[lldb][Mach-O] Fix several bugs in x86_64 Mach-O corefile (#146460)

reading, and one bug in the new RegisterContextUnifiedCore class.

The PR I landed a few days ago to allow Mach-O corefiles to augment
their registers with additional per-thread registers in metadata exposed
a few bugs in the x86_64 corefile reader when running under different CI
environments. It also showed a bug in my RegisterContextUnifiedCore
class where I wasn't properly handling lookups of unknown registers
(e.g. the LLDB_GENERIC_RA when debugging an intel target).

The Mach-O x86_64 corefile support would say that it had fpu & exc
registers available in every corefile, regardless of whether they were
actually present. It would only read the bytes for the first register
flavor in the LC_THREAD, the GPRs, but it read them incorrectly, so
sometimes you got more register context than you'd expect. The LC_THREAD
register context specifies a flavor and the number of uint32_t words;
the ObjectFileMachO method would read that number of uint64_t's,
exceeding the GPR register space, but it was followed by FPU and then
EXC register space so it didn't crash. If you had a corefile with GPR
and EXC register bytes, it would be written into the GPR and then FPU
register areas, with zeroes filling out the rest of the context.
2 files changed
tree: 52484d0fb2037ce2b89c08e56cad890030b582ae
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.