[SCF][Transform] Add support for scf.for in LoopFuseSibling op (#81495)

Adds support for fusing two scf.for loops occurring in the same block.
Uses the rudimentary checks already in place for scf.forall (like the
target loop's operands being dominated by the source loop).

- Fixes a bug in the dominance check whereby it was checked that values
in the target loop themselves dominated the source loop rather than the
ops that define these operands.
- Renames the LoopFuseSibling op to LoopFuseSiblingOp.
- Updates LoopFuseSiblingOp's description.
- Adds tests for using LoopFuseSiblingOp on scf.for loops, including one
which fails without the fix for the dominance check.
- Adds tests checking the different failure modes of the dominance
checker.
- Adds test for case whereby scf.yield is automatically generated when
there are no loop-carried variables.
5 files changed
tree: fadca8a65aec6793444ce3fa3bdb32614f5f49b6
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .clang-format
  27. .clang-tidy
  28. .git-blame-ignore-revs
  29. .gitattributes
  30. .gitignore
  31. .mailmap
  32. CODE_OF_CONDUCT.md
  33. CONTRIBUTING.md
  34. LICENSE.TXT
  35. pyproject.toml
  36. README.md
  37. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.