--- local: ---
This note attempts to group the intrinsic procedures of Fortran into categories of functions or subroutines with similar interfaces as an aid to comprehension beyond that which might be gained from the standard's alphabetical list.
A brief status of intrinsic procedure support in f18 is also given at the end.
Few procedures are actually described here apart from their interfaces; see the Fortran 2018 standard (section 16) for the complete story.
Intrinsic modules are not covered here.
KIND
actual argument, if present, must be a scalar constant integer expression, of any kind, whose value resolves to some supported kind of the function’s result type. If optional and absent, the kind of the function's result is either the default kind of that category or to the kind of an argument (e.g., as in AINT
).REAL(k)
) when the kind of an actual argument's type must match the kind of another argument, or determines the kind type parameter of the function result.REAL
), it refers to the default kind of that type. Sometimes the word default
will appear for clarity.KIND=KIND(0)
, it is an optional argument. Optional arguments without defaults, e.g. DIM
on many transformationals, are wrapped in []
brackets as in the Fortran standard. When an intrinsic has optional arguments with and without default values, the arguments with default values may appear within the brackets to preserve the order of arguments (e.g., COUNT
).Pure elemental semantics apply to these functions, to wit: when one or more of the actual arguments are arrays, the arguments must be conformable, and the result is also an array. Scalar arguments are expanded when the arguments are not all scalars.
When an elemental intrinsic function is documented here as having an unrestricted specific name, that name may be passed as an actual argument, used as the target of a procedure pointer, appear in a generic interface, and be otherwise used as if it were an external procedure. An INTRINSIC
statement or attribute may have to be applied to an unrestricted specific name to enable such usage.
When a name is being used as a specific procedure for any purpose other than that of a called function, the specific instance of the function that accepts and returns values of the default kinds of the intrinsic types is used. A Fortran INTERFACE
could be written to define each of these unrestricted specific intrinsic function names.
Calls to dummy arguments and procedure pointers that correspond to these specific names must pass only scalar actual argument values.
No other intrinsic function name can be passed as an actual argument, used as a pointer target, appear in a generic interface, or be otherwise used except as the name of a called function. Some of these restricted specific intrinsic functions, e.g. FLOAT
, provide a means for invoking a corresponding generic (REAL
in the case of FLOAT
) with forced argument and result kinds. Others, viz. CHAR
, ICHAR
, INT
, REAL
, and the lexical comparisons like LGE
, have the same name as their generic functions, and it is not clear what purpose is accomplished by the standard by defining them as specific functions.
All of these functions can be used as unrestricted specific names.
ACOS(REAL(k) X) -> REAL(k) ASIN(REAL(k) X) -> REAL(k) ATAN(REAL(k) X) -> REAL(k) ATAN(REAL(k) Y, REAL(k) X) -> REAL(k) = ATAN2(Y, X) ATAN2(REAL(k) Y, REAL(k) X) -> REAL(k) COS(REAL(k) X) -> REAL(k) COSH(REAL(k) X) -> REAL(k) SIN(REAL(k) X) -> REAL(k) SINH(REAL(k) X) -> REAL(k) TAN(REAL(k) X) -> REAL(k) TANH(REAL(k) X) -> REAL(k)
These COMPLEX
versions of some of those functions, and the inverse hyperbolic functions, cannot be used as specific names.
ACOS(COMPLEX(k) X) -> COMPLEX(k) ASIN(COMPLEX(k) X) -> COMPLEX(k) ATAN(COMPLEX(k) X) -> COMPLEX(k) ACOSH(REAL(k) X) -> REAL(k) ACOSH(COMPLEX(k) X) -> COMPLEX(k) ASINH(REAL(k) X) -> REAL(k) ASINH(COMPLEX(k) X) -> COMPLEX(k) ATANH(REAL(k) X) -> REAL(k) ATANH(COMPLEX(k) X) -> COMPLEX(k) COS(COMPLEX(k) X) -> COMPLEX(k) COSH(COMPLEX(k) X) -> COMPLEX(k) SIN(COMPLEX(k) X) -> COMPLEX(k) SINH(COMPLEX(k) X) -> COMPLEX(k) TAN(COMPLEX(k) X) -> COMPLEX(k) TANH(COMPLEX(k) X) -> COMPLEX(k)
These functions can be used as unrestricted specific names.
ABS(REAL(k) A) -> REAL(k) = SIGN(A, 0.0) AIMAG(COMPLEX(k) Z) -> REAL(k) = Z%IM AINT(REAL(k) A, KIND=k) -> REAL(KIND) ANINT(REAL(k) A, KIND=k) -> REAL(KIND) CONJG(COMPLEX(k) Z) -> COMPLEX(k) = CMPLX(Z%RE, -Z%IM) DIM(REAL(k) X, REAL(k) Y) -> REAL(k) = X-MIN(X,Y) DPROD(default REAL X, default REAL Y) -> DOUBLE PRECISION = DBLE(X)*DBLE(Y) EXP(REAL(k) X) -> REAL(k) INDEX(CHARACTER(k) STRING, CHARACTER(k) SUBSTRING, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) LEN(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n LOG(REAL(k) X) -> REAL(k) LOG10(REAL(k) X) -> REAL(k) MOD(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k) = A-P*INT(A/P) NINT(REAL(k) A, KIND=KIND(0)) -> INTEGER(KIND) SIGN(REAL(k) A, REAL(k) B) -> REAL(k) SQRT(REAL(k) X) -> REAL(k) = X ** 0.5
These variants, however cannot be used as specific names without recourse to an alias from the following section:
ABS(INTEGER(k) A) -> INTEGER(k) = SIGN(A, 0) ABS(COMPLEX(k) A) -> REAL(k) = HYPOT(A%RE, A%IM) DIM(INTEGER(k) X, INTEGER(k) Y) -> INTEGER(k) = X-MIN(X,Y) EXP(COMPLEX(k) X) -> COMPLEX(k) LOG(COMPLEX(k) X) -> COMPLEX(k) MOD(REAL(k) A, REAL(k) P) -> REAL(k) = A-P*INT(A/P) SIGN(INTEGER(k) A, INTEGER(k) B) -> INTEGER(k) SQRT(COMPLEX(k) X) -> COMPLEX(k)
ALOG(REAL X) -> REAL = LOG(X) ALOG10(REAL X) -> REAL = LOG10(X) AMOD(REAL A, REAL P) -> REAL = MOD(A, P) CABS(COMPLEX A) = ABS(A) CCOS(COMPLEX X) = COS(X) CEXP(COMPLEX A) -> COMPLEX = EXP(A) CLOG(COMPLEX X) -> COMPLEX = LOG(X) CSIN(COMPLEX X) -> COMPLEX = SIN(X) CSQRT(COMPLEX X) -> COMPLEX = SQRT(X) CTAN(COMPLEX X) -> COMPLEX = TAN(X) DABS(DOUBLE PRECISION A) -> DOUBLE PRECISION = ABS(A) DACOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = ACOS(X) DASIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ASIN(X) DATAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN(X) DATAN2(DOUBLE PRECISION Y, DOUBLE PRECISION X) -> DOUBLE PRECISION = ATAN2(Y, X) DCOS(DOUBLE PRECISION X) -> DOUBLE PRECISION = COS(X) DCOSH(DOUBLE PRECISION X) -> DOUBLE PRECISION = COSH(X) DDIM(DOUBLE PRECISION X, DOUBLE PRECISION Y) -> DOUBLE PRECISION = X-MIN(X,Y) DEXP(DOUBLE PRECISION X) -> DOUBLE PRECISION = EXP(X) DINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = AINT(A) DLOG(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG(X) DLOG10(DOUBLE PRECISION X) -> DOUBLE PRECISION = LOG10(X) DMOD(DOUBLE PRECISION A, DOUBLE PRECISION P) -> DOUBLE PRECISION = MOD(A, P) DNINT(DOUBLE PRECISION A) -> DOUBLE PRECISION = ANINT(A) DSIGN(DOUBLE PRECISION A, DOUBLE PRECISION B) -> DOUBLE PRECISION = SIGN(A, B) DSIN(DOUBLE PRECISION X) -> DOUBLE PRECISION = SIN(X) DSINH(DOUBLE PRECISION X) -> DOUBLE PRECISION = SINH(X) DSQRT(DOUBLE PRECISION X) -> DOUBLE PRECISION = SQRT(X) DTAN(DOUBLE PRECISION X) -> DOUBLE PRECISION = TAN(X) DTANH(DOUBLE PRECISION X) -> DOUBLE PRECISION = TANH(X) IABS(INTEGER A) -> INTEGER = ABS(A) IDIM(INTEGER X, INTEGER Y) -> INTEGER = X-MIN(X,Y) IDNINT(DOUBLE PRECISION A) -> INTEGER = NINT(A) ISIGN(INTEGER A, INTEGER B) -> INTEGER = SIGN(A, B)
(No procedures after this point can be passed as actual arguments, used as pointer targets, or appear as specific procedures in generic interfaces.)
ACHAR(INTEGER(k) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) CEILING(REAL() A, KIND=KIND(0)) -> INTEGER(KIND) CHAR(INTEGER(any) I, KIND=KIND('')) -> CHARACTER(KIND,LEN=1) CMPLX(COMPLEX(k) X, KIND=KIND(0.0D0)) -> COMPLEX(KIND) CMPLX(INTEGER or REAL or BOZ X, INTEGER or REAL or BOZ Y=0, KIND=KIND((0,0))) -> COMPLEX(KIND) DBLE(INTEGER or REAL or COMPLEX or BOZ A) = REAL(A, KIND=KIND(0.0D0)) EXPONENT(REAL(any) X) -> default INTEGER FLOOR(REAL(any) A, KIND=KIND(0)) -> INTEGER(KIND) IACHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) ICHAR(CHARACTER(KIND=k,LEN=1) C, KIND=KIND(0)) -> INTEGER(KIND) INT(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0)) -> INTEGER(KIND) LOGICAL(LOGICAL(any) L, KIND=KIND(.TRUE.)) -> LOGICAL(KIND) REAL(INTEGER or REAL or COMPLEX or BOZ A, KIND=KIND(0.0)) -> REAL(KIND)
N.B. BESSEL_JN(N1, N2, X)
and BESSEL_YN(N1, N2, X)
are categorized below with the transformational intrinsic functions.
BESSEL_J0(REAL(k) X) -> REAL(k) BESSEL_J1(REAL(k) X) -> REAL(k) BESSEL_JN(INTEGER(n) N, REAL(k) X) -> REAL(k) BESSEL_Y0(REAL(k) X) -> REAL(k) BESSEL_Y1(REAL(k) X) -> REAL(k) BESSEL_YN(INTEGER(n) N, REAL(k) X) -> REAL(k) ERF(REAL(k) X) -> REAL(k) ERFC(REAL(k) X) -> REAL(k) ERFC_SCALED(REAL(k) X) -> REAL(k) FRACTION(REAL(k) X) -> REAL(k) GAMMA(REAL(k) X) -> REAL(k) HYPOT(REAL(k) X, REAL(k) Y) -> REAL(k) = SQRT(X*X+Y*Y) without spurious overflow IMAGE_STATUS(INTEGER(any) IMAGE [, scalar TEAM_TYPE TEAM ]) -> default INTEGER IS_IOSTAT_END(INTEGER(any) I) -> default LOGICAL IS_IOSTAT_EOR(INTEGER(any) I) -> default LOGICAL LOG_GAMMA(REAL(k) X) -> REAL(k) MAX(INTEGER(k) ...) -> INTEGER(k) MAX(REAL(k) ...) -> REAL(k) MAX(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) MERGE(any type TSOURCE, same type FSOURCE, LOGICAL(any) MASK) -> type of FSOURCE MIN(INTEGER(k) ...) -> INTEGER(k) MIN(REAL(k) ...) -> REAL(k) MIN(CHARACTER(KIND=k) ...) -> CHARACTER(KIND=k,LEN=MAX(LEN(...))) MODULO(INTEGER(k) A, INTEGER(k) P) -> INTEGER(k); P*result >= 0 MODULO(REAL(k) A, REAL(k) P) -> REAL(k) = A - P*FLOOR(A/P) NEAREST(REAL(k) X, REAL(any) S) -> REAL(k) OUT_OF_RANGE(INTEGER(any) X, scalar INTEGER or REAL(k) MOLD) -> default LOGICAL OUT_OF_RANGE(REAL(any) X, scalar REAL(k) MOLD) -> default LOGICAL OUT_OF_RANGE(REAL(any) X, scalar INTEGER(any) MOLD, scalar LOGICAL(any) ROUND=.FALSE.) -> default LOGICAL RRSPACING(REAL(k) X) -> REAL(k) SCALE(REAL(k) X, INTEGER(any) I) -> REAL(k) SET_EXPONENT(REAL(k) X, INTEGER(any) I) -> REAL(k) SPACING(REAL(k) X) -> REAL(k)
AMAX0(INTEGER ...) = REAL(MAX(...)) AMAX1(REAL ...) = MAX(...) AMIN0(INTEGER...) = REAL(MIN(...)) AMIN1(REAL ...) = MIN(...) DMAX1(DOUBLE PRECISION ...) = MAX(...) DMIN1(DOUBLE PRECISION ...) = MIN(...) FLOAT(INTEGER I) = REAL(I) IDINT(DOUBLE PRECISION A) = INT(A) IFIX(REAL A) = INT(A) MAX0(INTEGER ...) = MAX(...) MAX1(REAL ...) = INT(MAX(...)) MIN0(INTEGER ...) = MIN(...) MIN1(REAL ...) = INT(MIN(...)) SNGL(DOUBLE PRECISION A) = REAL(A)
Many of these accept a typeless “BOZ” literal as an actual argument. It is interpreted as having the kind of intrinsic INTEGER
type as another argument, as if the typeless were implicitly wrapped in a call to INT()
. When multiple arguments can be either INTEGER
values or typeless constants, it is forbidden for all of them to be typeless constants if the result of the function is INTEGER
(i.e., only BGE
, BGT
, BLE
, and BLT
can have multiple typeless arguments).
BGE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL BGT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL BLE(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL BLT(INTEGER(n1) or BOZ I, INTEGER(n2) or BOZ J) -> default LOGICAL BTEST(INTEGER(n1) I, INTEGER(n2) POS) -> default LOGICAL DSHIFTL(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) DSHIFTL(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) DSHIFTR(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(any) SHIFT) -> INTEGER(k) DSHIFTR(BOZ I, INTEGER(k), INTEGER(any) SHIFT) -> INTEGER(k) IAND(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) IAND(BOZ I, INTEGER(k) J) -> INTEGER(k) IBCLR(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) IBITS(INTEGER(k) I, INTEGER(n1) POS, INTEGER(n2) LEN) -> INTEGER(k) IBSET(INTEGER(k) I, INTEGER(any) POS) -> INTEGER(k) IEOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) IEOR(BOZ I, INTEGER(k) J) -> INTEGER(k) IOR(INTEGER(k) I, INTEGER(k) or BOZ J) -> INTEGER(k) IOR(BOZ I, INTEGER(k) J) -> INTEGER(k) ISHFT(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) ISHFTC(INTEGER(k) I, INTEGER(n1) SHIFT, INTEGER(n2) SIZE=BIT_SIZE(I)) -> INTEGER(k) LEADZ(INTEGER(any) I) -> default INTEGER MASKL(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) MASKR(INTEGER(any) I, KIND=KIND(0)) -> INTEGER(KIND) MERGE_BITS(INTEGER(k) I, INTEGER(k) or BOZ J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) MERGE_BITS(BOZ I, INTEGER(k) J, INTEGER(k) or BOZ MASK) = IOR(IAND(I,MASK),IAND(J,NOT(MASK))) NOT(INTEGER(k) I) -> INTEGER(k) POPCNT(INTEGER(any) I) -> default INTEGER POPPAR(INTEGER(any) I) -> default INTEGER = IAND(POPCNT(I), Z'1') SHIFTA(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) SHIFTL(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) SHIFTR(INTEGER(k) I, INTEGER(any) SHIFT) -> INTEGER(k) TRAILZ(INTEGER(any) I) -> default INTEGER
See also INDEX
and LEN
above among the elemental intrinsic functions with unrestricted specific names.
ADJUSTL(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) ADJUSTR(CHARACTER(k,LEN=n) STRING) -> CHARACTER(k,LEN=n) LEN_TRIM(CHARACTER(k,n) STRING, KIND=KIND(0)) -> INTEGER(KIND) = n LGE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL LGT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL LLE(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL LLT(CHARACTER(k,n1) STRING_A, CHARACTER(k,n2) STRING_B) -> default LOGICAL SCAN(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND) VERIFY(CHARACTER(k,n) STRING, CHARACTER(k,m) SET, LOGICAL(any) BACK=.FALSE., KIND=KIND(0)) -> INTEGER(KIND)
SCAN
returns the index of the first (or last, if BACK=.TRUE.
) character in STRING
that is present in SET
, or zero if none is.
VERIFY
is essentially the opposite: it returns the index of the first (or last) character in STRING
that is not present in SET
, or zero if all are.
This category comprises a large collection of intrinsic functions that are collected together because they somehow transform their arguments in a way that prevents them from being elemental. All of them are pure, however.
Some general rules apply to the transformational intrinsic functions:
DIM
arguments are optional; if present, the actual argument must be a scalar integer of any kind.DIM
argument is absent, or an ARRAY
or MASK
argument is a vector, the result of the function is scalar; otherwise, the result is an array of the same shape as the ARRAY
or MASK
argument with the dimension DIM
removed from the shape.MASK
argument, it must be conformable with its ARRAY
argument if it is present, and the mask can be any kind of LOGICAL
. It can be scalar.numeric
here can be any kind of INTEGER
, REAL
, or COMPLEX
.relational
here can be any kind of INTEGER
, REAL
, or CHARACTER
.any
here denotes any intrinsic or derived type.(..)
denotes an array of any rank (but not an assumed-rank array).ALL(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) ANY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k) COUNT(LOGICAL(any) MASK(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) PARITY(LOGICAL(k) MASK(..) [, DIM ]) -> LOGICAL(k)
IALL(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) IANY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) IPARITY(INTEGER(k) ARRAY(..) [, DIM, MASK ]) -> INTEGER(k) NORM2(REAL(k) X(..) [, DIM ]) -> REAL(k) PRODUCT(numeric ARRAY(..) [, DIM, MASK ]) -> numeric SUM(numeric ARRAY(..) [, DIM, MASK ]) -> numeric
NORM2
generalizes HYPOT
by computing SQRT(SUM(X*X))
while avoiding spurious overflows.
MAXVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k) MINVAL(relational(k) ARRAY(..) [, DIM, MASK ]) -> relational(k)
When the optional DIM
argument is absent, the result is an INTEGER(KIND)
vector whose length is the rank of ARRAY
. When the optional DIM
argument is present, the result is an INTEGER(KIND)
array of rank RANK(ARRAY)-1
and shape equal to that of ARRAY
with the dimension DIM
removed.
The optional BACK
argument is a scalar LOGICAL value of any kind. When present and .TRUE.
, it causes the function to return the index of the last occurence of the target or extreme value.
For FINDLOC
, ARRAY
may have any of the five intrinsic types, and VALUE
must a scalar value of a type for which ARRAY==VALUE
or ARRAY .EQV. VALUE
is an acceptable expression.
FINDLOC(intrinsic ARRAY(..), scalar VALUE [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) MAXLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ]) MINLOC(relational ARRAY(..) [, DIM, MASK, KIND=KIND(0), BACK=.FALSE. ])
The optional DIM
argument to these functions must be a scalar integer of any kind, and it takes a default value of 1 when absent.
CSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, DIM ]) -> same type/kind/shape as ARRAY
Either SHIFT
is scalar or RANK(SHIFT) == RANK(ARRAY) - 1
and SHAPE(SHIFT)
is that of SHAPE(ARRAY)
with element DIM
removed.
EOSHIFT(any ARRAY(..), INTEGER(any) SHIFT(..) [, BOUNDARY, DIM ]) -> same type/kind/shape as ARRAY
SHIFT
is scalar or RANK(SHIFT) == RANK(ARRAY) - 1
and SHAPE(SHIFT)
is that of SHAPE(ARRAY)
with element DIM
removed.BOUNDARY
is present, it must have the same type and parameters as ARRAY
.BOUNDARY
is absent, ARRAY
must be of an intrinsic type, and the default BOUNDARY
is the obvious 0
, ' '
, or .FALSE.
value of KIND(ARRAY)
.BOUNDARY
is present, either it is scalar, or RANK(BOUNDARY) == RANK(ARRAY) - 1
and SHAPE(BOUNDARY)
is that of SHAPE(ARRAY)
with element DIM
removed.PACK(any ARRAY(..), LOGICAL(any) MASK(..)) -> vector of same type and kind as ARRAY
MASK
is conformable with ARRAY
and may be scalar.COUNT(MASK)
if MASK
is an array, else SIZE(ARRAY)
if MASK
is .TRUE.
, else zero.PACK(any ARRAY(..), LOGICAL(any) MASK(..), any VECTOR(n)) -> vector of same type, kind, and size as VECTOR
MASK
is conformable with ARRAY
and may be scalar.VECTOR
has the same type and kind as ARRAY
.VECTOR
must not be smaller than result of PACK
with no VECTOR
argument.VECTOR
are replaced with elements from ARRAY
as if PACK
had been invoked without VECTOR
.RESHAPE(any SOURCE(..), INTEGER(k) SHAPE(n) [, PAD(..), INTEGER(k2) ORDER(n) ]) -> SOURCE array with shape SHAPE
ORDER
is present, it is a vector of the same size as SHAPE
, and contains a permutation.PAD
are used to fill out the result once SOURCE
has been consumed.SPREAD(any SOURCE, DIM, scalar INTEGER(any) NCOPIES) -> same type as SOURCE, rank=RANK(SOURCE)+1 TRANSFER(any SOURCE, any MOLD) -> scalar if MOLD is scalar, else vector; same type and kind as MOLD TRANSFER(any SOURCE, any MOLD, scalar INTEGER(any) SIZE) -> vector(SIZE) of type and kind of MOLD TRANSPOSE(any MATRIX(n,m)) -> matrix(m,n) of same type and kind as MATRIX
The shape of the result of SPREAD
is the same as that of SOURCE
, with NCOPIES
inserted at position DIM
.
UNPACK(any VECTOR(n), LOGICAL(any) MASK(..), FIELD) -> type and kind of VECTOR, shape of MASK
FIELD
has same type and kind as VECTOR
and is conformable with MASK
.
BESSEL_JN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) BESSEL_YN(INTEGER(n1) N1, INTEGER(n2) N2, REAL(k) X) -> REAL(k) vector (MAX(N2-N1+1,0)) COMMAND_ARGUMENT_COUNT() -> scalar default INTEGER DOT_PRODUCT(LOGICAL(k) VECTOR_A(n), LOGICAL(k) VECTOR_B(n)) -> LOGICAL(k) = ANY(VECTOR_A .AND. VECTOR_B) DOT_PRODUCT(COMPLEX(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(CONJG(VECTOR_A) * VECTOR_B) DOT_PRODUCT(INTEGER(any) or REAL(any) VECTOR_A(n), numeric VECTOR_B(n)) = SUM(VECTOR_A * VECTOR_B) MATMUL(numeric ARRAY_A(j), numeric ARRAY_B(j,k)) -> numeric vector(k) MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k)) -> numeric vector(j) MATMUL(numeric ARRAY_A(j,k), numeric ARRAY_B(k,m)) -> numeric matrix(j,m) MATMUL(LOGICAL(n1) ARRAY_A(j), LOGICAL(n2) ARRAY_B(j,k)) -> LOGICAL vector(k) MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k)) -> LOGICAL vector(j) MATMUL(LOGICAL(n1) ARRAY_A(j,k), LOGICAL(n2) ARRAY_B(k,m)) -> LOGICAL matrix(j,m) NULL([POINTER/ALLOCATABLE MOLD]) -> POINTER REDUCE(any ARRAY(..), function OPERATION [, DIM, LOGICAL(any) MASK(..), IDENTITY, LOGICAL ORDERED=.FALSE. ]) REPEAT(CHARACTER(k,n) STRING, INTEGER(any) NCOPIES) -> CHARACTER(k,n*NCOPIES) SELECTED_CHAR_KIND('DEFAULT' or 'ASCII' or 'ISO_10646' or ...) -> scalar default INTEGER SELECTED_INT_KIND(scalar INTEGER(any) R) -> scalar default INTEGER SELECTED_REAL_KIND([scalar INTEGER(any) P, scalar INTEGER(any) R, scalar INTEGER(any) RADIX]) -> scalar default INTEGER SHAPE(SOURCE, KIND=KIND(0)) -> INTEGER(KIND)(RANK(SOURCE)) TRIM(CHARACTER(k,n) STRING) -> CHARACTER(k)
The type and kind of the result of a numeric MATMUL
is the same as would result from a multiplication of an element of ARRAY_A and an element of ARRAY_B.
The kind of the LOGICAL
result of a LOGICAL
MATMUL
is the same as would result from an intrinsic .AND.
operation between an element of ARRAY_A
and an element of ARRAY_B
.
Note that DOT_PRODUCT
with a COMPLEX
first argument operates on its complex conjugate, but that MATMUL
with a COMPLEX
argument does not.
The MOLD
argument to NULL
may be omitted only in a context where the type of the pointer is known, such as an initializer or pointer assignment statement.
At least one argument must be present in a call to SELECTED_REAL_KIND
.
An assumed-rank array may be passed to SHAPE
, and if it is associated with an assumed-size array, the last element of the result will be -1.
FAILED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector GET_TEAM([scalar INTEGER(?) LEVEL]) -> scalar TEAM_TYPE IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n) [, scalar TEAM_TYPE TEAM ]) -> scalar default INTEGER IMAGE_INDEX(COARRAY, INTEGER(any) SUB(n), scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER NUM_IMAGES([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER NUM_IMAGES(scalar INTEGER(any) TEAM_NUMBER) -> scalar default INTEGER STOPPED_IMAGES([scalar TEAM_TYPE TEAM, KIND=KIND(0)]) -> INTEGER(KIND) vector TEAM_NUMBER([scalar TEAM_TYPE TEAM]) -> scalar default INTEGER THIS_IMAGE([COARRAY, DIM, scalar TEAM_TYPE TEAM]) -> default INTEGER
The result of THIS_IMAGE
is a scalar if DIM
is present or if COARRAY
is absent, and a vector whose length is the corank of COARRAY
otherwise.
These are neither elemental nor transformational; all are pure.
All of these functions return constants. The value of the argument is not used, and may well be undefined.
BIT_SIZE(INTEGER(k) I(..)) -> INTEGER(k) DIGITS(INTEGER or REAL X(..)) -> scalar default INTEGER EPSILON(REAL(k) X(..)) -> scalar REAL(k) HUGE(INTEGER(k) X(..)) -> scalar INTEGER(k) HUGE(REAL(k) X(..)) -> scalar of REAL(k) KIND(intrinsic X(..)) -> scalar default INTEGER MAXEXPONENT(REAL(k) X(..)) -> scalar default INTEGER MINEXPONENT(REAL(k) X(..)) -> scalar default INTEGER NEW_LINE(CHARACTER(k,n) A(..)) -> scalar CHARACTER(k,1) = CHAR(10) PRECISION(REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER RADIX(INTEGER(k) or REAL(k) X(..)) -> scalar default INTEGER, always 2 RANGE(INTEGER(k) or REAL(k) or COMPLEX(k) X(..)) -> scalar default INTEGER TINY(REAL(k) X(..)) -> scalar REAL(k)
The results are scalar when DIM
is present, and a vector of length=(co)rank((CO)ARRAY
) when DIM
is absent.
LBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) LCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) SIZE(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) UBOUND(any ARRAY(..) [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND) UCOBOUND(any COARRAY [, DIM, KIND=KIND(0) ]) -> INTEGER(KIND)
Assumed-rank arrays may be used with LBOUND
, SIZE
, and UBOUND
.
ALLOCATED(any type ALLOCATABLE ARRAY) -> scalar default LOGICAL ALLOCATED(any type ALLOCATABLE SCALAR) -> scalar default LOGICAL ASSOCIATED(any type POINTER POINTER [, same type TARGET]) -> scalar default LOGICAL COSHAPE(COARRAY, KIND=KIND(0)) -> INTEGER(KIND) vector of length corank(COARRAY) EXTENDS_TYPE_OF(A, MOLD) -> default LOGICAL IS_CONTIGUOUS(any data ARRAY(..)) -> scalar default LOGICAL PRESENT(OPTIONAL A) -> scalar default LOGICAL RANK(any data A) -> scalar default INTEGER = 0 if A is scalar, SIZE(SHAPE(A)) if A is an array, rank if assumed-rank SAME_TYPE_AS(A, B) -> scalar default LOGICAL STORAGE_SIZE(any data A, KIND=KIND(0)) -> INTEGER(KIND)
The arguments to EXTENDS_TYPE_OF
must be of extensible derived types or be unlimited polymorphic.
An assumed-rank array may be used with IS_CONTIGUOUS
and RANK
.
(TODO: complete these descriptions)
INTERFACE SUBROUTINE MVBITS(FROM, FROMPOS, LEN, TO, TOPOS) INTEGER(k1) :: FROM, TO INTENT(IN) :: FROM INTENT(INOUT) :: TO INTEGER(k2), INTENT(IN) :: FROMPOS INTEGER(k3), INTENT(IN) :: LEN INTEGER(k4), INTENT(IN) :: TOPOS END SUBROUTINE END INTERFACE
CALL CPU_TIME(REAL INTENT(OUT) TIME)
The kind of TIME
is not specified in the standard.
CALL DATE_AND_TIME([DATE, TIME, ZONE, VALUES])
OPTIONAL
and INTENT(OUT)
.DATE
, TIME
, and ZONE
are scalar default CHARACTER
.VALUES
is a vector of at least 8 elements of INTEGER(KIND >= 2)
.CALL EVENT_QUERY(EVENT, COUNT [, STAT]) CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ]) CALL GET_COMMAND([COMMAND, LENGTH, STATUS, ERRMSG ]) CALL GET_COMMAND_ARGUMENT(NUMBER [, VALUE, LENGTH, STATUS, ERRMSG ]) CALL GET_ENVIRONMENT_VARIABLE(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ]) CALL MOVE_ALLOC(ALLOCATABLE INTENT(INOUT) FROM, ALLOCATABLE INTENT(OUT) TO [, STAT, ERRMSG ]) CALL RANDOM_INIT(LOGICAL(k1) INTENT(IN) REPEATABLE, LOGICAL(k2) INTENT(IN) IMAGE_DISTINCT) CALL RANDOM_NUMBER(REAL(k) INTENT(OUT) HARVEST(..)) CALL RANDOM_SEED([SIZE, PUT, GET]) CALL SYSTEM_CLOCK([COUNT, COUNT_RATE, COUNT_MAX])
CALL ATOMIC_ADD(ATOM, VALUE [, STAT=]) CALL ATOMIC_AND(ATOM, VALUE [, STAT=]) CALL ATOMIC_CAS(ATOM, OLD, COMPARE, NEW [, STAT=]) CALL ATOMIC_DEFINE(ATOM, VALUE [, STAT=]) CALL ATOMIC_FETCH_ADD(ATOM, VALUE, OLD [, STAT=]) CALL ATOMIC_FETCH_AND(ATOM, VALUE, OLD [, STAT=]) CALL ATOMIC_FETCH_OR(ATOM, VALUE, OLD [, STAT=]) CALL ATOMIC_FETCH_XOR(ATOM, VALUE, OLD [, STAT=]) CALL ATOMIC_OR(ATOM, VALUE [, STAT=]) CALL ATOMIC_REF(VALUE, ATOM [, STAT=]) CALL ATOMIC_XOR(ATOM, VALUE [, STAT=])
CALL CO_BROADCAST CALL CO_MAX CALL CO_MIN CALL CO_REDUCE CALL CO_SUM
ACCESS (GNU extension) is not supported on Windows. Otherwise:
CHARACTER(LEN=*) :: path = 'path/to/file' IF (ACCESS(path, 'rwx')) & ...
AND, OR, XOR LSHIFT, RSHIFT, SHIFT ZEXT, IZEXT COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D COMPL DCMPLX EQV, NEQV INT8 JINT, JNINT, KNINT LOC
DCMPLX(X,Y), QCMPLX(X,Y) DREAL(DOUBLE COMPLEX A) -> DOUBLE PRECISION DFLOAT, DREAL QEXT, QFLOAT, QREAL DNUM, INUM, JNUM, KNUM, QNUM, RNUM - scan value from string ZEXT RAN, RANF ILEN(I) = BIT_SIZE(I) SIZEOF MCLOCK, SECNDS COTAN(X) = 1.0/TAN(X) COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COTAND - degrees AND, OR, XOR LSHIFT, RSHIFT IBCHNG, ISHA, ISHC, ISHL, IXOR IARG, IARGC, NARGS, NUMARG BADDRESS, IADDR CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, LOC MALLOC, FREE
CALL FDATE(TIME) CALL GETLOG(USRNAME) CALL GETENV(NAME [, VALUE, LENGTH, STATUS, TRIM_NAME, ERRMSG ])
When the name of a procedure in a program is the same as the one of an intrinsic procedure, and nothing other than its usage allows to decide whether the procedure is the intrinsic or not (i.e, it does not appear in an INTRINSIC or EXTERNAL attribute statement, is not an use/host associated procedure...), Fortran 2018 standard section 19.5.1.4 point 6 rules that the procedure is established to be intrinsic if it is invoked as an intrinsic procedure.
In case the invocation would be an error if the procedure were the intrinsic (e.g. wrong argument number or type), the broad wording of the standard leaves two choices to the compiler: emit an error about the intrinsic invocation, or consider this is an external procedure and emit no error.
f18 will always consider this case to be the intrinsic and emit errors, unless the procedure is used as a function (resp. subroutine) and the intrinsic is a subroutine (resp. function). The table below gives some examples of decisions made by Fortran compilers in such case.
What is ACOS ? | Bad intrinsic call | External with warning | External no warning | Other error |
---|---|---|---|---|
print*, ACOS() | gfortran, nag, xlf, f18 | ifort | nvfortran | |
print*, ACOS(I) | gfortran, nag, xlf, f18 | ifort | nvfortran | |
print*, ACOS(X=I) | gfortran, nag, xlf, f18 | ifort | nvfortran (keyword on implicit extrenal ) | |
print*, ACOS(X, X) | gfortran, nag, xlf, f18 | ifort | nvfortran | |
CALL ACOS(X) | gfortran, nag, xlf, nvfortran, ifort, f18 |
The rationale for f18 behavior is that when referring to a procedure with an argument number or type that does not match the intrinsic specification, it seems safer to block the rather likely case where the user is using the intrinsic the wrong way. In case the user wanted to refer to an external function, he can add an explicit EXTERNAL statement with no other consequences on the program. However, it seems rather unlikely that a user would confuse an intrinsic subroutine for a function and vice versa. Given no compiler is issuing an error here, changing the behavior might affect existing programs that omit the EXTERNAL attribute in such case.
Also note that in general, the standard gives the compiler the right to consider any procedure that is not explicitly external as a non standard intrinsic (section 4.2 point 4). So it is highly advised for the programmer to use EXTERNAL statements to prevent any ambiguity.
This section gives an overview of the support inside f18 libraries for the intrinsic procedures listed above. It may be outdated, refer to f18 code base for the actual support status.
F18 semantic expression analysis phase detects intrinsic procedure references, validates the argument types and deduces the return types. This phase currently supports all the intrinsic procedures listed above but the ones in the table below.
Intrinsic Category | Intrinsic Procedures Lacking Support |
---|---|
Coarray intrinsic functions | COSHAPE |
Object characteristic inquiry functions | ALLOCATED, ASSOCIATED, EXTENDS_TYPE_OF, IS_CONTIGUOUS, PRESENT, RANK, SAME_TYPE, STORAGE_SIZE |
Type inquiry intrinsic functions | BIT_SIZE, DIGITS, EPSILON, HUGE, KIND, MAXEXPONENT, MINEXPONENT, NEW_LINE, PRECISION, RADIX, RANGE, TINY |
Non-standard intrinsic functions | AND, OR, XOR, SHIFT, ZEXT, IZEXT, COSD, SIND, TAND, ACOSD, ASIND, ATAND, ATAN2D, COMPL, EQV, NEQV, INT8, JINT, JNINT, KNINT, QCMPLX, DREAL, DFLOAT, QEXT, QFLOAT, QREAL, DNUM, NUM, JNUM, KNUM, QNUM, RNUM, RAN, RANF, ILEN, SIZEOF, MCLOCK, SECNDS, COTAN, IBCHNG, ISHA, ISHC, ISHL, IXOR, IARG, IARGC, NARGS, GETPID, NUMARG, BADDRESS, IADDR, CACHESIZE, EOF, FP_CLASS, INT_PTR_KIND, ISNAN, MALLOC, FREE, GETUID, GETGID |
Intrinsic subroutines | MVBITS (elemental), CPU_TIME, DATE_AND_TIME, EVENT_QUERY, EXECUTE_COMMAND_LINE, GET_COMMAND, GET_COMMAND_ARGUMENT, GET_ENVIRONMENT_VARIABLE, MOVE_ALLOC, RANDOM_INIT, RANDOM_NUMBER, RANDOM_SEED, SIGNAL, SLEEP, SYSTEM, SYSTEM_CLOCK |
Atomic intrinsic subroutines | ATOMIC_ADD |
Collective intrinsic subroutines | CO_REDUCE |
Library subroutines | FDATE, GETLOG, GETENV |
Fortran Constant Expressions can contain references to a certain number of intrinsic functions (see Fortran 2018 standard section 10.1.12 for more details). Constant Expressions may be used to define kind arguments. Therefore, the semantic expression analysis phase must be able to fold references to intrinsic functions listed in section 10.1.12.
F18 intrinsic function folding is either performed by implementations directly operating on f18 scalar types or by using host runtime functions and host hardware types. F18 supports folding elemental intrinsic functions over arrays when an implementation is provided for the scalars (regardless of whether it is using host hardware types or not). The status of intrinsic function folding support is given in the sub-sections below.
Implementations using f18 scalar types enables folding intrinsic functions on any host and with any possible type kind supported by f18. The intrinsic functions listed below are folded using host independent implementations.
Return Type | Intrinsic Functions with Host Independent Folding Support |
---|---|
INTEGER | ABS(INTEGER(k)), DIM(INTEGER(k), INTEGER(k)), DSHIFTL, DSHIFTR, IAND, IBCLR, IBSET, IEOR, INT, IOR, ISHFT, KIND, LEN, LEADZ, MASKL, MASKR, MERGE_BITS, POPCNT, POPPAR, SHIFTA, SHIFTL, SHIFTR, TRAILZ |
REAL | ABS(REAL(k)), ABS(COMPLEX(k)), AIMAG, AINT, DPROD, REAL |
COMPLEX | CMPLX, CONJG |
LOGICAL | BGE, BGT, BLE, BLT |
Implementations using the host runtime may not be available for all supported f18 types depending on the host hardware types and the libraries available on the host. The actual support on a host depends on what the host hardware types are. The list below gives the functions that are folded using host runtime and the related C/C++ types. F18 automatically detects if these types match an f18 scalar type. If so, folding of the intrinsic functions will be possible for the related f18 scalar type, otherwise an error message will be produced by f18 when attempting to fold related intrinsic functions.
C/C++ Host Type | Intrinsic Functions with Host Standard C++ Library Based Folding Support |
---|---|
float, double and long double | ACOS, ACOSH, ASINH, ATAN, ATAN2, ATANH, COS, COSH, ERF, ERFC, EXP, GAMMA, HYPOT, LOG, LOG10, LOG_GAMMA, MOD, SIN, SQRT, SINH, SQRT, TAN, TANH |
std::complex for float, double and long double | ACOS, ACOSH, ASIN, ASINH, ATAN, ATANH, COS, COSH, EXP, LOG, SIN, SINH, SQRT, TAN, TANH |
On top of the default usage of C++ standard library functions for folding described in the table above, it is possible to compile f18 evaluate library with libpgmath so that it can be used for folding. To do so, one must have a compiled version of the libpgmath library available on the host and add -DLIBPGMATH_DIR=<path to the compiled shared libpgmath library>
to the f18 cmake command.
Libpgmath comes with real and complex functions that replace C++ standard library float and double functions to fold all the intrinsic functions listed in the table above. It has no long double versions. If the host long double matches an f18 scalar type, C++ standard library functions will still be used for folding expressions with this scalar type. Libpgmath adds the possibility to fold the following functions for f18 real scalar types related to host float and double types.
C/C++ Host Type | Additional Intrinsic Function Folding Support with Libpgmath (Optional) |
---|---|
float and double | BESSEL_J0, BESSEL_J1, BESSEL_JN (elemental only), BESSEL_Y0, BESSEL_Y1, BESSEL_Yn (elemental only), ERFC_SCALED |
Libpgmath comes in three variants (precise, relaxed and fast). So far, only the precise version is used for intrinsic function folding in f18. It guarantees the greatest numerical precision.
The following intrinsic functions are allowed in constant expressions but f18 is not yet able to fold them. Note that there might be constraints on the arguments so that these intrinsics can be used in constant expressions (see section 10.1.12 of Fortran 2018 standard).
ALL, ACHAR, ADJUSTL, ADJUSTR, ANINT, ANY, BESSEL_JN (transformational only), BESSEL_YN (transformational only), BTEST, CEILING, CHAR, COUNT, CSHIFT, DOT_PRODUCT, DIM (REAL only), DOT_PRODUCT, EOSHIFT, FINDLOC, FLOOR, FRACTION, HUGE, IACHAR, IALL, IANY, IPARITY, IBITS, ICHAR, IMAGE_STATUS, INDEX, ISHFTC, IS_IOSTAT_END, IS_IOSTAT_EOR, LBOUND, LEN_TRIM, LGE, LGT, LLE, LLT, LOGICAL, MATMUL, MAX, MAXLOC, MAXVAL, MERGE, MIN, MINLOC, MINVAL, MOD (INTEGER only), MODULO, NEAREST, NINT, NORM2, NOT, OUT_OF_RANGE, PACK, PARITY, PRODUCT, REPEAT, REDUCE, RESHAPE, RRSPACING, SCAN, SCALE, SELECTED_CHAR_KIND, SELECTED_INT_KIND, SELECTED_REAL_KIND, SET_EXPONENT, SHAPE, SIGN, SIZE, SPACING, SPREAD, SUM, TINY, TRANSFER, TRANSPOSE, TRIM, UBOUND, UNPACK, VERIFY.
Coarray, non standard, IEEE and ISO_C_BINDINGS intrinsic functions that can be used in constant expressions have currently no folding support at all.
CALL EXECUTE_COMMAND_LINE(COMMAND [, WAIT, EXITSTAT, CMDSTAT, CMDMSG ])
Argument | Description |
---|---|
COMMAND | Shall be a default CHARACTER scalar. |
WAIT | (Optional) Shall be a default LOGICAL scalar. |
EXITSTAT | (Optional) Shall be an INTEGER with kind greater than or equal to 4. |
CMDSTAT | (Optional) Shall be an INTEGER with kind greater than or equal to 2. |
CMDMSG | (Optional) Shall be a CHARACTER scalar of the default kind. |
COMMAND
:WAIT
:false
, the command is executed asynchronously.true
, it is executed synchronously.std::system
on all systems.fork()
on POSIX-compatible systems or CreateProcess()
on Windows.EXITSTAT
:std::system(cmd)
.WEXITSTATUS(status)
, then assigned to EXITSTAT
.std::system()
.CMDSTAT
:ASYNC_NO_SUPPORT_ERR
- No error condition occurs, but WAIT
is present with the value false
, and the processor does not support asynchronous execution.NO_SUPPORT_ERR
- The processor does not support command line execution. (system returns -1 with errno ENOENT
)CMD_EXECUTED
- Command executed with no error.FORK_ERR
- Fork Error (occurs only on POSIX-compatible systems).EXECL_ERR
- Execution Error (system returns -1 with other errno).COMMAND_EXECUTION_ERR
- Invalid Command Error (exit code 1).COMMAND_CANNOT_EXECUTE_ERR
- Command Cannot Execute Error (Linux exit code 126).COMMAND_NOT_FOUND_ERR
- Command Not Found Error (Linux exit code 127).INVALID_CL_ERR
- Invalid Command Line Error (covers all other non-zero exit codes).SIGNAL_ERR
- Signal error (either stopped or killed by signal, occurs only on POSIX-compatible systems).CMDMSG
:CMDSTAT
but the CMDSTAT
variable is not present, error termination is initiated (applies to both POSIX-compatible systems and Windows).CMDSTAT
but the CMDSTAT
variable is not present, error termination is initiated.ETIME(VALUES, TIME)
returns the number of seconds of runtime since the start of the process’s execution in TIME. VALUES returns the user and system components of this time in VALUES(1)
and VALUES(2)
respectively. TIME is equal to VALUES(1) + VALUES(2)
.
On some systems, the underlying timings are represented using types with sufficiently small limits that overflows (wrap around) are possible, such as 32-bit types. Therefore, the values returned by this intrinsic might be, or become, negative, or numerically less than previous values, during a single run of the compiled program.
This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit.
VALUES and TIME are INTENT(OUT)
and provide the following:
VALUES(1) | User time in seconds. |
VALUES(2) | System time in seconds. |
TIME | Run time since start in seconds. |
CALL ETIME(VALUES, TIME)
Argument | Description |
---|---|
VALUES | The type shall be REAL(4), DIMENSION(2). |
TIME | The type shall be REAL(4). |
Here is an example usage from Gfortran ETIME
program test_etime integer(8) :: i, j real, dimension(2) :: tarray real :: result call ETIME(tarray, result) print *, result print *, tarray(1) print *, tarray(2) do i=1,100000000 ! Just a delay j = i * i - i end do call ETIME(tarray, result) print *, result print *, tarray(1) print *, tarray(2) end program test_etime
GETCWD(C, STATUS)
returns current working directory.
This intrinsic is provided in both subroutine and function forms; however, only one form can be used in any given program unit.
C and STATUS are INTENT(OUT)
and provide the following:
C | Current work directory. The type shall be CHARACTER and of default kind. |
STATUS | (Optional) Status flag. Returns 0 on success, a system specific and nonzero error code otherwise. The type shall be INTEGER and of a kind greater or equal to 4. |
CALL GETCWD(C, STATUS)
, STATUS = GETCWD(C)
PROGRAM example_getcwd CHARACTER(len=255) :: cwd INTEGER :: status CALL getcwd(cwd, status) PRINT *, cwd PRINT *, status END PROGRAM
RENAME(OLD, NEW[, STATUS])
renames/moves a file on the filesystem.
This intrinsic is provided in both subroutine and function form; however, only one form can be used in any given program unit.
CALL RENAME(SRC, DST[, STATUS])
Argument | Description |
---|---|
SRC | Source path |
DST | Destination path |
STATUS | Status code (for subroutine form) |
The status code returned by both the subroutine and function form corresponds to the value of errno
if the invocation of rename(2)
was not successful.
Function form:
program rename_func implicit none integer :: status status = rename('src', 'dst') print *, 'status:', status status = rename('dst', 'src') print *, 'status:', status end program rename_func
Subroutine form:
program rename_proc implicit none integer :: status call rename('src', 'dst', status) print *, 'status:', status call rename('dst', 'src') end program rename_proc
This intrinsic is an alias for CPU_TIME
: supporting both a subroutine and a function form.
CALL SECOND(TIME)
or TIME = SECOND()
TIME
- a REAL value into which the elapsed CPU time in seconds is written