[VPlan] Only skip expansion for SCEVUnknown if it isn't an instruction. (#125235)

Update getOrCreateVPValueForSCEVExpr to only skip expansion of
SCEVUnknown if the underlying value isn't an instruction. Instructions
may be defined in a loop and using them without expansion may break
LCSSA form. SCEVExpander will take care of preserving LCSSA if needed.

We could also try to pass LoopInfo, but there are some users of the
function where it won't be available and main benefit from skipping
expansion is slightly more concise VPlans.

Note that SCEVExpander is now used to expand SCEVUnknown with floats.
Adjust the check in expandCodeFor to only check the types and casts if
the type of the value is different to the requested type. Otherwise we
crash when trying to expand a float and requesting a float type.

Fixes https://github.com/llvm/llvm-project/issues/121518.

PR: https://github.com/llvm/llvm-project/pull/125235
5 files changed
tree: 39d072acb78b665df89b1442e0f5e63240b1e3bf
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.