| //===-- Utilities for trigonometric functions -------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H |
| #define LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H |
| |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/common.h" |
| |
| namespace LIBC_NAMESPACE { |
| |
| namespace generic { |
| |
| static constexpr uint32_t FAST_PASS_BOUND = 0x4a80'0000U; // 2^22 |
| |
| static constexpr int N_ENTRIES = 8; |
| |
| // We choose to split bits of 32/pi into 28-bit precision pieces, so that the |
| // product of x * THIRTYTWO_OVER_PI_28[i] is exact. |
| // These are generated by Sollya with: |
| // > a1 = D(round(32/pi, 28, RN)); a1; |
| // > a2 = D(round(32/pi - a1, 28, RN)); a2; |
| // > a3 = D(round(32/pi - a1 - a2, 28, RN)); a3; |
| // > a4 = D(round(32/pi - a1 - a2 - a3, 28, RN)); a4; |
| // ... |
| static constexpr double THIRTYTWO_OVER_PI_28[N_ENTRIES] = { |
| 0x1.45f306ep+3, -0x1.b1bbeaep-28, 0x1.3f84ebp-57, -0x1.7056592p-87, |
| 0x1.c0db62ap-116, -0x1.4cd8778p-145, -0x1.bef806cp-174, 0x1.63abdecp-204}; |
| |
| // Exponents of the least significant bits of the corresponding entries in |
| // THIRTYTWO_OVER_PI_28. |
| static constexpr int THIRTYTWO_OVER_PI_28_LSB_EXP[N_ENTRIES] = { |
| -24, -55, -81, -114, -143, -170, -200, -230}; |
| |
| // Return k and y, where |
| // k = round(x * 16 / pi) and y = (x * 16 / pi) - k. |
| LIBC_INLINE int64_t small_range_reduction(double x, double &y) { |
| double prod = x * THIRTYTWO_OVER_PI_28[0]; |
| double kd = fputil::nearest_integer(prod); |
| y = prod - kd; |
| y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[1], y); |
| y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[2], y); |
| return static_cast<int64_t>(kd); |
| } |
| |
| // Return k and y, where |
| // k = round(x * 32 / pi) and y = (x * 32 / pi) - k. |
| // For large range, there are at most 2 parts of THIRTYTWO_OVER_PI_28 |
| // contributing to the lowest 6 binary digits (k & 63). If the least |
| // significant bit of x * the least significant bit of THIRTYTWO_OVER_PI_28[i] |
| // >= 64, we can completely ignore THIRTYTWO_OVER_PI_28[i]. |
| LIBC_INLINE int64_t large_range_reduction(double x, int x_exp, double &y) { |
| int idx = 0; |
| y = 0; |
| int x_lsb_exp_m4 = x_exp - fputil::FPBits<float>::FRACTION_LEN; |
| |
| // Skipping the first parts of 32/pi such that: |
| // LSB of x * LSB of THIRTYTWO_OVER_PI_28[i] >= 32. |
| while (x_lsb_exp_m4 + THIRTYTWO_OVER_PI_28_LSB_EXP[idx] > 5) |
| ++idx; |
| |
| double prod_hi = x * THIRTYTWO_OVER_PI_28[idx]; |
| // Get the integral part of x * THIRTYTWO_OVER_PI_28[idx] |
| double k_hi = fputil::nearest_integer(prod_hi); |
| // Get the fractional part of x * THIRTYTWO_OVER_PI_28[idx] |
| double frac = prod_hi - k_hi; |
| double prod_lo = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 1], frac); |
| double k_lo = fputil::nearest_integer(prod_lo); |
| |
| // Now y is the fractional parts. |
| y = prod_lo - k_lo; |
| y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 2], y); |
| y = fputil::multiply_add(x, THIRTYTWO_OVER_PI_28[idx + 3], y); |
| |
| return static_cast<int64_t>(k_hi) + static_cast<int64_t>(k_lo); |
| } |
| |
| } // namespace generic |
| |
| } // namespace LIBC_NAMESPACE |
| |
| #endif // LLVM_LIBC_SRC_MATH_GENERIC_RANGE_REDUCTION_H |