| commit | ee655ca27aad466bcc54f6eba03f7e564940ad5a | [log] [tgz] |
|---|---|---|
| author | Nikita Popov <npopov@redhat.com> | Thu Feb 13 09:36:35 2025 +0100 |
| committer | GitHub <noreply@github.com> | Thu Feb 13 09:36:35 2025 +0100 |
| tree | 931f52c4f0979e5abf40717b90a121f979cf9b36 | |
| parent | 3bf425764e1837e909263a7e61a13e2308dc7d5f [diff] |
[CaptureTracking][FunctionAttrs] Add support for CaptureInfo (#125880) This extends CaptureTracking to support inferring non-trivial CaptureInfos. The focus of this patch is to only support FunctionAttrs, other users of CaptureTracking will be updated in followups. The key API changes here are: * DetermineUseCaptureKind() now returns a UseCaptureInfo where the UseCC component specifies what is captured at that Use and the ResultCC component specifies what may be captured via the return value of the User. Usually only one or the other will be used (corresponding to previous MAY_CAPTURE or PASSTHROUGH results), but both may be set for call captures. * The CaptureTracking::captures() extension point is passed this UseCaptureInfo as well and then can decide what to do with it by returning an Action, which is one of: Stop: stop traversal. ContinueIgnoringReturn: continue traversal but don't follow the instruction return value. Continue: continue traversal and follow the instruction return value if it has additional CaptureComponents. For now, this patch retains the (unsound) special logic for comparison of null with a dereferenceable pointer. I'd like to switch key code to take advantage of address/address_is_null before dropping it. This PR mainly intends to introduce necessary API changes and basic inference support, there are various possible improvements marked with TODOs.
Welcome to the LLVM project!
This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
Consult the Getting Started with LLVM page for information on building and running LLVM.
For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.