[MLIR][AMDGPU] Adding Vector transfer_read to load rewrite pattern (#131803)

This PR adds the Vector transfer_read to load rewrite pattern. The
pattern creates a transfer read op lowering. A vector trasfer read op
will be lowered to a combination of `vector.load`, `arith.select` and
`vector.broadcast` if:
 - The transfer op is masked.
 - The memref is in buffer address space.
 - Other conditions introduced from `TransferReadToVectorLoadLowering`

The motivation of this PR is due to the lack of support of masked load
from amdgpu backend. `llvm.intr.masked.load` lower to a series of
conditional scalar loads refer to (`scalarize-masked-mem-intrin` pass).
This PR will make it possible for masked transfer_read to be lowered
towards buffer load with bounds check, allowing a more optimized global
load accessing pattern compared with existing implementation of
`llvm.intr.masked.load` on vectors.
5 files changed
tree: 2db8a13aa1be0e7cedf81645f29ada2f83e06d5e
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. pstl/
  25. runtimes/
  26. third-party/
  27. utils/
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.