| //===-- Single-precision tanh function ------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/tanhf.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" |
| #include "src/math/generic/explogxf.h" |
| |
| namespace LIBC_NAMESPACE { |
| |
| // 2^6 * log2(e) |
| constexpr double LOG2_E_EXP2_6 = ExpBase::LOG2_B * 2.0; |
| |
| LLVM_LIBC_FUNCTION(float, tanhf, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| uint32_t x_abs = xbits.abs().uintval(); |
| |
| const int sign_index = xbits.is_neg() ? 1 : 0; |
| |
| // When |x| >= 15, or x is inf or nan, or |x| <= 0.078125 |
| if (LIBC_UNLIKELY((x_abs >= 0x4170'0000U) || (x_abs <= 0x3da0'0000U))) { |
| if (x_abs <= 0x3da0'0000U) { |
| // |x| <= 0.078125 |
| if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) { |
| // |x| <= 2^-26 |
| return (x_abs != 0) |
| ? static_cast<float>(x - 0x1.5555555555555p-2 * x * x * x) |
| : x; |
| } |
| |
| const double TAYLOR[] = {-0x1.5555555555555p-2, 0x1.1111111111111p-3, |
| -0x1.ba1ba1ba1ba1cp-5, 0x1.664f4882c10fap-6, |
| -0x1.226e355e6c23dp-7}; |
| double xdbl = x; |
| double x2 = xdbl * xdbl; |
| // Taylor polynomial. |
| double x4 = x2 * x2; |
| double c0 = x2 * TAYLOR[0]; |
| double c1 = fputil::multiply_add(x2, TAYLOR[2], TAYLOR[1]); |
| double c2 = fputil::multiply_add(x2, TAYLOR[4], TAYLOR[3]); |
| double pe = fputil::polyeval(x4, c0, c1, c2); |
| |
| return static_cast<float>(fputil::multiply_add(xdbl, pe, xdbl)); |
| } |
| |
| // |x| >= 15 |
| if (LIBC_UNLIKELY(xbits.is_nan())) |
| return x + 1.0f; // sNaN to qNaN + signal |
| |
| constexpr float SIGNS[2][2] = {{1.0f, -0x1.0p-25f}, {-1.0f, 0x1.0p-25f}}; |
| |
| if (LIBC_UNLIKELY(xbits.is_inf())) |
| return SIGNS[sign_index][0]; |
| |
| return SIGNS[sign_index][0] + SIGNS[sign_index][1]; |
| } |
| |
| // Range reduction: e^(2x) = 2^(hi + mid) * e^lo |
| // Let k = round( x * 2^6 * log2(e)), |
| // So k = (hi + mid) * 2^5 |
| // Then lo = 2x - (hi + mid) * log(2) = 2x - k * 2^-5 * log(2). |
| |
| double xd = static_cast<double>(x); |
| // k = round( x* 2^6 * log2(e) ) |
| double k; |
| // mk = -k |
| int mk; |
| #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| k = fputil::nearest_integer(xd * LOG2_E_EXP2_6); |
| mk = -static_cast<int>(k); |
| #else |
| constexpr double HALF_WAY[2] = {-0.5, 0.5}; |
| |
| mk = static_cast<int>( |
| fputil::multiply_add(xd, -LOG2_E_EXP2_6, HALF_WAY[sign_index])); |
| k = static_cast<double>(-mk); |
| #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| // -hi = floor(-k * 2^(-MID_BITS)) |
| // exp_mhi = shift -hi to the exponent field of double precision. |
| int64_t exp_mhi = static_cast<int64_t>(mk >> ExpBase::MID_BITS) |
| << fputil::FPBits<double>::FRACTION_LEN; |
| // mh = 2^(-hi - mid) |
| int64_t mh_bits = ExpBase::EXP_2_MID[mk & ExpBase::MID_MASK] + exp_mhi; |
| double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); |
| // dx = lo/2 = x - (hi + mid) * log(2)/2 = x - k * 2^-6 * log(2) |
| double dx = fputil::multiply_add( |
| k, ExpBase::M_LOGB_2_LO * 0.5, |
| fputil::multiply_add(k, ExpBase::M_LOGB_2_HI * 0.5, xd)); |
| |
| // > P = fpminimax(expm1(2*x)/x, 4, [|D...|], [-log(2)/128, log(2)/128]); |
| constexpr double COEFFS[] = {0x1.ffffffffe5bc8p0, 0x1.555555555cd67p0, |
| 0x1.5555c2a9b48b4p-1, 0x1.11112a0e34bdbp-2}; |
| |
| double dx2 = dx * dx; |
| double c0 = fputil::multiply_add(dx, 2.0, 1.0); |
| double c1 = fputil::multiply_add(dx, COEFFS[1], COEFFS[0]); |
| double c2 = fputil::multiply_add(dx, COEFFS[3], COEFFS[2]); |
| double r = fputil::polyeval(dx2, c0, c1, c2); |
| |
| // tanh(x) = sinh(x) / cosh(x) |
| // = (e^x - e^(-x)) / (e^x + e^(-x)) |
| // = (e^(2x) - 1) / (e^(2x) + 1) |
| // = (2^(hi + mid) * e^lo - 1) / (2^(hi + mid) * e^lo + 1) |
| // = (e^lo - 2^(-hi - mid)) / (e^lo + 2^(-hi - mid)) |
| // = (r - mh) / (r + mh) |
| return static_cast<float>((r - mh) / (r + mh)); |
| } |
| |
| } // namespace LIBC_NAMESPACE |