| //===-- Single-precision log(x) function ----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/logf.h" |
| #include "common_constants.h" // Lookup table for (1/f) and log(f) |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" |
| |
| // This is an algorithm for log(x) in single precision which is correctly |
| // rounded for all rounding modes, based on the implementation of log(x) from |
| // the RLIBM project at: |
| // https://people.cs.rutgers.edu/~sn349/rlibm |
| |
| // Step 1 - Range reduction: |
| // For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m) |
| // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting |
| // m by 23. |
| |
| // Step 2 - Another range reduction: |
| // To compute log(1.mant), let f be the highest 8 bits including the hidden |
| // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the |
| // mantissa. Then we have the following approximation formula: |
| // log(1.mant) = log(f) + log(1.mant / f) |
| // = log(f) + log(1 + d/f) |
| // ~ log(f) + P(d/f) |
| // since d/f is sufficiently small. |
| // log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. |
| |
| // Step 3 - Polynomial approximation: |
| // To compute P(d/f), we use a single degree-5 polynomial in double precision |
| // which provides correct rounding for all but few exception values. |
| // For more detail about how this polynomial is obtained, please refer to the |
| // paper: |
| // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce |
| // Correctly Rounded Results of an Elementary Function for Multiple |
| // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN |
| // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, |
| // USA, January 16-22, 2022. |
| // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf |
| |
| namespace LIBC_NAMESPACE { |
| |
| LLVM_LIBC_FUNCTION(float, logf, (float x)) { |
| constexpr double LOG_2 = 0x1.62e42fefa39efp-1; |
| using FPBits = typename fputil::FPBits<float>; |
| using Sign = fputil::Sign; |
| FPBits xbits(x); |
| uint32_t x_u = xbits.uintval(); |
| |
| int m = -FPBits::EXP_BIAS; |
| |
| using fputil::round_result_slightly_down; |
| using fputil::round_result_slightly_up; |
| |
| // Small inputs |
| if (x_u < 0x4c5d65a5U) { |
| // Hard-to-round cases. |
| switch (x_u) { |
| case 0x3f7f4d6fU: // x = 0x1.fe9adep-1f |
| return round_result_slightly_up(-0x1.659ec8p-9f); |
| case 0x41178febU: // x = 0x1.2f1fd6p+3f |
| return round_result_slightly_up(0x1.1fcbcep+1f); |
| #ifdef LIBC_TARGET_CPU_HAS_FMA |
| case 0x3f800000U: // x = 1.0f |
| return 0.0f; |
| #else |
| case 0x1e88452dU: // x = 0x1.108a5ap-66f |
| return round_result_slightly_up(-0x1.6d7b18p+5f); |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| } |
| // Subnormal inputs. |
| if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval())) { |
| if (x_u == 0) { |
| // Return -inf and raise FE_DIVBYZERO |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| return FPBits::inf(Sign::NEG).get_val(); |
| } |
| // Normalize denormal inputs. |
| xbits = FPBits(xbits.get_val() * 0x1.0p23f); |
| m -= 23; |
| x_u = xbits.uintval(); |
| } |
| } else { |
| // Hard-to-round cases. |
| switch (x_u) { |
| case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f |
| return round_result_slightly_down(0x1.1e0696p+4f); |
| case 0x65d890d3U: // x = 0x1.b121a6p+76f |
| return round_result_slightly_down(0x1.a9a3f2p+5f); |
| case 0x6f31a8ecU: // x = 0x1.6351d8p+95f |
| return round_result_slightly_down(0x1.08b512p+6f); |
| case 0x7a17f30aU: // x = 0x1.2fe614p+117f |
| return round_result_slightly_up(0x1.451436p+6f); |
| #ifndef LIBC_TARGET_CPU_HAS_FMA |
| case 0x500ffb03U: // x = 0x1.1ff606p+33f |
| return round_result_slightly_up(0x1.6fdd34p+4f); |
| case 0x5cd69e88U: // x = 0x1.ad3d1p+58f |
| return round_result_slightly_up(0x1.45c146p+5f); |
| case 0x5ee8984eU: // x = 0x1.d1309cp+62f; |
| return round_result_slightly_up(0x1.5c9442p+5f); |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| } |
| // Exceptional inputs. |
| if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) { |
| if (x_u == 0x8000'0000U) { |
| // Return -inf and raise FE_DIVBYZERO |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| return FPBits::inf(Sign::NEG).get_val(); |
| } |
| if (xbits.is_neg() && !xbits.is_nan()) { |
| // Return NaN and raise FE_INVALID |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| return FPBits::build_quiet_nan().get_val(); |
| } |
| // x is +inf or nan |
| return x; |
| } |
| } |
| |
| #ifndef LIBC_TARGET_CPU_HAS_FMA |
| // Returning the correct +0 when x = 1.0 for non-FMA targets with FE_DOWNWARD |
| // rounding mode. |
| if (LIBC_UNLIKELY((x_u & 0x007f'ffffU) == 0)) |
| return static_cast<float>( |
| static_cast<double>(m + xbits.get_biased_exponent()) * LOG_2); |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| |
| uint32_t mant = xbits.get_mantissa(); |
| // Extract 7 leading fractional bits of the mantissa |
| int index = mant >> 16; |
| // Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are |
| // all 1's. |
| m += static_cast<int>((x_u + (1 << 16)) >> 23); |
| |
| // Set bits to 1.m |
| xbits.set_biased_exponent(0x7F); |
| |
| float u = xbits.get_val(); |
| double v; |
| #ifdef LIBC_TARGET_CPU_HAS_FMA |
| v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact. |
| #else |
| v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| |
| // Degree-5 polynomial approximation of log generated by Sollya with: |
| // > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); |
| constexpr double COEFFS[4] = {-0x1.000000000fe63p-1, 0x1.555556e963c16p-2, |
| -0x1.000028dedf986p-2, 0x1.966681bfda7f7p-3}; |
| double v2 = v * v; // Exact |
| double p2 = fputil::multiply_add(v, COEFFS[3], COEFFS[2]); |
| double p1 = fputil::multiply_add(v, COEFFS[1], COEFFS[0]); |
| double p0 = LOG_R[index] + v; |
| double r = fputil::multiply_add(static_cast<double>(m), LOG_2, |
| fputil::polyeval(v2, p0, p1, p2)); |
| return static_cast<float>(r); |
| } |
| |
| } // namespace LIBC_NAMESPACE |