; |
| return size != 0; |
| }); |
| |
| // Clear OutputSection::ptLoad for sections contained in removed |
| // segments. |
| DenseSet<PhdrEntry *> removed(it, phdrs.end()); |
| for (OutputSection *sec : outputSections) |
| if (removed.count(sec->ptLoad)) |
| sec->ptLoad = nullptr; |
| phdrs.erase(it, phdrs.end()); |
| } |
| |
| void elf::copySectionsIntoPartitions() { |
| SmallVector<InputSectionBase *, 0> newSections; |
| const size_t ehSize = ctx.ehInputSections.size(); |
| for (unsigned part = 2; part != partitions.size() + 1; ++part) { |
| for (InputSectionBase *s : ctx.inputSections) { |
| if (!(s->flags & SHF_ALLOC) || !s->isLive() || s->type != SHT_NOTE) |
| continue; |
| auto *copy = make<InputSection>(cast<InputSection>(*s)); |
| copy->partition = part; |
| newSections.push_back(copy); |
| } |
| for (size_t i = 0; i != ehSize; ++i) { |
| assert(ctx.ehInputSections[i]->isLive()); |
| auto *copy = make<EhInputSection>(*ctx.ehInputSections[i]); |
| copy->partition = part; |
| ctx.ehInputSections.push_back(copy); |
| } |
| } |
| |
| ctx.inputSections.insert(ctx.inputSections.end(), newSections.begin(), |
| newSections.end()); |
| } |
| |
| static Defined *addOptionalRegular(StringRef name, SectionBase *sec, |
| uint64_t val, uint8_t stOther = STV_HIDDEN) { |
| Symbol *s = symtab.find(name); |
| if (!s || s->isDefined() || s->isCommon()) |
| return nullptr; |
| |
| s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, stOther, |
| STT_NOTYPE, val, |
| /*size=*/0, sec}); |
| s->isUsedInRegularObj = true; |
| return cast<Defined>(s); |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| void elf::addReservedSymbols() { |
| if (config->emachine == EM_MIPS) { |
| auto addAbsolute = [](StringRef name) { |
| Symbol *sym = |
| symtab.addSymbol(Defined{ctx.internalFile, name, STB_GLOBAL, |
| STV_HIDDEN, STT_NOTYPE, 0, 0, nullptr}); |
| sym->isUsedInRegularObj = true; |
| return cast<Defined>(sym); |
| }; |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which by default is relative |
| // to GOT. Default offset is 0x7ff0. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| ElfSym::mipsGp = addAbsolute("_gp"); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| if (symtab.find("_gp_disp")) |
| ElfSym::mipsGpDisp = addAbsolute("_gp_disp"); |
| |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| if (symtab.find("__gnu_local_gp")) |
| ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp"); |
| } else if (config->emachine == EM_PPC) { |
| // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't |
| // support Small Data Area, define it arbitrarily as 0. |
| addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN); |
| } else if (config->emachine == EM_PPC64) { |
| addPPC64SaveRestore(); |
| } |
| |
| // The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which |
| // combines the typical ELF GOT with the small data sections. It commonly |
| // includes .got .toc .sdata .sbss. The .TOC. symbol replaces both |
| // _GLOBAL_OFFSET_TABLE_ and _SDA_BASE_ from the 32-bit ABI. It is used to |
| // represent the TOC base which is offset by 0x8000 bytes from the start of |
| // the .got section. |
| // We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the |
| // correctness of some relocations depends on its value. |
| StringRef gotSymName = |
| (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_"; |
| |
| if (Symbol *s = symtab.find(gotSymName)) { |
| if (s->isDefined()) { |
| error(toString(s->file) + " cannot redefine linker defined symbol '" + |
| gotSymName + "'"); |
| return; |
| } |
| |
| uint64_t gotOff = 0; |
| if (config->emachine == EM_PPC64) |
| gotOff = 0x8000; |
| |
| s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, STV_HIDDEN, |
| STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader}); |
| ElfSym::globalOffsetTable = cast<Defined>(s); |
| } |
| |
| // __ehdr_start is the location of ELF file headers. Note that we define |
| // this symbol unconditionally even when using a linker script, which |
| // differs from the behavior implemented by GNU linker which only define |
| // this symbol if ELF headers are in the memory mapped segment. |
| addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // __executable_start is not documented, but the expectation of at |
| // least the Android libc is that it points to the ELF header. |
| addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // __dso_handle symbol is passed to cxa_finalize as a marker to identify |
| // each DSO. The address of the symbol doesn't matter as long as they are |
| // different in different DSOs, so we chose the start address of the DSO. |
| addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN); |
| |
| // If linker script do layout we do not need to create any standard symbols. |
| if (script->hasSectionsCommand) |
| return; |
| |
| auto add = [](StringRef s, int64_t pos) { |
| return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT); |
| }; |
| |
| ElfSym::bss = add("__bss_start", 0); |
| ElfSym::end1 = add("end", -1); |
| ElfSym::end2 = add("_end", -1); |
| ElfSym::etext1 = add("etext", -1); |
| ElfSym::etext2 = add("_etext", -1); |
| ElfSym::edata1 = add("edata", -1); |
| ElfSym::edata2 = add("_edata", -1); |
| } |
| |
| static void demoteDefined(Defined &sym, DenseMap<SectionBase *, size_t> &map) { |
| if (map.empty()) |
| for (auto [i, sec] : llvm::enumerate(sym.file->getSections())) |
| map.try_emplace(sec, i); |
| // Change WEAK to GLOBAL so that if a scanned relocation references sym, |
| // maybeReportUndefined will report an error. |
| uint8_t binding = sym.isWeak() ? uint8_t(STB_GLOBAL) : sym.binding; |
| Undefined(sym.file, sym.getName(), binding, sym.stOther, sym.type, |
| /*discardedSecIdx=*/map.lookup(sym.section)) |
| .overwrite(sym); |
| } |
| |
| // If all references to a DSO happen to be weak, the DSO is not added to |
| // DT_NEEDED. If that happens, replace ShardSymbol with Undefined to avoid |
| // dangling references to an unneeded DSO. Use a weak binding to avoid |
| // --no-allow-shlib-undefined diagnostics. Similarly, demote lazy symbols. |
| // |
| // In addition, demote symbols defined in discarded sections, so that |
| // references to /DISCARD/ discarded symbols will lead to errors. |
| static void demoteSymbolsAndComputeIsPreemptible() { |
| llvm::TimeTraceScope timeScope("Demote symbols"); |
| DenseMap<InputFile *, DenseMap<SectionBase *, size_t>> sectionIndexMap; |
| for (Symbol *sym : symtab.getSymbols()) { |
| if (auto *d = dyn_cast<Defined>(sym)) { |
| if (d->section && !d->section->isLive()) |
| demoteDefined(*d, sectionIndexMap[d->file]); |
| } else { |
| auto *s = dyn_cast<SharedSymbol>(sym); |
| if (sym->isLazy() || (s && !cast<SharedFile>(s->file)->isNeeded)) { |
| uint8_t binding = sym->isLazy() ? sym->binding : uint8_t(STB_WEAK); |
| Undefined(ctx.internalFile, sym->getName(), binding, sym->stOther, |
| sym->type) |
| .overwrite(*sym); |
| sym->versionId = VER_NDX_GLOBAL; |
| } |
| } |
| |
| if (config->hasDynSymTab) |
| sym->isPreemptible = computeIsPreemptible(*sym); |
| } |
| } |
| |
| bool elf::hasMemtag() { |
| return config->emachine == EM_AARCH64 && |
| config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE; |
| } |
| |
| // Fully static executables don't support MTE globals at this point in time, as |
| // we currently rely on: |
| // - A dynamic loader to process relocations, and |
| // - Dynamic entries. |
| // This restriction could be removed in future by re-using some of the ideas |
| // that ifuncs use in fully static executables. |
| bool elf::canHaveMemtagGlobals() { |
| return hasMemtag() && |
| (config->relocatable || config->shared || needsInterpSection()); |
| } |
| |
| static OutputSection *findSection(StringRef name, unsigned partition = 1) { |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| if (osd->osec.name == name && osd->osec.partition == partition) |
| return &osd->osec; |
| return nullptr; |
| } |
| |
| template <class ELFT> void elf::createSyntheticSections() { |
| // Initialize all pointers with NULL. This is needed because |
| // you can call lld::elf::main more than once as a library. |
| Out::tlsPhdr = nullptr; |
| Out::preinitArray = nullptr; |
| Out::initArray = nullptr; |
| Out::finiArray = nullptr; |
| |
| // Add the .interp section first because it is not a SyntheticSection. |
| // The removeUnusedSyntheticSections() function relies on the |
| // SyntheticSections coming last. |
| if (needsInterpSection()) { |
| for (size_t i = 1; i <= partitions.size(); ++i) { |
| InputSection *sec = createInterpSection(); |
| sec->partition = i; |
| ctx.inputSections.push_back(sec); |
| } |
| } |
| |
| auto add = [](SyntheticSection &sec) { ctx.inputSections.push_back(&sec); }; |
| |
| in.shStrTab = std::make_unique<StringTableSection>(".shstrtab", false); |
| |
| Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC); |
| Out::programHeaders->addralign = config->wordsize; |
| |
| if (config->strip != StripPolicy::All) { |
| in.strTab = std::make_unique<StringTableSection>(".strtab", false); |
| in.symTab = std::make_unique<SymbolTableSection<ELFT>>(*in.strTab); |
| in.symTabShndx = std::make_unique<SymtabShndxSection>(); |
| } |
| |
| in.bss = std::make_unique<BssSection>(".bss", 0, 1); |
| add(*in.bss); |
| |
| // If there is a SECTIONS command and a .data.rel.ro section name use name |
| // .data.rel.ro.bss so that we match in the .data.rel.ro output section. |
| // This makes sure our relro is contiguous. |
| bool hasDataRelRo = script->hasSectionsCommand && findSection(".data.rel.ro"); |
| in.bssRelRo = std::make_unique<BssSection>( |
| hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1); |
| add(*in.bssRelRo); |
| |
| // Add MIPS-specific sections. |
| if (config->emachine == EM_MIPS) { |
| if (!config->shared && config->hasDynSymTab) { |
| in.mipsRldMap = std::make_unique<MipsRldMapSection>(); |
| add(*in.mipsRldMap); |
| } |
| if ((in.mipsAbiFlags = MipsAbiFlagsSection<ELFT>::create())) |
| add(*in.mipsAbiFlags); |
| if ((in.mipsOptions = MipsOptionsSection<ELFT>::create())) |
| add(*in.mipsOptions); |
| if ((in.mipsReginfo = MipsReginfoSection<ELFT>::create())) |
| add(*in.mipsReginfo); |
| } |
| |
| StringRef relaDynName = config->isRela ? ".rela.dyn" : ".rel.dyn"; |
| |
| const unsigned threadCount = config->threadCount; |
| for (Partition &part : partitions) { |
| auto add = [&](SyntheticSection &sec) { |
| sec.partition = part.getNumber(); |
| ctx.inputSections.push_back(&sec); |
| }; |
| |
| if (!part.name.empty()) { |
| part.elfHeader = std::make_unique<PartitionElfHeaderSection<ELFT>>(); |
| part.elfHeader->name = part.name; |
| add(*part.elfHeader); |
| |
| part.programHeaders = |
| std::make_unique<PartitionProgramHeadersSection<ELFT>>(); |
| add(*part.programHeaders); |
| } |
| |
| if (config->buildId != BuildIdKind::None) { |
| part.buildId = std::make_unique<BuildIdSection>(); |
| add(*part.buildId); |
| } |
| |
| part.dynStrTab = std::make_unique<StringTableSection>(".dynstr", true); |
| part.dynSymTab = |
| std::make_unique<SymbolTableSection<ELFT>>(*part.dynStrTab); |
| part.dynamic = std::make_unique<DynamicSection<ELFT>>(); |
| |
| if (hasMemtag()) { |
| part.memtagAndroidNote = std::make_unique<MemtagAndroidNote>(); |
| add(*part.memtagAndroidNote); |
| if (canHaveMemtagGlobals()) { |
| part.memtagGlobalDescriptors = |
| std::make_unique<MemtagGlobalDescriptors>(); |
| add(*part.memtagGlobalDescriptors); |
| } |
| } |
| |
| if (config->androidPackDynRelocs) |
| part.relaDyn = std::make_unique<AndroidPackedRelocationSection<ELFT>>( |
| relaDynName, threadCount); |
| else |
| part.relaDyn = std::make_unique<RelocationSection<ELFT>>( |
| relaDynName, config->zCombreloc, threadCount); |
| |
| if (config->hasDynSymTab) { |
| add(*part.dynSymTab); |
| |
| part.verSym = std::make_unique<VersionTableSection>(); |
| add(*part.verSym); |
| |
| if (!namedVersionDefs().empty()) { |
| part.verDef = std::make_unique<VersionDefinitionSection>(); |
| add(*part.verDef); |
| } |
| |
| part.verNeed = std::make_unique<VersionNeedSection<ELFT>>(); |
| add(*part.verNeed); |
| |
| if (config->gnuHash) { |
| part.gnuHashTab = std::make_unique<GnuHashTableSection>(); |
| add(*part.gnuHashTab); |
| } |
| |
| if (config->sysvHash) { |
| part.hashTab = std::make_unique<HashTableSection>(); |
| add(*part.hashTab); |
| } |
| |
| add(*part.dynamic); |
| add(*part.dynStrTab); |
| add(*part.relaDyn); |
| } |
| |
| if (config->relrPackDynRelocs) { |
| part.relrDyn = std::make_unique<RelrSection<ELFT>>(threadCount); |
| add(*part.relrDyn); |
| } |
| |
| if (!config->relocatable) { |
| if (config->ehFrameHdr) { |
| part.ehFrameHdr = std::make_unique<EhFrameHeader>(); |
| add(*part.ehFrameHdr); |
| } |
| part.ehFrame = std::make_unique<EhFrameSection>(); |
| add(*part.ehFrame); |
| |
| if (config->emachine == EM_ARM) { |
| // This section replaces all the individual .ARM.exidx InputSections. |
| part.armExidx = std::make_unique<ARMExidxSyntheticSection>(); |
| add(*part.armExidx); |
| } |
| } |
| |
| if (!config->packageMetadata.empty()) { |
| part.packageMetadataNote = std::make_unique<PackageMetadataNote>(); |
| add(*part.packageMetadataNote); |
| } |
| } |
| |
| if (partitions.size() != 1) { |
| // Create the partition end marker. This needs to be in partition number 255 |
| // so that it is sorted after all other partitions. It also has other |
| // special handling (see createPhdrs() and combineEhSections()). |
| in.partEnd = |
| std::make_unique<BssSection>(".part.end", config->maxPageSize, 1); |
| in.partEnd->partition = 255; |
| add(*in.partEnd); |
| |
| in.partIndex = std::make_unique<PartitionIndexSection>(); |
| addOptionalRegular("__part_index_begin", in.partIndex.get(), 0); |
| addOptionalRegular("__part_index_end", in.partIndex.get(), |
| in.partIndex->getSize()); |
| add(*in.partIndex); |
| } |
| |
| // Add .got. MIPS' .got is so different from the other archs, |
| // it has its own class. |
| if (config->emachine == EM_MIPS) { |
| in.mipsGot = std::make_unique<MipsGotSection>(); |
| add(*in.mipsGot); |
| } else { |
| in.got = std::make_unique<GotSection>(); |
| add(*in.got); |
| } |
| |
| if (config->emachine == EM_PPC) { |
| in.ppc32Got2 = std::make_unique<PPC32Got2Section>(); |
| add(*in.ppc32Got2); |
| } |
| |
| if (config->emachine == EM_PPC64) { |
| in.ppc64LongBranchTarget = std::make_unique<PPC64LongBranchTargetSection>(); |
| add(*in.ppc64LongBranchTarget); |
| } |
| |
| in.gotPlt = std::make_unique<GotPltSection>(); |
| add(*in.gotPlt); |
| in.igotPlt = std::make_unique<IgotPltSection>(); |
| add(*in.igotPlt); |
| // Add .relro_padding if DATA_SEGMENT_RELRO_END is used; otherwise, add the |
| // section in the absence of PHDRS/SECTIONS commands. |
| if (config->zRelro && ((script->phdrsCommands.empty() && |
| !script->hasSectionsCommand) || script->seenRelroEnd)) { |
| in.relroPadding = std::make_unique<RelroPaddingSection>(); |
| add(*in.relroPadding); |
| } |
| |
| if (config->emachine == EM_ARM) { |
| in.armCmseSGSection = std::make_unique<ArmCmseSGSection>(); |
| add(*in.armCmseSGSection); |
| } |
| |
| // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat |
| // it as a relocation and ensure the referenced section is created. |
| if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) { |
| if (target->gotBaseSymInGotPlt) |
| in.gotPlt->hasGotPltOffRel = true; |
| else |
| in.got->hasGotOffRel = true; |
| } |
| |
| if (config->gdbIndex) |
| add(*GdbIndexSection::create<ELFT>()); |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even for static linking it can contain R_[*]_IRELATIVE relocations. |
| in.relaPlt = std::make_unique<RelocationSection<ELFT>>( |
| config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false, |
| /*threadCount=*/1); |
| add(*in.relaPlt); |
| |
| // The relaIplt immediately follows .rel[a].dyn to ensure that the IRelative |
| // relocations are processed last by the dynamic loader. We cannot place the |
| // iplt section in .rel.dyn when Android relocation packing is enabled because |
| // that would cause a section type mismatch. However, because the Android |
| // dynamic loader reads .rel.plt after .rel.dyn, we can get the desired |
| // behaviour by placing the iplt section in .rel.plt. |
| in.relaIplt = std::make_unique<RelocationSection<ELFT>>( |
| config->androidPackDynRelocs ? in.relaPlt->name : relaDynName, |
| /*sort=*/false, /*threadCount=*/1); |
| add(*in.relaIplt); |
| |
| if ((config->emachine == EM_386 || config->emachine == EM_X86_64) && |
| (config->andFeatures & GNU_PROPERTY_X86_FEATURE_1_IBT)) { |
| in.ibtPlt = std::make_unique<IBTPltSection>(); |
| add(*in.ibtPlt); |
| } |
| |
| if (config->emachine == EM_PPC) |
| in.plt = std::make_unique<PPC32GlinkSection>(); |
| else |
| in.plt = std::make_unique<PltSection>(); |
| add(*in.plt); |
| in.iplt = std::make_unique<IpltSection>(); |
| add(*in.iplt); |
| |
| if (config->andFeatures) |
| add(*make<GnuPropertySection>()); |
| |
| // .note.GNU-stack is always added when we are creating a re-linkable |
| // object file. Other linkers are using the presence of this marker |
| // section to control the executable-ness of the stack area, but that |
| // is irrelevant these days. Stack area should always be non-executable |
| // by default. So we emit this section unconditionally. |
| if (config->relocatable) |
| add(*make<GnuStackSection>()); |
| |
| if (in.symTab) |
| add(*in.symTab); |
| if (in.symTabShndx) |
| add(*in.symTabShndx); |
| add(*in.shStrTab); |
| if (in.strTab) |
| add(*in.strTab); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| // Now that we have a complete set of output sections. This function |
| // completes section contents. For example, we need to add strings |
| // to the string table, and add entries to .got and .plt. |
| // finalizeSections does that. |
| finalizeSections(); |
| checkExecuteOnly(); |
| |
| // If --compressed-debug-sections is specified, compress .debug_* sections. |
| // Do it right now because it changes the size of output sections. |
| for (OutputSection *sec : outputSections) |
| sec->maybeCompress<ELFT>(); |
| |
| if (script->hasSectionsCommand) |
| script->allocateHeaders(mainPart->phdrs); |
| |
| // Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a |
| // 0 sized region. This has to be done late since only after assignAddresses |
| // we know the size of the sections. |
| for (Partition &part : partitions) |
| removeEmptyPTLoad(part.phdrs); |
| |
| if (!config->oFormatBinary) |
| assignFileOffsets(); |
| else |
| assignFileOffsetsBinary(); |
| |
| for (Partition &part : partitions) |
| setPhdrs(part); |
| |
| // Handle --print-map(-M)/--Map and --cref. Dump them before checkSections() |
| // because the files may be useful in case checkSections() or openFile() |
| // fails, for example, due to an erroneous file size. |
| writeMapAndCref(); |
| |
| // Handle --print-memory-usage option. |
| if (config->printMemoryUsage) |
| script->printMemoryUsage(lld::outs()); |
| |
| if (config->checkSections) |
| checkSections(); |
| |
| // It does not make sense try to open the file if we have error already. |
| if (errorCount()) |
| return; |
| |
| { |
| llvm::TimeTraceScope timeScope("Write output file"); |
| // Write the result down to a file. |
| openFile(); |
| if (errorCount()) |
| return; |
| |
| if (!config->oFormatBinary) { |
| if (config->zSeparate != SeparateSegmentKind::None) |
| writeTrapInstr(); |
| writeHeader(); |
| writeSections(); |
| } else { |
| writeSectionsBinary(); |
| } |
| |
| // Backfill .note.gnu.build-id section content. This is done at last |
| // because the content is usually a hash value of the entire output file. |
| writeBuildId(); |
| if (errorCount()) |
| return; |
| |
| if (auto e = buffer->commit()) |
| fatal("failed to write output '" + buffer->getPath() + |
| "': " + toString(std::move(e))); |
| |
| if (!config->cmseOutputLib.empty()) |
| writeARMCmseImportLib<ELFT>(); |
| } |
| } |
| |
| template <class ELFT, class RelTy> |
| static void markUsedLocalSymbolsImpl(ObjFile<ELFT> *file, |
| llvm::ArrayRef<RelTy> rels) { |
| for (const RelTy &rel : rels) { |
| Symbol &sym = file->getRelocTargetSym(rel); |
| if (sym.isLocal()) |
| sym.used = true; |
| } |
| } |
| |
| // The function ensures that the "used" field of local symbols reflects the fact |
| // that the symbol is used in a relocation from a live section. |
| template <class ELFT> static void markUsedLocalSymbols() { |
| // With --gc-sections, the field is already filled. |
| // See MarkLive<ELFT>::resolveReloc(). |
| if (config->gcSections) |
| return; |
| for (ELFFileBase *file : ctx.objectFiles) { |
| ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file); |
| for (InputSectionBase *s : f->getSections()) { |
| InputSection *isec = dyn_cast_or_null<InputSection>(s); |
| if (!isec) |
| continue; |
| if (isec->type == SHT_REL) |
| markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rel>()); |
| else if (isec->type == SHT_RELA) |
| markUsedLocalSymbolsImpl(f, isec->getDataAs<typename ELFT::Rela>()); |
| } |
| } |
| } |
| |
| static bool shouldKeepInSymtab(const Defined &sym) { |
| if (sym.isSection()) |
| return false; |
| |
| // If --emit-reloc or -r is given, preserve symbols referenced by relocations |
| // from live sections. |
| if (sym.used && config->copyRelocs) |
| return true; |
| |
| // Exclude local symbols pointing to .ARM.exidx sections. |
| // They are probably mapping symbols "$d", which are optional for these |
| // sections. After merging the .ARM.exidx sections, some of these symbols |
| // may become dangling. The easiest way to avoid the issue is not to add |
| // them to the symbol table from the beginning. |
| if (config->emachine == EM_ARM && sym.section && |
| sym.section->type == SHT_ARM_EXIDX) |
| return false; |
| |
| if (config->discard == DiscardPolicy::None) |
| return true; |
| if (config->discard == DiscardPolicy::All) |
| return false; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (sym.getName().starts_with(".L") && |
| (config->discard == DiscardPolicy::Locals || |
| (sym.section && (sym.section->flags & SHF_MERGE)))) |
| return false; |
| return true; |
| } |
| |
| bool lld::elf::includeInSymtab(const Symbol &b) { |
| if (auto *d = dyn_cast<Defined>(&b)) { |
| // Always include absolute symbols. |
| SectionBase *sec = d->section; |
| if (!sec) |
| return true; |
| assert(sec->isLive()); |
| |
| if (auto *s = dyn_cast<MergeInputSection>(sec)) |
| return s->getSectionPiece(d->value).live; |
| return true; |
| } |
| return b.used || !config->gcSections; |
| } |
| |
| // Scan local symbols to: |
| // |
| // - demote symbols defined relative to /DISCARD/ discarded input sections so |
| // that relocations referencing them will lead to errors. |
| // - copy eligible symbols to .symTab |
| static void demoteAndCopyLocalSymbols() { |
| llvm::TimeTraceScope timeScope("Add local symbols"); |
| for (ELFFileBase *file : ctx.objectFiles) { |
| DenseMap<SectionBase *, size_t> sectionIndexMap; |
| for (Symbol *b : file->getLocalSymbols()) { |
| assert(b->isLocal() && "should have been caught in initializeSymbols()"); |
| auto *dr = dyn_cast<Defined>(b); |
| if (!dr) |
| continue; |
| |
| if (dr->section && !dr->section->isLive()) |
| demoteDefined(*dr, sectionIndexMap); |
| else if (in.symTab && includeInSymtab(*b) && shouldKeepInSymtab(*dr)) |
| in.symTab->addSymbol(b); |
| } |
| } |
| } |
| |
| // Create a section symbol for each output section so that we can represent |
| // relocations that point to the section. If we know that no relocation is |
| // referring to a section (that happens if the section is a synthetic one), we |
| // don't create a section symbol for that section. |
| template <class ELFT> void Writer<ELFT>::addSectionSymbols() { |
| for (SectionCommand *cmd : script->sectionCommands) { |
| auto *osd = dyn_cast<OutputDesc>(cmd); |
| if (!osd) |
| continue; |
| OutputSection &osec = osd->osec; |
| InputSectionBase *isec = nullptr; |
| // Iterate over all input sections and add a STT_SECTION symbol if any input |
| // section may be a relocation target. |
| for (SectionCommand *cmd : osec.commands) { |
| auto *isd = dyn_cast<InputSectionDescription>(cmd); |
| if (!isd) |
| continue; |
| for (InputSectionBase *s : isd->sections) { |
| // Relocations are not using REL[A] section symbols. |
| if (s->type == SHT_REL || s->type == SHT_RELA) |
| continue; |
| |
| // Unlike other synthetic sections, mergeable output sections contain |
| // data copied from input sections, and there may be a relocation |
| // pointing to its contents if -r or --emit-reloc is given. |
| if (isa<SyntheticSection>(s) && !(s->flags & SHF_MERGE)) |
| continue; |
| |
| isec = s; |
| break; |
| } |
| } |
| if (!isec) |
| continue; |
| |
| // Set the symbol to be relative to the output section so that its st_value |
| // equals the output section address. Note, there may be a gap between the |
| // start of the output section and isec. |
| in.symTab->addSymbol(makeDefined(isec->file, "", STB_LOCAL, /*stOther=*/0, |
| STT_SECTION, |
| /*value=*/0, /*size=*/0, &osec)); |
| } |
| } |
| |
| // Today's loaders have a feature to make segments read-only after |
| // processing dynamic relocations to enhance security. PT_GNU_RELRO |
| // is defined for that. |
| // |
| // This function returns true if a section needs to be put into a |
| // PT_GNU_RELRO segment. |
| static bool isRelroSection(const OutputSection *sec) { |
| if (!config->zRelro) |
| return false; |
| if (sec->relro) |
| return true; |
| |
| uint64_t flags = sec->flags; |
| |
| // Non-allocatable or non-writable sections don't need RELRO because |
| // they are not writable or not even mapped to memory in the first place. |
| // RELRO is for sections that are essentially read-only but need to |
| // be writable only at process startup to allow dynamic linker to |
| // apply relocations. |
| if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE)) |
| return false; |
| |
| // Once initialized, TLS data segments are used as data templates |
| // for a thread-local storage. For each new thread, runtime |
| // allocates memory for a TLS and copy templates there. No thread |
| // are supposed to use templates directly. Thus, it can be in RELRO. |
| if (flags & SHF_TLS) |
| return true; |
| |
| // .init_array, .preinit_array and .fini_array contain pointers to |
| // functions that are executed on process startup or exit. These |
| // pointers are set by the static linker, and they are not expected |
| // to change at runtime. But if you are an attacker, you could do |
| // interesting things by manipulating pointers in .fini_array, for |
| // example. So they are put into RELRO. |
| uint32_t type = sec->type; |
| if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY || |
| type == SHT_PREINIT_ARRAY) |
| return true; |
| |
| // .got contains pointers to external symbols. They are resolved by |
| // the dynamic linker when a module is loaded into memory, and after |
| // that they are not expected to change. So, it can be in RELRO. |
| if (in.got && sec == in.got->getParent()) |
| return true; |
| |
| // .toc is a GOT-ish section for PowerPC64. Their contents are accessed |
| // through r2 register, which is reserved for that purpose. Since r2 is used |
| // for accessing .got as well, .got and .toc need to be close enough in the |
| // virtual address space. Usually, .toc comes just after .got. Since we place |
| // .got into RELRO, .toc needs to be placed into RELRO too. |
| if (sec->name.equals(".toc")) |
| return true; |
| |
| // .got.plt contains pointers to external function symbols. They are |
| // by default resolved lazily, so we usually cannot put it into RELRO. |
| // However, if "-z now" is given, the lazy symbol resolution is |
| // disabled, which enables us to put it into RELRO. |
| if (sec == in.gotPlt->getParent()) |
| return config->zNow; |
| |
| if (in.relroPadding && sec == in.relroPadding->getParent()) |
| return true; |
| |
| // .dynamic section contains data for the dynamic linker, and |
| // there's no need to write to it at runtime, so it's better to put |
| // it into RELRO. |
| if (sec->name == ".dynamic") |
| return true; |
| |
| // Sections with some special names are put into RELRO. This is a |
| // bit unfortunate because section names shouldn't be significant in |
| // ELF in spirit. But in reality many linker features depend on |
| // magic section names. |
| StringRef s = sec->name; |
| return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" || |
| s == ".dtors" || s == ".jcr" || s == ".eh_frame" || |
| s == ".fini_array" || s == ".init_array" || |
| s == ".openbsd.randomdata" || s == ".preinit_array"; |
| } |
| |
| // We compute a rank for each section. The rank indicates where the |
| // section should be placed in the file. Instead of using simple |
| // numbers (0,1,2...), we use a series of flags. One for each decision |
| // point when placing the section. |
| // Using flags has two key properties: |
| // * It is easy to check if a give branch was taken. |
| // * It is easy two see how similar two ranks are (see getRankProximity). |
| enum RankFlags { |
| RF_NOT_ADDR_SET = 1 << 27, |
| RF_NOT_ALLOC = 1 << 26, |
| RF_PARTITION = 1 << 18, // Partition number (8 bits) |
| RF_NOT_SPECIAL = 1 << 17, |
| RF_WRITE = 1 << 16, |
| RF_EXEC_WRITE = 1 << 15, |
| RF_EXEC = 1 << 14, |
| RF_RODATA = 1 << 13, |
| RF_LARGE = 1 << 12, |
| RF_NOT_RELRO = 1 << 9, |
| RF_NOT_TLS = 1 << 8, |
| RF_BSS = 1 << 7, |
| }; |
| |
| static unsigned getSectionRank(OutputSection &osec) { |
| unsigned rank = osec.partition * RF_PARTITION; |
| |
| // We want to put section specified by -T option first, so we |
| // can start assigning VA starting from them later. |
| if (config->sectionStartMap.count(osec.name)) |
| return rank; |
| rank |= RF_NOT_ADDR_SET; |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| if (!(osec.flags & SHF_ALLOC)) |
| return rank | RF_NOT_ALLOC; |
| |
| if (osec.type == SHT_LLVM_PART_EHDR) |
| return rank; |
| if (osec.type == SHT_LLVM_PART_PHDR) |
| return rank | 1; |
| |
| // Put .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| if (osec.name == ".interp") |
| return rank | 2; |
| |
| // Put .note sections at the beginning so that they are likely to be included |
| // in a truncate core file. In particular, .note.gnu.build-id, if available, |
| // can identify the object file. |
| if (osec.type == SHT_NOTE) |
| return rank | 3; |
| |
| rank |= RF_NOT_SPECIAL; |
| |
| // Sort sections based on their access permission in the following |
| // order: R, RX, RXW, RW(RELRO), RW(non-RELRO). |
| // |
| // Read-only sections come first such that they go in the PT_LOAD covering the |
| // program headers at the start of the file. |
| // |
| // The layout for writable sections is PT_LOAD(PT_GNU_RELRO(.data.rel.ro |
| // .bss.rel.ro) | .data .bss), where | marks where page alignment happens. |
| // An alternative ordering is PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro |
| // .bss.rel.ro) | .bss), but it may waste more bytes due to 2 alignment |
| // places. |
| bool isExec = osec.flags & SHF_EXECINSTR; |
| bool isWrite = osec.flags & SHF_WRITE; |
| |
| if (!isWrite && !isExec) { |
| // Make PROGBITS sections (e.g .rodata .eh_frame) closer to .text to |
| // alleviate relocation overflow pressure. Large special sections such as |
| // .dynstr and .dynsym can be away from .text. |
| if (osec.type == SHT_PROGBITS) |
| rank |= RF_RODATA; |
| // Among PROGBITS sections, place .lrodata further from .text. |
| if (!(osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64)) |
| rank |= RF_LARGE; |
| } else if (isExec) { |
| rank |= isWrite ? RF_EXEC_WRITE : RF_EXEC; |
| } else { |
| rank |= RF_WRITE; |
| // The TLS initialization block needs to be a single contiguous block. Place |
| // TLS sections directly before the other RELRO sections. |
| if (!(osec.flags & SHF_TLS)) |
| rank |= RF_NOT_TLS; |
| if (isRelroSection(&osec)) |
| osec.relro = true; |
| else |
| rank |= RF_NOT_RELRO; |
| // Place .ldata and .lbss after .bss. Making .bss closer to .text alleviates |
| // relocation overflow pressure. |
| if (osec.flags & SHF_X86_64_LARGE && config->emachine == EM_X86_64) |
| rank |= RF_LARGE; |
| } |
| |
| // Within TLS sections, or within other RelRo sections, or within non-RelRo |
| // sections, place non-NOBITS sections first. |
| if (osec.type == SHT_NOBITS) |
| rank |= RF_BSS; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (config->emachine == EM_PPC64) { |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections |
| // that we would like to make sure appear is a specific order to maximize |
| // their coverage by a single signed 16-bit offset from the TOC base |
| // pointer. |
| StringRef name = osec.name; |
| if (name == ".got") |
| rank |= 1; |
| else if (name == ".toc") |
| rank |= 2; |
| } |
| |
| if (config->emachine == EM_MIPS) { |
| if (osec.name != ".got") |
| rank |= 1; |
| // All sections with SHF_MIPS_GPREL flag should be grouped together |
| // because data in these sections is addressable with a gp relative address. |
| if (osec.flags & SHF_MIPS_GPREL) |
| rank |= 2; |
| } |
| |
| if (config->emachine == EM_RISCV) { |
| // .sdata and .sbss are placed closer to make GP relaxation more profitable |
| // and match GNU ld. |
| StringRef name = osec.name; |
| if (name == ".sdata" || (osec.type == SHT_NOBITS && name != ".sbss")) |
| rank |= 1; |
| } |
| |
| return rank; |
| } |
| |
| static bool compareSections(const SectionCommand *aCmd, |
| const SectionCommand *bCmd) { |
| const OutputSection *a = &cast<OutputDesc>(aCmd)->osec; |
| const OutputSection *b = &cast<OutputDesc>(bCmd)->osec; |
| |
| if (a->sortRank != b->sortRank) |
| return a->sortRank < b->sortRank; |
| |
| if (!(a->sortRank & RF_NOT_ADDR_SET)) |
| return config->sectionStartMap.lookup(a->name) < |
| config->sectionStartMap.lookup(b->name); |
| return false; |
| } |
| |
| void PhdrEntry::add(OutputSection *sec) { |
| lastSec = sec; |
| if (!firstSec) |
| firstSec = sec; |
| p_align = std::max(p_align, sec->addralign); |
| if (p_type == PT_LOAD) |
| sec->ptLoad = this; |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (config->isPic) |
| return; |
| |
| // By default, __rela_iplt_{start,end} belong to a dummy section 0 |
| // because .rela.plt might be empty and thus removed from output. |
| // We'll override Out::elfHeader with In.relaIplt later when we are |
| // sure that .rela.plt exists in output. |
| ElfSym::relaIpltStart = addOptionalRegular( |
| config->isRela ? "__rela_iplt_start" : "__rel_iplt_start", |
| Out::elfHeader, 0, STV_HIDDEN); |
| |
| ElfSym::relaIpltEnd = addOptionalRegular( |
| config->isRela ? "__rela_iplt_end" : "__rel_iplt_end", |
| Out::elfHeader, 0, STV_HIDDEN); |
| } |
| |
| // This function generates assignments for predefined symbols (e.g. _end or |
| // _etext) and inserts them into the commands sequence to be processed at the |
| // appropriate time. This ensures that the value is going to be correct by the |
| // time any references to these symbols are processed and is equivalent to |
| // defining these symbols explicitly in the linker script. |
| template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() { |
| if (ElfSym::globalOffsetTable) { |
| // The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually |
| // to the start of the .got or .got.plt section. |
| InputSection *sec = in.gotPlt.get(); |
| if (!target->gotBaseSymInGotPlt) |
| sec = in.mipsGot ? cast<InputSection>(in.mipsGot.get()) |
| : cast<InputSection>(in.got.get()); |
| ElfSym::globalOffsetTable->section = sec; |
| } |
| |
| // .rela_iplt_{start,end} mark the start and the end of in.relaIplt. |
| if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) { |
| ElfSym::relaIpltStart->section = in.relaIplt.get(); |
| ElfSym::relaIpltEnd->section = in.relaIplt.get(); |
| ElfSym::relaIpltEnd->value = in.relaIplt->getSize(); |
| } |
| |
| PhdrEntry *last = nullptr; |
| PhdrEntry *lastRO = nullptr; |
| |
| for (Partition &part : partitions) { |
| for (PhdrEntry *p : part.phdrs) { |
| if (p->p_type != PT_LOAD) |
| continue; |
| last = p; |
| if (!(p->p_flags & PF_W)) |
| lastRO = p; |
| } |
| } |
| |
| if (lastRO) { |
| // _etext is the first location after the last read-only loadable segment. |
| if (ElfSym::etext1) |
| ElfSym::etext1->section = lastRO->lastSec; |
| if (ElfSym::etext2) |
| ElfSym::etext2->section = lastRO->lastSec; |
| } |
| |
| if (last) { |
| // _edata points to the end of the last mapped initialized section. |
| OutputSection *edata = nullptr; |
| for (OutputSection *os : outputSections) { |
| if (os->type != SHT_NOBITS) |
| edata = os; |
| if (os == last->lastSec) |
| break; |
| } |
| |
| if (ElfSym::edata1) |
| ElfSym::edata1->section = edata; |
| if (ElfSym::edata2) |
| ElfSym::edata2->section = edata; |
| |
| // _end is the first location after the uninitialized data region. |
| if (ElfSym::end1) |
| ElfSym::end1->section = last->lastSec; |
| if (ElfSym::end2) |
| ElfSym::end2->section = last->lastSec; |
| } |
| |
| if (ElfSym::bss) { |
| // On RISC-V, set __bss_start to the start of .sbss if present. |
| OutputSection *sbss = |
| config->emachine == EM_RISCV ? findSection(".sbss") : nullptr; |
| ElfSym::bss->section = sbss ? sbss : findSection(".bss"); |
| } |
| |
| // Setup MIPS _gp_disp/__gnu_local_gp symbols which should |
| // be equal to the _gp symbol's value. |
| if (ElfSym::mipsGp) { |
| // Find GP-relative section with the lowest address |
| // and use this address to calculate default _gp value. |
| for (OutputSection *os : outputSections) { |
| if (os->flags & SHF_MIPS_GPREL) { |
| ElfSym::mipsGp->section = os; |
| ElfSym::mipsGp->value = 0x7ff0; |
| break; |
| } |
| } |
| } |
| } |
| |
| // We want to find how similar two ranks are. |
| // The more branches in getSectionRank that match, the more similar they are. |
| // Since each branch corresponds to a bit flag, we can just use |
| // countLeadingZeros. |
| static int getRankProximity(OutputSection *a, SectionCommand *b) { |
| auto *osd = dyn_cast<OutputDesc>(b); |
| return (osd && osd->osec.hasInputSections) |
| ? llvm::countl_zero(a->sortRank ^ osd->osec.sortRank) |
| : -1; |
| } |
| |
| // When placing orphan sections, we want to place them after symbol assignments |
| // so that an orphan after |
| // begin_foo = .; |
| // foo : { *(foo) } |
| // end_foo = .; |
| // doesn't break the intended meaning of the begin/end symbols. |
| // We don't want to go over sections since findOrphanPos is the |
| // one in charge of deciding the order of the sections. |
| // We don't want to go over changes to '.', since doing so in |
| // rx_sec : { *(rx_sec) } |
| // . = ALIGN(0x1000); |
| // /* The RW PT_LOAD starts here*/ |
| // rw_sec : { *(rw_sec) } |
| // would mean that the RW PT_LOAD would become unaligned. |
| static bool shouldSkip(SectionCommand *cmd) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(cmd)) |
| return assign->name != "."; |
| return false; |
| } |
| |
| // We want to place orphan sections so that they share as much |
| // characteristics with their neighbors as possible. For example, if |
| // both are rw, or both are tls. |
| static SmallVectorImpl<SectionCommand *>::iterator |
| findOrphanPos(SmallVectorImpl<SectionCommand *>::iterator b, |
| SmallVectorImpl<SectionCommand *>::iterator e) { |
| OutputSection *sec = &cast<OutputDesc>(*e)->osec; |
| |
| // As a special case, place .relro_padding before the SymbolAssignment using |
| // DATA_SEGMENT_RELRO_END, if present. |
| if (in.relroPadding && sec == in.relroPadding->getParent()) { |
| auto i = std::find_if(b, e, [=](SectionCommand *a) { |
| if (auto *assign = dyn_cast<SymbolAssignment>(a)) |
| return assign->dataSegmentRelroEnd; |
| return false; |
| }); |
| if (i != e) |
| return i; |
| } |
| |
| // Find the first element that has as close a rank as possible. |
| auto i = std::max_element(b, e, [=](SectionCommand *a, SectionCommand *b) { |
| return getRankProximity(sec, a) < getRankProximity(sec, b); |
| }); |
| if (i == e) |
| return e; |
| if (!isa<OutputDesc>(*i)) |
| return e; |
| auto foundSec = &cast<OutputDesc>(*i)->osec; |
| |
| // Consider all existing sections with the same proximity. |
| int proximity = getRankProximity(sec, *i); |
| unsigned sortRank = sec->sortRank; |
| if (script->hasPhdrsCommands() || !script->memoryRegions.empty()) |
| // Prevent the orphan section to be placed before the found section. If |
| // custom program headers are defined, that helps to avoid adding it to a |
| // previous segment and changing flags of that segment, for example, making |
| // a read-only segment writable. If memory regions are defined, an orphan |
| // section should continue the same region as the found section to better |
| // resemble the behavior of GNU ld. |
| sortRank = std::max(sortRank, foundSec->sortRank); |
| for (; i != e; ++i) { |
| auto *curSecDesc = dyn_cast<OutputDesc>(*i); |
| if (!curSecDesc || !curSecDesc->osec.hasInputSections) |
| continue; |
| if (getRankProximity(sec, curSecDesc) != proximity || |
| sortRank < curSecDesc->osec.sortRank) |
| break; |
| } |
| |
| auto isOutputSecWithInputSections = [](SectionCommand *cmd) { |
| auto *osd = dyn_cast<OutputDesc>(cmd); |
| return osd && osd->osec.hasInputSections; |
| }; |
| auto j = |
| std::find_if(std::make_reverse_iterator(i), std::make_reverse_iterator(b), |
| isOutputSecWithInputSections); |
| i = j.base(); |
| |
| // As a special case, if the orphan section is the last section, put |
| // it at the very end, past any other commands. |
| // This matches bfd's behavior and is convenient when the linker script fully |
| // specifies the start of the file, but doesn't care about the end (the non |
| // alloc sections for example). |
| auto nextSec = std::find_if(i, e, isOutputSecWithInputSections); |
| if (nextSec == e) |
| return e; |
| |
| while (i != e && shouldSkip(*i)) |
| ++i; |
| return i; |
| } |
| |
| // Adds random priorities to sections not already in the map. |
| static void maybeShuffle(DenseMap<const InputSectionBase *, int> &order) { |
| if (config->shuffleSections.empty()) |
| return; |
| |
| SmallVector<InputSectionBase *, 0> matched, sections = ctx.inputSections; |
| matched.reserve(sections.size()); |
| for (const auto &patAndSeed : config->shuffleSections) { |
| matched.clear(); |
| for (InputSectionBase *sec : sections) |
| if (patAndSeed.first.match(sec->name)) |
| matched.push_back(sec); |
| const uint32_t seed = patAndSeed.second; |
| if (seed == UINT32_MAX) { |
| // If --shuffle-sections <section-glob>=-1, reverse the section order. The |
| // section order is stable even if the number of sections changes. This is |
| // useful to catch issues like static initialization order fiasco |
| // reliably. |
| std::reverse(matched.begin(), matched.end()); |
| } else { |
| std::mt19937 g(seed ? seed : std::random_device()()); |
| llvm::shuffle(matched.begin(), matched.end(), g); |
| } |
| size_t i = 0; |
| for (InputSectionBase *&sec : sections) |
| if (patAndSeed.first.match(sec->name)) |
| sec = matched[i++]; |
| } |
| |
| // Existing priorities are < 0, so use priorities >= 0 for the missing |
| // sections. |
| int prio = 0; |
| for (InputSectionBase *sec : sections) { |
| if (order.try_emplace(sec, prio).second) |
| ++prio; |
| } |
| } |
| |
| // Builds section order for handling --symbol-ordering-file. |
| static DenseMap<const InputSectionBase *, int> buildSectionOrder() { |
| DenseMap<const InputSectionBase *, int> sectionOrder; |
| // Use the rarely used option --call-graph-ordering-file to sort sections. |
| if (!config->callGraphProfile.empty()) |
| return computeCallGraphProfileOrder(); |
| |
| if (config->symbolOrderingFile.empty()) |
| return sectionOrder; |
| |
| struct SymbolOrderEntry { |
| int priority; |
| bool present; |
| }; |
| |
| // Build a map from symbols to their priorities. Symbols that didn't |
| // appear in the symbol ordering file have the lowest priority 0. |
| // All explicitly mentioned symbols have negative (higher) priorities. |
| DenseMap<CachedHashStringRef, SymbolOrderEntry> symbolOrder; |
| int priority = -config->symbolOrderingFile.size(); |
| for (StringRef s : config->symbolOrderingFile) |
| symbolOrder.insert({CachedHashStringRef(s), {priority++, false}}); |
| |
| // Build a map from sections to their priorities. |
| auto addSym = [&](Symbol &sym) { |
| auto it = symbolOrder.find(CachedHashStringRef(sym.getName())); |
| if (it == symbolOrder.end()) |
| return; |
| SymbolOrderEntry &ent = it->second; |
| ent.present = true; |
| |
| maybeWarnUnorderableSymbol(&sym); |
| |
| if (auto *d = dyn_cast<Defined>(&sym)) { |
| if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) { |
| int &priority = sectionOrder[cast<InputSectionBase>(sec)]; |
| priority = std::min(priority, ent.priority); |
| } |
| } |
| }; |
| |
| // We want both global and local symbols. We get the global ones from the |
| // symbol table and iterate the object files for the local ones. |
| for (Symbol *sym : symtab.getSymbols()) |
| addSym(*sym); |
| |
| for (ELFFileBase *file : ctx.objectFiles) |
| for (Symbol *sym : file->getLocalSymbols()) |
| addSym(*sym); |
| |
| if (config->warnSymbolOrdering) |
| for (auto orderEntry : symbolOrder) |
| if (!orderEntry.second.present) |
| warn("symbol ordering file: no such symbol: " + orderEntry.first.val()); |
| |
| return sectionOrder; |
| } |
| |
| // Sorts the sections in ISD according to the provided section order. |
| static void |
| sortISDBySectionOrder(InputSectionDescription *isd, |
| const DenseMap<const InputSectionBase *, int> &order, |
| bool executableOutputSection) { |
| SmallVector<InputSection *, 0> unorderedSections; |
| SmallVector<std::pair<InputSection *, int>, 0> orderedSections; |
| uint64_t unorderedSize = 0; |
| uint64_t totalSize = 0; |
| |
| for (InputSection *isec : isd->sections) { |
| if (executableOutputSection) |
| totalSize += isec->getSize(); |
| auto i = order.find(isec); |
| if (i == order.end()) { |
| unorderedSections.push_back(isec); |
| unorderedSize += isec->getSize(); |
| continue; |
| } |
| orderedSections.push_back({isec, i->second}); |
| } |
| llvm::sort(orderedSections, llvm::less_second()); |
| |
| // Find an insertion point for the ordered section list in the unordered |
| // section list. On targets with limited-range branches, this is the mid-point |
| // of the unordered section list. This decreases the likelihood that a range |
| // extension thunk will be needed to enter or exit the ordered region. If the |
| // ordered section list is a list of hot functions, we can generally expect |
| // the ordered functions to be called more often than the unordered functions, |
| // making it more likely that any particular call will be within range, and |
| // therefore reducing the number of thunks required. |
| // |
| // For example, imagine that you have 8MB of hot code and 32MB of cold code. |
| // If the layout is: |
| // |
| // 8MB hot |
| // 32MB cold |
| // |
| // only the first 8-16MB of the cold code (depending on which hot function it |
| // is actually calling) can call the hot code without a range extension thunk. |
| // However, if we use this layout: |
| // |
| // 16MB cold |
| // 8MB hot |
| // 16MB cold |
| // |
| // both the last 8-16MB of the first block of cold code and the first 8-16MB |
| // of the second block of cold code can call the hot code without a thunk. So |
| // we effectively double the amount of code that could potentially call into |
| // the hot code without a thunk. |
| // |
| // The above is not necessary if total size of input sections in this "isd" |
| // is small. Note that we assume all input sections are executable if the |
| // output section is executable (which is not always true but supposed to |
| // cover most cases). |
| size_t insPt = 0; |
| if (executableOutputSection && !orderedSections.empty() && |
| target->getThunkSectionSpacing() && |
| totalSize >= target->getThunkSectionSpacing()) { |
| uint64_t unorderedPos = 0; |
| for (; insPt != unorderedSections.size(); ++insPt) { |
| unorderedPos += unorderedSections[insPt]->getSize(); |
| if (unorderedPos > unorderedSize / 2) |
| break; |
| } |
| } |
| |
| isd->sections.clear(); |
| for (InputSection *isec : ArrayRef(unorderedSections).slice(0, insPt)) |
| isd->sections.push_back(isec); |
| for (std::pair<InputSection *, int> p : orderedSections) |
| isd->sections.push_back(p.first); |
| for (InputSection *isec : ArrayRef(unorderedSections).slice(insPt)) |
| isd->sections.push_back(isec); |
| } |
| |
| static void sortSection(OutputSection &osec, |
| const DenseMap<const InputSectionBase *, int> &order) { |
| StringRef name = osec.name; |
| |
| // Never sort these. |
| if (name == ".init" || name == ".fini") |
| return; |
| |
| // IRelative relocations that usually live in the .rel[a].dyn section should |
| // be processed last by the dynamic loader. To achieve that we add synthetic |
| // sections in the required order from the beginning so that the in.relaIplt |
| // section is placed last in an output section. Here we just do not apply |
| // sorting for an output section which holds the in.relaIplt section. |
| if (in.relaIplt->getParent() == &osec) |
| return; |
| |
| // Sort input sections by priority using the list provided by |
| // --symbol-ordering-file or --shuffle-sections=. This is a least significant |
| // digit radix sort. The sections may be sorted stably again by a more |
| // significant key. |
| if (!order.empty()) |
| for (SectionCommand *b : osec.commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(b)) |
| sortISDBySectionOrder(isd, order, osec.flags & SHF_EXECINSTR); |
| |
| if (script->hasSectionsCommand) |
| return; |
| |
| if (name == ".init_array" || name == ".fini_array") { |
| osec.sortInitFini(); |
| } else if (name == ".ctors" || name == ".dtors") { |
| osec.sortCtorsDtors(); |
| } else if (config->emachine == EM_PPC64 && name == ".toc") { |
| // .toc is allocated just after .got and is accessed using GOT-relative |
| // relocations. Object files compiled with small code model have an |
| // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations. |
| // To reduce the risk of relocation overflow, .toc contents are sorted so |
| // that sections having smaller relocation offsets are at beginning of .toc |
| assert(osec.commands.size() == 1); |
| auto *isd = cast<InputSectionDescription>(osec.commands[0]); |
| llvm::stable_sort(isd->sections, |
| [](const InputSection *a, const InputSection *b) -> bool { |
| return a->file->ppc64SmallCodeModelTocRelocs && |
| !b->file->ppc64SmallCodeModelTocRelocs; |
| }); |
| } |
| } |
| |
| // If no layout was provided by linker script, we want to apply default |
| // sorting for special input sections. This also handles --symbol-ordering-file. |
| template <class ELFT> void Writer<ELFT>::sortInputSections() { |
| // Build the order once since it is expensive. |
| DenseMap<const InputSectionBase *, int> order = buildSectionOrder(); |
| maybeShuffle(order); |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| sortSection(osd->osec, order); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortSections() { |
| llvm::TimeTraceScope timeScope("Sort sections"); |
| |
| // Don't sort if using -r. It is not necessary and we want to preserve the |
| // relative order for SHF_LINK_ORDER sections. |
| if (config->relocatable) { |
| script->adjustOutputSections(); |
| return; |
| } |
| |
| sortInputSections(); |
| |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| osd->osec.sortRank = getSectionRank(osd->osec); |
| if (!script->hasSectionsCommand) { |
| // OutputDescs are mostly contiguous, but may be interleaved with |
| // SymbolAssignments in the presence of INSERT commands. |
| auto mid = std::stable_partition( |
| script->sectionCommands.begin(), script->sectionCommands.end(), |
| [](SectionCommand *cmd) { return isa<OutputDesc>(cmd); }); |
| std::stable_sort(script->sectionCommands.begin(), mid, compareSections); |
| } |
| |
| // Process INSERT commands and update output section attributes. From this |
| // point onwards the order of script->sectionCommands is fixed. |
| script->processInsertCommands(); |
| script->adjustOutputSections(); |
| |
| if (script->hasSectionsCommand) |
| sortOrphanSections(); |
| |
| script->adjustSectionsAfterSorting(); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::sortOrphanSections() { |
| // Orphan sections are sections present in the input files which are |
| // not explicitly placed into the output file by the linker script. |
| // |
| // The sections in the linker script are already in the correct |
| // order. We have to figuere out where to insert the orphan |
| // sections. |
| // |
| // The order of the sections in the script is arbitrary and may not agree with |
| // compareSections. This means that we cannot easily define a strict weak |
| // ordering. To see why, consider a comparison of a section in the script and |
| // one not in the script. We have a two simple options: |
| // * Make them equivalent (a is not less than b, and b is not less than a). |
| // The problem is then that equivalence has to be transitive and we can |
| // have sections a, b and c with only b in a script and a less than c |
| // which breaks this property. |
| // * Use compareSectionsNonScript. Given that the script order doesn't have |
| // to match, we can end up with sections a, b, c, d where b and c are in the |
| // script and c is compareSectionsNonScript less than b. In which case d |
| // can be equivalent to c, a to b and d < a. As a concrete example: |
| // .a (rx) # not in script |
| // .b (rx) # in script |
| // .c (ro) # in script |
| // .d (ro) # not in script |
| // |
| // The way we define an order then is: |
| // * Sort only the orphan sections. They are in the end right now. |
| // * Move each orphan section to its preferred position. We try |
| // to put each section in the last position where it can share |
| // a PT_LOAD. |
| // |
| // There is some ambiguity as to where exactly a new entry should be |
| // inserted, because Commands contains not only output section |
| // commands but also other types of commands such as symbol assignment |
| // expressions. There's no correct answer here due to the lack of the |
| // formal specification of the linker script. We use heuristics to |
| // determine whether a new output command should be added before or |
| // after another commands. For the details, look at shouldSkip |
| // function. |
| |
| auto i = script->sectionCommands.begin(); |
| auto e = script->sectionCommands.end(); |
| auto nonScriptI = std::find_if(i, e, [](SectionCommand *cmd) { |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| return osd->osec.sectionIndex == UINT32_MAX; |
| return false; |
| }); |
| |
| // Sort the orphan sections. |
| std::stable_sort(nonScriptI, e, compareSections); |
| |
| // As a horrible special case, skip the first . assignment if it is before any |
| // section. We do this because it is common to set a load address by starting |
| // the script with ". = 0xabcd" and the expectation is that every section is |
| // after that. |
| auto firstSectionOrDotAssignment = |
| std::find_if(i, e, [](SectionCommand *cmd) { return !shouldSkip(cmd); }); |
| if (firstSectionOrDotAssignment != e && |
| isa<SymbolAssignment>(**firstSectionOrDotAssignment)) |
| ++firstSectionOrDotAssignment; |
| i = firstSectionOrDotAssignment; |
| |
| while (nonScriptI != e) { |
| auto pos = findOrphanPos(i, nonScriptI); |
| OutputSection *orphan = &cast<OutputDesc>(*nonScriptI)->osec; |
| |
| // As an optimization, find all sections with the same sort rank |
| // and insert them with one rotate. |
| unsigned rank = orphan->sortRank; |
| auto end = std::find_if(nonScriptI + 1, e, [=](SectionCommand *cmd) { |
| return cast<OutputDesc>(cmd)->osec.sortRank != rank; |
| }); |
| std::rotate(pos, nonScriptI, end); |
| nonScriptI = end; |
| } |
| } |
| |
| static bool compareByFilePosition(InputSection *a, InputSection *b) { |
| InputSection *la = a->flags & SHF_LINK_ORDER ? a->getLinkOrderDep() : nullptr; |
| InputSection *lb = b->flags & SHF_LINK_ORDER ? b->getLinkOrderDep() : nullptr; |
| // SHF_LINK_ORDER sections with non-zero sh_link are ordered before |
| // non-SHF_LINK_ORDER sections and SHF_LINK_ORDER sections with zero sh_link. |
| if (!la || !lb) |
| return la && !lb; |
| OutputSection *aOut = la->getParent(); |
| OutputSection *bOut = lb->getParent(); |
| |
| if (aOut != bOut) |
| return aOut->addr < bOut->addr; |
| return la->outSecOff < lb->outSecOff; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() { |
| llvm::TimeTraceScope timeScope("Resolve SHF_LINK_ORDER"); |
| for (OutputSection *sec : outputSections) { |
| if (!(sec->flags & SHF_LINK_ORDER)) |
| continue; |
| |
| // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated |
| // this processing inside the ARMExidxsyntheticsection::finalizeContents(). |
| if (!config->relocatable && config->emachine == EM_ARM && |
| sec->type == SHT_ARM_EXIDX) |
| continue; |
| |
| // Link order may be distributed across several InputSectionDescriptions. |
| // Sorting is performed separately. |
| SmallVector<InputSection **, 0> scriptSections; |
| SmallVector<InputSection *, 0> sections; |
| for (SectionCommand *cmd : sec->commands) { |
| auto *isd = dyn_cast<InputSectionDescription>(cmd); |
| if (!isd) |
| continue; |
| bool hasLinkOrder = false; |
| scriptSections.clear(); |
| sections.clear(); |
| for (InputSection *&isec : isd->sections) { |
| if (isec->flags & SHF_LINK_ORDER) { |
| InputSection *link = isec->getLinkOrderDep(); |
| if (link && !link->getParent()) |
| error(toString(isec) + ": sh_link points to discarded section " + |
| toString(link)); |
| hasLinkOrder = true; |
| } |
| scriptSections.push_back(&isec); |
| sections.push_back(isec); |
| } |
| if (hasLinkOrder && errorCount() == 0) { |
| llvm::stable_sort(sections, compareByFilePosition); |
| for (int i = 0, n = sections.size(); i != n; ++i) |
| *scriptSections[i] = sections[i]; |
| } |
| } |
| } |
| } |
| |
| static void finalizeSynthetic(SyntheticSection *sec) { |
| if (sec && sec->isNeeded() && sec->getParent()) { |
| llvm::TimeTraceScope timeScope("Finalize synthetic sections", sec->name); |
| sec->finalizeContents(); |
| } |
| } |
| |
| // We need to generate and finalize the content that depends on the address of |
| // InputSections. As the generation of the content may also alter InputSection |
| // addresses we must converge to a fixed point. We do that here. See the comment |
| // in Writer<ELFT>::finalizeSections(). |
| template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() { |
| llvm::TimeTraceScope timeScope("Finalize address dependent content"); |
| ThunkCreator tc; |
| AArch64Err843419Patcher a64p; |
| ARMErr657417Patcher a32p; |
| script->assignAddresses(); |
| // .ARM.exidx and SHF_LINK_ORDER do not require precise addresses, but they |
| // do require the relative addresses of OutputSections because linker scripts |
| // can assign Virtual Addresses to OutputSections that are not monotonically |
| // increasing. |
| for (Partition &part : partitions) |
| finalizeSynthetic(part.armExidx.get()); |
| resolveShfLinkOrder(); |
| |
| // Converts call x@GDPLT to call __tls_get_addr |
| if (config->emachine == EM_HEXAGON) |
| hexagonTLSSymbolUpdate(outputSections); |
| |
| uint32_t pass = 0, assignPasses = 0; |
| for (;;) { |
| bool changed = target->needsThunks ? tc.createThunks(pass, outputSections) |
| : target->relaxOnce(pass); |
| ++pass; |
| |
| // With Thunk Size much smaller than branch range we expect to |
| // converge quickly; if we get to 30 something has gone wrong. |
| if (changed && pass >= 30) { |
| error(target->needsThunks ? "thunk creation not converged" |
| : "relaxation not converged"); |
| break; |
| } |
| |
| if (config->fixCortexA53Errata843419) { |
| if (changed) |
| script->assignAddresses(); |
| changed |= a64p.createFixes(); |
| } |
| if (config->fixCortexA8) { |
| if (changed) |
| script->assignAddresses(); |
| changed |= a32p.createFixes(); |
| } |
| |
| finalizeSynthetic(in.got.get()); |
| if (in.mipsGot) |
| in.mipsGot->updateAllocSize(); |
| |
| for (Partition &part : partitions) { |
| changed |= part.relaDyn->updateAllocSize(); |
| if (part.relrDyn) |
| changed |= part.relrDyn->updateAllocSize(); |
| if (part.memtagGlobalDescriptors) |
| changed |= part.memtagGlobalDescriptors->updateAllocSize(); |
| } |
| |
| const Defined *changedSym = script->assignAddresses(); |
| if (!changed) { |
| // Some symbols may be dependent on section addresses. When we break the |
| // loop, the symbol values are finalized because a previous |
| // assignAddresses() finalized section addresses. |
| if (!changedSym) |
| break; |
| if (++assignPasses == 5) { |
| errorOrWarn("assignment to symbol " + toString(*changedSym) + |
| " does not converge"); |
| break; |
| } |
| } |
| } |
| if (!config->relocatable) |
| target->finalizeRelax(pass); |
| |
| if (config->relocatable) |
| for (OutputSection *sec : outputSections) |
| sec->addr = 0; |
| |
| // If addrExpr is set, the address may not be a multiple of the alignment. |
| // Warn because this is error-prone. |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) { |
| OutputSection *osec = &osd->osec; |
| if (osec->addr % osec->addralign != 0) |
| warn("address (0x" + Twine::utohexstr(osec->addr) + ") of section " + |
| osec->name + " is not a multiple of alignment (" + |
| Twine(osec->addralign) + ")"); |
| } |
| } |
| |
| // If Input Sections have been shrunk (basic block sections) then |
| // update symbol values and sizes associated with these sections. With basic |
| // block sections, input sections can shrink when the jump instructions at |
| // the end of the section are relaxed. |
| static void fixSymbolsAfterShrinking() { |
| for (InputFile *File : ctx.objectFiles) { |
| parallelForEach(File->getSymbols(), [&](Symbol *Sym) { |
| auto *def = dyn_cast<Defined>(Sym); |
| if (!def) |
| return; |
| |
| const SectionBase *sec = def->section; |
| if (!sec) |
| return; |
| |
| const InputSectionBase *inputSec = dyn_cast<InputSectionBase>(sec); |
| if (!inputSec || !inputSec->bytesDropped) |
| return; |
| |
| const size_t OldSize = inputSec->content().size(); |
| const size_t NewSize = OldSize - inputSec->bytesDropped; |
| |
| if (def->value > NewSize && def->value <= OldSize) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Moving symbol " << Sym->getName() << " from " |
| << def->value << " to " |
| << def->value - inputSec->bytesDropped << " bytes\n"); |
| def->value -= inputSec->bytesDropped; |
| return; |
| } |
| |
| if (def->value + def->size > NewSize && def->value <= OldSize && |
| def->value + def->size <= OldSize) { |
| LLVM_DEBUG(llvm::dbgs() |
| << "Shrinking symbol " << Sym->getName() << " from " |
| << def->size << " to " << def->size - inputSec->bytesDropped |
| << " bytes\n"); |
| def->size -= inputSec->bytesDropped; |
| } |
| }); |
| } |
| } |
| |
| // If basic block sections exist, there are opportunities to delete fall thru |
| // jumps and shrink jump instructions after basic block reordering. This |
| // relaxation pass does that. It is only enabled when --optimize-bb-jumps |
| // option is used. |
| template <class ELFT> void Writer<ELFT>::optimizeBasicBlockJumps() { |
| assert(config->optimizeBBJumps); |
| SmallVector<InputSection *, 0> storage; |
| |
| script->assignAddresses(); |
| // For every output section that has executable input sections, this |
| // does the following: |
| // 1. Deletes all direct jump instructions in input sections that |
| // jump to the following section as it is not required. |
| // 2. If there are two consecutive jump instructions, it checks |
| // if they can be flipped and one can be deleted. |
| for (OutputSection *osec : outputSections) { |
| if (!(osec->flags & SHF_EXECINSTR)) |
| continue; |
| ArrayRef<InputSection *> sections = getInputSections(*osec, storage); |
| size_t numDeleted = 0; |
| // Delete all fall through jump instructions. Also, check if two |
| // consecutive jump instructions can be flipped so that a fall |
| // through jmp instruction can be deleted. |
| for (size_t i = 0, e = sections.size(); i != e; ++i) { |
| InputSection *next = i + 1 < sections.size() ? sections[i + 1] : nullptr; |
| InputSection &sec = *sections[i]; |
| numDeleted += target->deleteFallThruJmpInsn(sec, sec.file, next); |
| } |
| if (numDeleted > 0) { |
| script->assignAddresses(); |
| LLVM_DEBUG(llvm::dbgs() |
| << "Removing " << numDeleted << " fall through jumps\n"); |
| } |
| } |
| |
| fixSymbolsAfterShrinking(); |
| |
| for (OutputSection *osec : outputSections) |
| for (InputSection *is : getInputSections(*osec, storage)) |
| is->trim(); |
| } |
| |
| // In order to allow users to manipulate linker-synthesized sections, |
| // we had to add synthetic sections to the input section list early, |
| // even before we make decisions whether they are needed. This allows |
| // users to write scripts like this: ".mygot : { .got }". |
| // |
| // Doing it has an unintended side effects. If it turns out that we |
| // don't need a .got (for example) at all because there's no |
| // relocation that needs a .got, we don't want to emit .got. |
| // |
| // To deal with the above problem, this function is called after |
| // scanRelocations is called to remove synthetic sections that turn |
| // out to be empty. |
| static void removeUnusedSyntheticSections() { |
| // All input synthetic sections that can be empty are placed after |
| // all regular ones. Reverse iterate to find the first synthetic section |
| // after a non-synthetic one which will be our starting point. |
| auto start = |
| llvm::find_if(llvm::reverse(ctx.inputSections), [](InputSectionBase *s) { |
| return !isa<SyntheticSection>(s); |
| }).base(); |
| |
| // Remove unused synthetic sections from ctx.inputSections; |
| DenseSet<InputSectionBase *> unused; |
| auto end = |
| std::remove_if(start, ctx.inputSections.end(), [&](InputSectionBase *s) { |
| auto *sec = cast<SyntheticSection>(s); |
| if (sec->getParent() && sec->isNeeded()) |
| return false; |
| unused.insert(sec); |
| return true; |
| }); |
| ctx.inputSections.erase(end, ctx.inputSections.end()); |
| |
| // Remove unused synthetic sections from the corresponding input section |
| // description and orphanSections. |
| for (auto *sec : unused) |
| if (OutputSection *osec = cast<SyntheticSection>(sec)->getParent()) |
| for (SectionCommand *cmd : osec->commands) |
| if (auto *isd = dyn_cast<InputSectionDescription>(cmd)) |
| llvm::erase_if(isd->sections, [&](InputSection *isec) { |
| return unused.count(isec); |
| }); |
| llvm::erase_if(script->orphanSections, [&](const InputSectionBase *sec) { |
| return unused.count(sec); |
| }); |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::finalizeSections() { |
| if (!config->relocatable) { |
| Out::preinitArray = findSection(".preinit_array"); |
| Out::initArray = findSection(".init_array"); |
| Out::finiArray = findSection(".fini_array"); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| addStartEndSymbols(); |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) |
| addStartStopSymbols(osd->osec); |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (mainPart->dynamic->parent) { |
| Symbol *s = symtab.addSymbol(Defined{ |
| ctx.internalFile, "_DYNAMIC", STB_WEAK, STV_HIDDEN, STT_NOTYPE, |
| /*value=*/0, /*size=*/0, mainPart->dynamic.get()}); |
| s->isUsedInRegularObj = true; |
| } |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| // RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800. This symbol |
| // should only be defined in an executable. If .sdata does not exist, its |
| // value/section does not matter but it has to be relative, so set its |
| // st_shndx arbitrarily to 1 (Out::elfHeader). |
| if (config->emachine == EM_RISCV) { |
| ElfSym::riscvGlobalPointer = nullptr; |
| if (!config->shared) { |
| OutputSection *sec = findSection(".sdata"); |
| addOptionalRegular( |
| "__global_pointer$", sec ? sec : Out::elfHeader, 0x800, STV_DEFAULT); |
| // Set riscvGlobalPointer to be used by the optional global pointer |
| // relaxation. |
| if (config->relaxGP) { |
| Symbol *s = symtab.find("__global_pointer$"); |
| if (s && s->isDefined()) |
| ElfSym::riscvGlobalPointer = cast<Defined>(s); |
| } |
| } |
| } |
| |
| if (config->emachine == EM_386 || config->emachine == EM_X86_64) { |
| // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a |
| // way that: |
| // |
| // 1) Without relaxation: it produces a dynamic TLSDESC relocation that |
| // computes 0. |
| // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address |
| // in the TLS block). |
| // |
| // 2) is special cased in @tpoff computation. To satisfy 1), we define it |
| // as an absolute symbol of zero. This is different from GNU linkers which |
| // define _TLS_MODULE_BASE_ relative to the first TLS section. |
| Symbol *s = symtab.find("_TLS_MODULE_BASE_"); |
| if (s && s->isUndefined()) { |
| s->resolve(Defined{ctx.internalFile, StringRef(), STB_GLOBAL, |
| STV_HIDDEN, STT_TLS, /*value=*/0, 0, |
| /*section=*/nullptr}); |
| ElfSym::tlsModuleBase = cast<Defined>(s); |
| } |
| } |
| |
| // This responsible for splitting up .eh_frame section into |
| // pieces. The relocation scan uses those pieces, so this has to be |
| // earlier. |
| { |
| llvm::TimeTraceScope timeScope("Finalize .eh_frame"); |
| for (Partition &part : partitions) |
| finalizeSynthetic(part.ehFrame.get()); |
| } |
| } |
| |
| demoteSymbolsAndComputeIsPreemptible(); |
| |
| if (config->copyRelocs && config->discard != DiscardPolicy::None) |
| markUsedLocalSymbols<ELFT>(); |
| demoteAndCopyLocalSymbols(); |
| |
| if (config->copyRelocs) |
| addSectionSymbols(); |
| |
| // Change values of linker-script-defined symbols from placeholders (assigned |
| // by declareSymbols) to actual definitions. |
| script->processSymbolAssignments(); |
| |
| if (!config->relocatable) { |
| llvm::TimeTraceScope timeScope("Scan relocations"); |
| // Scan relocations. This must be done after every symbol is declared so |
| // that we can correctly decide if a dynamic relocation is needed. This is |
| // called after processSymbolAssignments() because it needs to know whether |
| // a linker-script-defined symbol is absolute. |
| ppc64noTocRelax.clear(); |
| scanRelocations<ELFT>(); |
| reportUndefinedSymbols(); |
| postScanRelocations(); |
| |
| if (in.plt && in.plt->isNeeded()) |
| in.plt->addSymbols(); |
| if (in.iplt && in.iplt->isNeeded()) |
| in.iplt->addSymbols(); |
| |
| if (config->unresolvedSymbolsInShlib != UnresolvedPolicy::Ignore) { |
| auto diagnose = |
| config->unresolvedSymbolsInShlib == UnresolvedPolicy::ReportError |
| ? errorOrWarn |
| : warn; |
| // Error on undefined symbols in a shared object, if all of its DT_NEEDED |
| // entries are seen. These cases would otherwise lead to runtime errors |
| // reported by the dynamic linker. |
| // |
| // ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker |
| // to catch more cases. That is too much for us. Our approach resembles |
| // the one used in ld.gold, achieves a good balance to be useful but not |
| // too smart. |
| // |
| // If a DSO reference is resolved by a SharedSymbol, but the SharedSymbol |
| // is overridden by a hidden visibility Defined (which is later discarded |
| // due to GC), don't report the diagnostic. However, this may indicate an |
| // unintended SharedSymbol. |
| for (SharedFile *file : ctx.sharedFiles) { |
| bool allNeededIsKnown = |
| llvm::all_of(file->dtNeeded, [&](StringRef needed) { |
| return symtab.soNames.count(CachedHashStringRef(needed)); |
| }); |
| if (!allNeededIsKnown) |
| continue; |
| for (Symbol *sym : file->requiredSymbols) { |
| if (sym->dsoDefined) |
| continue; |
| if (sym->isUndefined() && !sym->isWeak()) { |
| diagnose("undefined reference due to --no-allow-shlib-undefined: " + |
| toString(*sym) + "\n>>> referenced by " + toString(file)); |
| } else if (sym->isDefined() && sym->computeBinding() == STB_LOCAL) { |
| diagnose("non-exported symbol '" + toString(*sym) + "' in '" + |
| toString(sym->file) + "' is referenced by DSO '" + |
| toString(file) + "'"); |
| } |
| } |
| } |
| } |
| } |
| |
| { |
| llvm::TimeTraceScope timeScope("Add symbols to symtabs"); |
| // Now that we have defined all possible global symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| for (Symbol *sym : symtab.getSymbols()) { |
| if (!sym->isUsedInRegularObj || !includeInSymtab(*sym)) |
| continue; |
| if (!config->relocatable) |
| sym->binding = sym->computeBinding(); |
| if (in.symTab) |
| in.symTab->addSymbol(sym); |
| |
| if (sym->includeInDynsym()) { |
| partitions[sym->partition - 1].dynSymTab->addSymbol(sym); |
| if (auto *file = dyn_cast_or_null<SharedFile>(sym->file)) |
| if (file->isNeeded && !sym->isUndefined()) |
| addVerneed(sym); |
| } |
| } |
| |
| // We also need to scan the dynamic relocation tables of the other |
| // partitions and add any referenced symbols to the partition's dynsym. |
| for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) { |
| DenseSet<Symbol *> syms; |
| for (const SymbolTableEntry &e : part.dynSymTab->getSymbols()) |
| syms.insert(e.sym); |
| for (DynamicReloc &reloc : part.relaDyn->relocs) |
| if (reloc.sym && reloc.needsDynSymIndex() && |
| syms.insert(reloc.sym).second) |
| part.dynSymTab->addSymbol(reloc.sym); |
| } |
| } |
| |
| if (in.mipsGot) |
| in.mipsGot->build(); |
| |
| removeUnusedSyntheticSections(); |
| script->diagnoseOrphanHandling(); |
| script->diagnoseMissingSGSectionAddress(); |
| |
| sortSections(); |
| |
| // Create a list of OutputSections, assign sectionIndex, and populate |
| // in.shStrTab. |
| for (SectionCommand *cmd : script->sectionCommands) |
| if (auto *osd = dyn_cast<OutputDesc>(cmd)) { |
| OutputSection *osec = &osd->osec; |
| outputSections.push_back(osec); |
| osec->sectionIndex = outputSections.size(); |
| osec->shName = in.shStrTab->addString(osec->name); |
| } |
| |
| // Prefer command line supplied address over other constraints. |
| for (OutputSection *sec : outputSections) { |
| auto i = config->sectionStartMap.find(sec->name); |
| if (i != config->sectionStartMap.end()) |
| sec->addrExpr = [=] { return i->second; }; |
| } |
| |
| // With the outputSections available check for GDPLT relocations |
| // and add __tls_get_addr symbol if needed. |
| if (config->emachine == EM_HEXAGON && hexagonNeedsTLSSymbol(outputSections)) { |
| Symbol *sym = |
| symtab.addSymbol(Undefined{ctx.internalFile, "__tls_get_addr", |
| STB_GLOBAL, STV_DEFAULT, STT_NOTYPE}); |
| sym->isPreemptible = true; |
| partitions[0].dynSymTab->addSymbol(sym); |
| } |
| |
| // This is a bit of a hack. A value of 0 means undef, so we set it |
| // to 1 to make __ehdr_start defined. The section number is not |
| // particularly relevant. |
| Out::elfHeader->sectionIndex = 1; |
| Out::elfHeader->size = sizeof(typename ELFT::Ehdr); |
| |
| // Binary and relocatable output does not have PHDRS. |
| // The headers have to be created before finalize as that can influence the |
| // image base and the dynamic section on mips includes the image base. |
| if (!config->relocatable && !config->oFormatBinary) { |
| for (Partition &part : partitions) { |
| part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs() |
| : createPhdrs(part); |
| if (config->emachine == EM_ARM) { |
| // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME |
| addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R); |
| } |
| if (config->emachine == EM_MIPS) { |
| // Add separate segments for MIPS-specific sections. |
| addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R); |
| addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R); |
| addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R); |
| } |
| if (config->emachine == EM_RISCV) |
| addPhdrForSection(part, SHT_RISCV_ATTRIBUTES, PT_RISCV_ATTRIBUTES, |
| PF_R); |
| } |
| Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size(); |
| |
| // Find the TLS segment. This happens before the section layout loop so that |
| // Android relocation packing can look up TLS symbol addresses. We only need |
| // to care about the main partition here because all TLS symbols were moved |
| // to the main partition (see MarkLive.cpp). |
| for (PhdrEntry *p : mainPart->phdrs) |
| if (p->p_type == PT_TLS) |
| Out::tlsPhdr = p; |
| } |
| |
| // Some symbols are defined in term of program headers. Now that we |
| // have the headers, we can find out which sections they point to. |
| setReservedSymbolSections(); |
| |
| { |
| llvm::TimeTraceScope timeScope("Finalize synthetic sections"); |
| |
| finalizeSynthetic(in.bss.get()); |
| finalizeSynthetic(in.bssRelRo.get()); |
| finalizeSynthetic(in.symTabShndx.get()); |
| finalizeSynthetic(in.shStrTab.get()); |
| finalizeSynthetic(in.strTab.get()); |
| finalizeSynthetic(in.got.get()); |
| finalizeSynthetic(in.mipsGot.get()); |
| finalizeSynthetic(in.igotPlt.get()); |
| finalizeSynthetic(in.gotPlt.get()); |
| finalizeSynthetic(in.relaIplt.get()); |
| finalizeSynthetic(in.relaPlt.get()); |
| finalizeSynthetic(in.plt.get()); |
| finalizeSynthetic(in.iplt.get()); |
| finalizeSynthetic(in.ppc32Got2.get()); |
| finalizeSynthetic(in.partIndex.get()); |
| |
| // Dynamic section must be the last one in this list and dynamic |
| // symbol table section (dynSymTab) must be the first one. |
| for (Partition &part : partitions) { |
| if (part.relaDyn) { |
| part.relaDyn->mergeRels(); |
| // Compute DT_RELACOUNT to be used by part.dynamic. |
| part.relaDyn->partitionRels(); |
| finalizeSynthetic(part.relaDyn.get()); |
| } |
| if (part.relrDyn) { |
| part.relrDyn->mergeRels(); |
| finalizeSynthetic(part.relrDyn.get()); |
| } |
| |
| finalizeSynthetic(part.dynSymTab.get()); |
| finalizeSynthetic(part.gnuHashTab.get()); |
| finalizeSynthetic(part.hashTab.get()); |
| finalizeSynthetic(part.verDef.get()); |
| finalizeSynthetic(part.ehFrameHdr.get()); |
| finalizeSynthetic(part.verSym.get()); |
| finalizeSynthetic(part.verNeed.get()); |
| finalizeSynthetic(part.dynamic.get()); |
| } |
| } |
| |
| if (!script->hasSectionsCommand && !config->relocatable) |
| fixSectionAlignments(); |
| |
| // This is used to: |
| // 1) Create "thunks": |
| // Jump instructions in many ISAs have small displacements, and therefore |
| // they cannot jump to arbitrary addresses in memory. For example, RISC-V |
| // JAL instruction can target only +-1 MiB from PC. It is a linker's |
| // responsibility to create and insert small pieces of code between |
| // sections to extend the ranges if jump targets are out of range. Such |
| // code pieces are called "thunks". |
| // |
| // We add thunks at this stage. We couldn't do this before this point |
| // because this is the earliest point where we know sizes of sections and |
| // their layouts (that are needed to determine if jump targets are in |
| // range). |
| // |
| // 2) Update the sections. We need to generate content that depends on the |
| // address of InputSections. For example, MIPS GOT section content or |
| // android packed relocations sections content. |
| // |
| // 3) Assign the final values for the linker script symbols. Linker scripts |
| // sometimes using forward symbol declarations. We want to set the correct |
| // values. They also might change after adding the thunks. |
| finalizeAddressDependentContent(); |
| |
| // All information needed for OutputSection part of Map file is available. |
| if (errorCount()) |
| return; |
| |
| { |
| llvm::TimeTraceScope timeScope("Finalize synthetic sections"); |
| // finalizeAddressDependentContent may have added local symbols to the |
| // static symbol table. |
| finalizeSynthetic(in.symTab.get()); |
| finalizeSynthetic(in.ppc64LongBranchTarget.get()); |
| finalizeSynthetic(in.armCmseSGSection.get()); |
| } |
| |
| // Relaxation to delete inter-basic block jumps created by basic block |
| // sections. Run after in.symTab is finalized as optimizeBasicBlockJumps |
| // can relax jump instructions based on symbol offset. |
| if (config->optimizeBBJumps) |
| optimizeBasicBlockJumps(); |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. |
| for (OutputSection *sec : outputSections) |
| sec->finalize(); |
| |
| script->checkFinalScriptConditions(); |
| |
| if (config->emachine == EM_ARM && !config->isLE && config->armBe8) { |
| addArmInputSectionMappingSymbols(); |
| sortArmMappingSymbols(); |
| } |
| } |
| |
| // Ensure data sections are not mixed with executable sections when |
| // --execute-only is used. --execute-only make pages executable but not |
| // readable. |
| template <class ELFT> void Writer<ELFT>::checkExecuteOnly() { |
| if (!config->executeOnly) |
| return; |
| |
| SmallVector<InputSection *, 0> storage; |
| for (OutputSection *osec : outputSections) |
| if (osec->flags & SHF_EXECINSTR) |
| for (InputSection *isec : getInputSections(*osec, storage)) |
| if (!(isec->flags & SHF_EXECINSTR)) |
| error("cannot place " + toString(isec) + " into " + |
| toString(osec->name) + |
| ": --execute-only does not support intermingling data and code"); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| // If a section does not exist, there's ambiguity as to how we |
| // define _start and _end symbols for an init/fini section. Since |
| // the loader assume that the symbols are always defined, we need to |
| // always define them. But what value? The loader iterates over all |
| // pointers between _start and _end to run global ctors/dtors, so if |
| // the section is empty, their symbol values don't actually matter |
| // as long as _start and _end point to the same location. |
| // |
| // That said, we don't want to set the symbols to 0 (which is |
| // probably the simplest value) because that could cause some |
| // program to fail to link due to relocation overflow, if their |
| // program text is above 2 GiB. We use the address of the .text |
| // section instead to prevent that failure. |
| // |
| // In rare situations, the .text section may not exist. If that's the |
| // case, use the image base address as a last resort. |
| OutputSection *Default = findSection(".text"); |
| if (!Default) |
| Default = Out::elfHeader; |
| |
| auto define = [=](StringRef start, StringRef end, OutputSection *os) { |
| if (os && !script->isDiscarded(os)) { |
| addOptionalRegular(start, os, 0); |
| addOptionalRegular(end, os, -1); |
| } else { |
| addOptionalRegular(start, Default, 0); |
| addOptionalRegular(end, Default, 0); |
| } |
| }; |
| |
| define("__preinit_array_start", "__preinit_array_end", Out::preinitArray); |
| define("__init_array_start", "__init_array_end", Out::initArray); |
| define("__fini_array_start", "__fini_array_end", Out::finiArray); |
| |
| if (OutputSection *sec = findSection(".ARM.exidx")) |
| define("__exidx_start", "__exidx_end", sec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSection &osec) { |
| StringRef s = osec.name; |
| if (!isValidCIdentifier(s)) |
| return; |
| addOptionalRegular(saver().save("__start_" + s), &osec, 0, |
| config->zStartStopVisibility); |
| addOptionalRegular(saver().save("__stop_" + s), &osec, -1, |
| config->zStartStopVisibility); |
| } |
| |
| static bool needsPtLoad(OutputSection *sec) { |
| if (!(sec->flags & SHF_ALLOC)) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| // Linker scripts are responsible for aligning addresses. Unfortunately, most |
| // linker scripts are designed for creating two PT_LOADs only, one RX and one |
| // RW. This means that there is no alignment in the RO to RX transition and we |
| // cannot create a PT_LOAD there. |
| static uint64_t computeFlags(uint64_t flags) { |
| if (config->omagic) |
| return PF_R | PF_W | PF_X; |
| if (config->executeOnly && (flags & PF_X)) |
| return flags & ~PF_R; |
| if (config->singleRoRx && !(flags & PF_W)) |
| return flags | PF_X; |
| return flags; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> |
| SmallVector<PhdrEntry *, 0> Writer<ELFT>::createPhdrs(Partition &part) { |
| SmallVector<PhdrEntry *, 0> ret; |
| auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * { |
| ret.push_back(make<PhdrEntry>(type, flags)); |
| return ret.back(); |
| }; |
| |
| unsigned partNo = part.getNumber(); |
| bool isMain = partNo == 1; |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uint64_t flags = computeFlags(PF_R); |
| PhdrEntry *load = nullptr; |
| |
| // nmagic or omagic output does not have PT_PHDR, PT_INTERP, or the readonly |
| // PT_LOAD. |
| if (!config->nmagic && !config->omagic) { |
| // The first phdr entry is PT_PHDR which describes the program header |
| // itself. |
| if (isMain) |
| addHdr(PT_PHDR, PF_R)->add(Out::programHeaders); |
| else |
| addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent()); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (OutputSection *cmd = findSection(".interp", partNo)) |
| addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd); |
| |
| // Add the headers. We will remove them if they don't fit. |
| // In the other partitions the headers are ordinary sections, so they don't |
| // need to be added here. |
| if (isMain) { |
| load = addHdr(PT_LOAD, flags); |
| load->add(Out::elfHeader); |
| load->add(Out::programHeaders); |
| } |
| } |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after processing relocations. |
| // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give |
| // an error message if more than one PT_GNU_RELRO PHDR is required. |
| PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R); |
| bool inRelroPhdr = false; |
| OutputSection *relroEnd = nullptr; |
| for (OutputSection *sec : outputSections) { |
| if (sec->partition != partNo || !needsPtLoad(sec)) |
| continue; |
| if (isRelroSection(sec)) { |
| inRelroPhdr = true; |
| if (!relroEnd) |
| relRo->add(sec); |
| else |
| error("section: " + sec->name + " is not contiguous with other relro" + |
| " sections"); |
| } else if (inRelroPhdr) { |
| inRelroPhdr = false; |
| relroEnd = sec; |
| } |
| } |
| relRo->p_align = 1; |
| |
| for (OutputSection *sec : outputSections) { |
| if (!needsPtLoad(sec)) |
| continue; |
| |
| // Normally, sections in partitions other than the current partition are |
| // ignored. But partition number 255 is a special case: it contains the |
| // partition end marker (.part.end). It needs to be added to the main |
| // partition so that a segment is created for it in the main partition, |
| // which will cause the dynamic loader to reserve space for the other |
| // partitions. |
| if (sec->partition != partNo) { |
| if (isMain && sec->partition == 255) |
| addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec); |
| continue; |
| } |
| |
| // Segments are contiguous memory regions that has the same attributes |
| // (e.g. executable or writable). There is one phdr for each segment. |
| // Therefore, we need to create a new phdr when the next section has |
| // different flags or is loaded at a discontiguous address or memory region |
| // using AT or AT> linker script command, respectively. |
| // |
| // As an exception, we don't create a separate load segment for the ELF |
| // headers, even if the first "real" output has an AT or AT> attribute. |
| // |
| // In addition, NOBITS sections should only be placed at the end of a LOAD |
| // segment (since it's represented as p_filesz < p_memsz). If we have a |
| // not-NOBITS section after a NOBITS, we create a new LOAD for the latter |
| // even if flags match, so as not to require actually writing the |
| // supposed-to-be-NOBITS section to the output file. (However, we cannot do |
| // so when hasSectionsCommand, since we cannot introduce the extra alignment |
| // needed to create a new LOAD) |
| uint64_t newFlags = computeFlags(sec->getPhdrFlags()); |
| bool sameLMARegion = |
| load && !sec->lmaExpr && sec->lmaRegion == load->firstSec->lmaRegion; |
| if (!(load && newFlags == flags && sec != relroEnd && |
| sec->memRegion == load->firstSec->memRegion && |
| (sameLMARegion || load->lastSec == Out::programHeaders) && |
| (script->hasSectionsCommand || sec->type == SHT_NOBITS || |
| load->lastSec->type != SHT_NOBITS))) { |
| load = addHdr(PT_LOAD, newFlags); |
| flags = newFlags; |
| } |
| |
| load->add(sec); |
| } |
| |
| // Add a TLS segment if any. |
| PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R); |
| for (OutputSection *sec : outputSections) |
| if (sec->partition == partNo && sec->flags & SHF_TLS) |
| tlsHdr->add(sec); |
| if (tlsHdr->firstSec) |
| ret.push_back(tlsHdr); |
| |
| // Add an entry for .dynamic. |
| if (OutputSection *sec = part.dynamic->getParent()) |
| addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec); |
| |
| if (relRo->firstSec) |
| ret.push_back(relRo); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (part.ehFrame->isNeeded() && part.ehFrameHdr && |
| part.ehFrame->getParent() && part.ehFrameHdr->getParent()) |
| addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags()) |
| ->add(part.ehFrameHdr->getParent()); |
| |
| // PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes |
| // the dynamic linker fill the segment with random data. |
| if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo)) |
| addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd); |
| |
| if (config->zGnustack != GnuStackKind::None) { |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. If you really want an executable |
| // stack, you can pass -z execstack, but that's not recommended for |
| // security reasons. |
| unsigned perm = PF_R | PF_W; |
| if (config->zGnustack == GnuStackKind::Exec) |
| perm |= PF_X; |
| addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize; |
| } |
| |
| // PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable |
| // is expected to perform W^X violations, such as calling mprotect(2) or |
| // mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on |
| // OpenBSD. |
| if (config->zWxneeded) |
| addHdr(PT_OPENBSD_WXNEEDED, PF_X); |
| |
| if (OutputSection *cmd = findSection(".note.gnu.property", partNo)) |
| addHdr(PT_GNU_PROPERTY, PF_R)->add(cmd); |
| |
| // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the |
| // same alignment. |
| PhdrEntry *note = nullptr; |
| for (OutputSection *sec : outputSections) { |
| if (sec->partition != partNo) |
| continue; |
| if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) { |
| if (!note || sec->lmaExpr || note->lastSec->addralign != sec->addralign) |
| note = addHdr(PT_NOTE, PF_R); |
| note->add(sec); |
| } else { |
| note = nullptr; |
| } |
| } |
| return ret; |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType, |
| unsigned pType, unsigned pFlags) { |
| unsigned partNo = part.getNumber(); |
| auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) { |
| return cmd->partition == partNo && cmd->type == shType; |
| }); |
| if (i == outputSections.end()) |
| return; |
| |
| PhdrEntry *entry = make<PhdrEntry>(pType, pFlags); |
| entry->add(*i); |
| part.phdrs.push_back(entry); |
| } |
| |
| // Place the first section of each PT_LOAD to a different page (of maxPageSize). |
| // This is achieved by assigning an alignment expression to addrExpr of each |
| // such section. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| const PhdrEntry *prev; |
| auto pageAlign = [&](const PhdrEntry *p) { |
| OutputSection *cmd = p->firstSec; |
| if (!cmd) |
| return; |
| cmd->alignExpr = [align = cmd->addralign]() { return align; }; |
| if (!cmd->addrExpr) { |
| // Prefer advancing to align(dot, maxPageSize) + dot%maxPageSize to avoid |
| // padding in the file contents. |
| // |
| // When -z separate-code is used we must not have any overlap in pages |
| // between an executable segment and a non-executable segment. We align to |
| // the next maximum page size boundary on transitions between executable |
| // and non-executable segments. |
| // |
| // SHT_LLVM_PART_EHDR marks the start of a partition. The partition |
| // sections will be extracted to a separate file. Align to the next |
| // maximum page size boundary so that we can find the ELF header at the |
| // start. We cannot benefit from overlapping p_offset ranges with the |
| // previous segment anyway. |
| if (config->zSeparate == SeparateSegmentKind::Loadable || |
| (config->zSeparate == SeparateSegmentKind::Code && prev && |
| (prev->p_flags & PF_X) != (p->p_flags & PF_X)) || |
| cmd->type == SHT_LLVM_PART_EHDR) |
| cmd->addrExpr = [] { |
| return alignToPowerOf2(script->getDot(), config->maxPageSize); |
| }; |
| // PT_TLS is at the start of the first RW PT_LOAD. If `p` includes PT_TLS, |
| // it must be the RW. Align to p_align(PT_TLS) to make sure |
| // p_vaddr(PT_LOAD)%p_align(PT_LOAD) = 0. Otherwise, if |
| // sh_addralign(.tdata) < sh_addralign(.tbss), we will set p_align(PT_TLS) |
| // to sh_addralign(.tbss), while p_vaddr(PT_TLS)=p_vaddr(PT_LOAD) may not |
| // be congruent to 0 modulo p_align(PT_TLS). |
| // |
| // Technically this is not required, but as of 2019, some dynamic loaders |
| // don't handle p_vaddr%p_align != 0 correctly, e.g. glibc (i386 and |
| // x86-64) doesn't make runtime address congruent to p_vaddr modulo |
| // p_align for dynamic TLS blocks (PR/24606), FreeBSD rtld has the same |
| // bug, musl (TLS Variant 1 architectures) before 1.1.23 handled TLS |
| // blocks correctly. We need to keep the workaround for a while. |
| else if (Out::tlsPhdr && Out::tlsPhdr->firstSec == p->firstSec) |
| cmd->addrExpr = [] { |
| return alignToPowerOf2(script->getDot(), config->maxPageSize) + |
| alignToPowerOf2(script->getDot() % config->maxPageSize, |
| Out::tlsPhdr->p_align); |
| }; |
| else |
| cmd->addrExpr = [] { |
| return alignToPowerOf2(script->getDot(), config->maxPageSize) + |
| script->getDot() % config->maxPageSize; |
| }; |
| } |
| }; |
| |
| for (Partition &part : partitions) { |
| prev = nullptr; |
| for (const PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD && p->firstSec) { |
| pageAlign(p); |
| prev = p; |
| } |
| } |
| } |
| |
| // Compute an in-file position for a given section. The file offset must be the |
| // same with its virtual address modulo the page size, so that the loader can |
| // load executables without any address adjustment. |
| static uint64_t computeFileOffset(OutputSection *os, uint64_t off) { |
| // The first section in a PT_LOAD has to have congruent offset and address |
| // modulo the maximum page size. |
| if (os->ptLoad && os->ptLoad->firstSec == os) |
| return alignTo(off, os->ptLoad->p_align, os->addr); |
| |
| // File offsets are not significant for .bss sections other than the first one |
| // in a PT_LOAD/PT_TLS. By convention, we keep section offsets monotonically |
| // increasing rather than setting to zero. |
| if (os->type == SHT_NOBITS && |
| (!Out::tlsPhdr || Out::tlsPhdr->firstSec != os)) |
| return off; |
| |
| // If the section is not in a PT_LOAD, we just have to align it. |
| if (!os->ptLoad) |
| return alignToPowerOf2(off, os->addralign); |
| |
| // If two sections share the same PT_LOAD the file offset is calculated |
| // using this formula: Off2 = Off1 + (VA2 - VA1). |
| OutputSection *first = os->ptLoad->firstSec; |
| return first->offset + os->addr - first->addr; |
| } |
| |
| template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { |
| // Compute the minimum LMA of all non-empty non-NOBITS sections as minAddr. |
| auto needsOffset = [](OutputSection &sec) { |
| return sec.type != SHT_NOBITS && (sec.flags & SHF_ALLOC) && sec.size > 0; |
| }; |
| uint64_t minAddr = UINT64_MAX; |
| for (OutputSection *sec : outputSections) |
| if (needsOffset(*sec)) { |
| sec->offset = sec->getLMA(); |
| minAddr = std::min(minAddr, sec->offset); |
| } |
| |
| // Sections are laid out at LMA minus minAddr. |
| fileSize = 0; |
| for (OutputSection *sec : outputSections) |
| if (needsOffset(*sec)) { |
| sec->offset -= minAddr; |
| fileSize = std::max(fileSize, sec->offset + sec->size); |
| } |
| } |
| |
| static std::string rangeToString(uint64_t addr, uint64_t len) { |
| return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]"; |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| Out::programHeaders->offset = Out::elfHeader->size; |
| uint64_t off = Out::elfHeader->size + Out::programHeaders->size; |
| |
| PhdrEntry *lastRX = nullptr; |
| for (Partition &part : partitions) |
| for (PhdrEntry *p : part.phdrs) |
| if (p->p_type == PT_LOAD && (p->p_flags & PF_X)) |
| lastRX = p; |
| |
| // Layout SHF_ALLOC sections before non-SHF_ALLOC sections. A non-SHF_ALLOC |
| // will not occupy file offsets contained by a PT_LOAD. |
| for (OutputSection *sec : outputSections) { |
| if (!(sec->flags & SHF_ALLOC)) |
| continue; |
| off = computeFileOffset(sec, off); |
| sec->offset = off; |
| if (sec->type != SHT_NOBITS) |
| off += sec->size; |
| |
| // If this is a last section of the last executable segment and that |
| // segment is the last loadable segment, align the offset of the |
| // following section to avoid loading non-segments parts of the file. |
| if (config->zSeparate != SeparateSegmentKind::None && lastRX && |
| lastRX->lastSec == sec) |
| off = alignToPowerOf2(off, config->maxPageSize); |
| } |
| for (OutputSection *osec : outputSections) |
| if (!(osec->flags & SHF_ALLOC)) { |
| osec->offset = alignToPowerOf2(off, osec->addralign); |
| off = osec->offset + osec->size; |
| } |
| |
| sectionHeaderOff = alignToPowerOf2(off, config->wordsize); |
| fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr); |
| |
| // Our logic assumes that sections have rising VA within the same segment. |
| // With use of linker scripts it is possible to violate this rule and get file |
| // offset overlaps or overflows. That should never happen with a valid script |
| // which does not move the location counter backwards and usually scripts do |
| // not do that. Unfortunately, there are apps in the wild, for example, Linux |
| // kernel, which control segment distribution explicitly and move the counter |
| // backwards, so we have to allow doing that to support linking them. We |
| // perform non-critical checks for overlaps in checkSectionOverlap(), but here |
| // we want to prevent file size overflows because it would crash the linker. |
| for (OutputSection *sec : outputSections) { |
| if (sec->type == SHT_NOBITS) |
| continue; |
| if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize)) |
| error("unable to place section " + sec->name + " at file offset " + |
| rangeToString(sec->offset, sec->size) + |
| "; check your linker script for overflows"); |
| } |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) { |
| for (PhdrEntry *p : part.phdrs) { |
| OutputSection *first = p->firstSec; |
| OutputSection *last = p->lastSec; |
| |
| // .ARM.exidx sections may not be within a single .ARM.exidx |
| // output section. We always want to describe just the |
| // SyntheticSection. |
| if (part.armExidx && p->p_type == PT_ARM_EXIDX) { |
| p->p_filesz = part.armExidx->getSize(); |
| p->p_memsz = part.armExidx->getSize(); |
| p->p_offset = first->offset + part.armExidx->outSecOff; |
| p->p_vaddr = first->addr + part.armExidx->outSecOff; |
| p->p_align = part.armExidx->addralign; |
| if (part.elfHeader) |
| p->p_offset -= part.elfHeader->getParent()->offset; |
| |
| if (!p->hasLMA) |
| p->p_paddr = first->getLMA() + part.armExidx->outSecOff; |
| return; |
| } |
| |
| if (first) { |
| p->p_filesz = last->offset - first->offset; |
| if (last->type != SHT_NOBITS) |
| p->p_filesz += last->size; |
| |
| p->p_memsz = last->addr + last->size - first->addr; |
| p->p_offset = first->offset; |
| p->p_vaddr = first->addr; |
| |
| // File offsets in partitions other than the main partition are relative |
| // to the offset of the ELF headers. Perform that adjustment now. |
| if (part.elfHeader) |
| p->p_offset -= part.elfHeader->getParent()->offset; |
| |
| if (!p->hasLMA) |
| p->p_paddr = first->getLMA(); |
| } |
| } |
| } |
| |
| // A helper struct for checkSectionOverlap. |
| namespace { |
| struct SectionOffset { |
| OutputSection *sec; |
| uint64_t offset; |
| }; |
| } // namespace |
| |
| // Check whether sections overlap for a specific address range (file offsets, |
| // load and virtual addresses). |
| static void checkOverlap(StringRef name, std::vector<SectionOffset> §ions, |
| bool isVirtualAddr) { |
| llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) { |
| return a.offset < b.offset; |
| }); |
| |
| // Finding overlap is easy given a vector is sorted by start position. |
| // If an element starts before the end of the previous element, they overlap. |
| for (size_t i = 1, end = sections.size(); i < end; ++i) { |
| SectionOffset a = sections[i - 1]; |
| SectionOffset b = sections[i]; |
| if (b.<
|