| //===-- Implementation of mktime function ---------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/time/time_utils.h" |
| #include "src/__support/common.h" |
| |
| #include <limits.h> |
| |
| namespace LIBC_NAMESPACE { |
| namespace time_utils { |
| |
| using LIBC_NAMESPACE::time_utils::TimeConstants; |
| |
| static int64_t computeRemainingYears(int64_t daysPerYears, |
| int64_t quotientYears, |
| int64_t *remainingDays) { |
| int64_t years = *remainingDays / daysPerYears; |
| if (years == quotientYears) |
| years--; |
| *remainingDays -= years * daysPerYears; |
| return years; |
| } |
| |
| // First, divide "total_seconds" by the number of seconds in a day to get the |
| // number of days since Jan 1 1970. The remainder will be used to calculate the |
| // number of Hours, Minutes and Seconds. |
| // |
| // Then, adjust that number of days by a constant to be the number of days |
| // since Mar 1 2000. Year 2000 is a multiple of 400, the leap year cycle. This |
| // makes it easier to count how many leap years have passed using division. |
| // |
| // While calculating numbers of years in the days, the following algorithm |
| // subdivides the days into the number of 400 years, the number of 100 years and |
| // the number of 4 years. These numbers of cycle years are used in calculating |
| // leap day. This is similar to the algorithm used in getNumOfLeapYearsBefore() |
| // and isLeapYear(). Then compute the total number of years in days from these |
| // subdivided units. |
| // |
| // Compute the number of months from the remaining days. Finally, adjust years |
| // to be 1900 and months to be from January. |
| int64_t update_from_seconds(int64_t total_seconds, struct tm *tm) { |
| // Days in month starting from March in the year 2000. |
| static const char daysInMonth[] = {31 /* Mar */, 30, 31, 30, 31, 31, |
| 30, 31, 30, 31, 31, 29}; |
| |
| constexpr time_t time_min = |
| (sizeof(time_t) == 4) |
| ? INT_MIN |
| : INT_MIN * static_cast<int64_t>( |
| TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); |
| constexpr time_t time_max = |
| (sizeof(time_t) == 4) |
| ? INT_MAX |
| : INT_MAX * static_cast<int64_t>( |
| TimeConstants::NUMBER_OF_SECONDS_IN_LEAP_YEAR); |
| |
| time_t ts = static_cast<time_t>(total_seconds); |
| if (ts < time_min || ts > time_max) |
| return time_utils::out_of_range(); |
| |
| int64_t seconds = |
| total_seconds - TimeConstants::SECONDS_UNTIL2000_MARCH_FIRST; |
| int64_t days = seconds / TimeConstants::SECONDS_PER_DAY; |
| int64_t remainingSeconds = seconds % TimeConstants::SECONDS_PER_DAY; |
| if (remainingSeconds < 0) { |
| remainingSeconds += TimeConstants::SECONDS_PER_DAY; |
| days--; |
| } |
| |
| int64_t wday = (TimeConstants::WEEK_DAY_OF2000_MARCH_FIRST + days) % |
| TimeConstants::DAYS_PER_WEEK; |
| if (wday < 0) |
| wday += TimeConstants::DAYS_PER_WEEK; |
| |
| // Compute the number of 400 year cycles. |
| int64_t numOfFourHundredYearCycles = days / TimeConstants::DAYS_PER400_YEARS; |
| int64_t remainingDays = days % TimeConstants::DAYS_PER400_YEARS; |
| if (remainingDays < 0) { |
| remainingDays += TimeConstants::DAYS_PER400_YEARS; |
| numOfFourHundredYearCycles--; |
| } |
| |
| // The remaining number of years after computing the number of |
| // "four hundred year cycles" will be 4 hundred year cycles or less in 400 |
| // years. |
| int64_t numOfHundredYearCycles = computeRemainingYears( |
| TimeConstants::DAYS_PER100_YEARS, 4, &remainingDays); |
| |
| // The remaining number of years after computing the number of |
| // "hundred year cycles" will be 25 four year cycles or less in 100 years. |
| int64_t numOfFourYearCycles = |
| computeRemainingYears(TimeConstants::DAYS_PER4_YEARS, 25, &remainingDays); |
| |
| // The remaining number of years after computing the number of |
| // "four year cycles" will be 4 one year cycles or less in 4 years. |
| int64_t remainingYears = computeRemainingYears( |
| TimeConstants::DAYS_PER_NON_LEAP_YEAR, 4, &remainingDays); |
| |
| // Calculate number of years from year 2000. |
| int64_t years = remainingYears + 4 * numOfFourYearCycles + |
| 100 * numOfHundredYearCycles + |
| 400LL * numOfFourHundredYearCycles; |
| |
| int leapDay = |
| !remainingYears && (numOfFourYearCycles || !numOfHundredYearCycles); |
| |
| // We add 31 and 28 for the number of days in January and February, since our |
| // starting point was March 1st. |
| int64_t yday = remainingDays + 31 + 28 + leapDay; |
| if (yday >= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay) |
| yday -= TimeConstants::DAYS_PER_NON_LEAP_YEAR + leapDay; |
| |
| int64_t months = 0; |
| while (daysInMonth[months] <= remainingDays) { |
| remainingDays -= daysInMonth[months]; |
| months++; |
| } |
| |
| if (months >= TimeConstants::MONTHS_PER_YEAR - 2) { |
| months -= TimeConstants::MONTHS_PER_YEAR; |
| years++; |
| } |
| |
| if (years > INT_MAX || years < INT_MIN) |
| return time_utils::out_of_range(); |
| |
| // All the data (years, month and remaining days) was calculated from |
| // March, 2000. Thus adjust the data to be from January, 1900. |
| tm->tm_year = static_cast<int>(years + 2000 - TimeConstants::TIME_YEAR_BASE); |
| tm->tm_mon = static_cast<int>(months + 2); |
| tm->tm_mday = static_cast<int>(remainingDays + 1); |
| tm->tm_wday = static_cast<int>(wday); |
| tm->tm_yday = static_cast<int>(yday); |
| |
| tm->tm_hour = |
| static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_HOUR); |
| tm->tm_min = |
| static_cast<int>(remainingSeconds / TimeConstants::SECONDS_PER_MIN % |
| TimeConstants::SECONDS_PER_MIN); |
| tm->tm_sec = |
| static_cast<int>(remainingSeconds % TimeConstants::SECONDS_PER_MIN); |
| // TODO(rtenneti): Need to handle timezone and update of tm_isdst. |
| tm->tm_isdst = 0; |
| |
| return 0; |
| } |
| |
| } // namespace time_utils |
| } // namespace LIBC_NAMESPACE |