[Clang] Instantiate the correct lambda call operator (#110446)

This is a fix for the following issue: when a lambda’s class type is
merged across modules (e.g. because it is defined in a template in the
GMF of some module `A`, and some other module `B` both imports `A` and
has the same template in its GMF), then `getLambdaCallOperator()` might
return the wrong operator (e.g. while compiling `B`, the lambda’s class
type would be the one attached to `B`’s GMF, but the call operator ends
up being the one attached to `A`’s GMF).

This causes issues in situations where the call operator is in a
template and accesses declarations in the surrounding context: when
those declarations are instantated, a mapping is introduced from the
original node in the template to that of the instantiation. If such an
instantiation happens in `B`, and we then try to instantiate `A`’s call
operator, any nodes in that call operator refer to declarations in the
template in `A`, but the `LocalInstantiationScope` only contains
mappings for declarations in `B`! This causes the following assertion
(for godbolt links and more, see the issue below):

```
Assertion `isa<LabelDecl>(D) && "declaration not instantiated in this scope"' failed.
```

We now walk the redecl chain of the call operator to find the
one that is in the same module as the record decl.

This fixes #110401.
3 files changed
tree: 5f5e41ceab9a3410f615a91520afc639c7942267
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.