blob: 4ad5a4e9b6ad8b4b1a6c6eae30fe44440f0c633b [file] [log] [blame]
//===-- Single-precision log(x) function ----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/logf.h"
#include "common_constants.h" // Lookup table for (1/f) and log(f)
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/PolyEval.h"
#include "src/__support/FPUtil/except_value_utils.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/common.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
#include "src/__support/macros/properties/cpu_features.h"
// This is an algorithm for log(x) in single precision which is correctly
// rounded for all rounding modes, based on the implementation of log(x) from
// the RLIBM project at:
// https://people.cs.rutgers.edu/~sn349/rlibm
// Step 1 - Range reduction:
// For x = 2^m * 1.mant, log(x) = m * log(2) + log(1.m)
// If x is denormal, we normalize it by multiplying x by 2^23 and subtracting
// m by 23.
// Step 2 - Another range reduction:
// To compute log(1.mant), let f be the highest 8 bits including the hidden
// bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the
// mantissa. Then we have the following approximation formula:
// log(1.mant) = log(f) + log(1.mant / f)
// = log(f) + log(1 + d/f)
// ~ log(f) + P(d/f)
// since d/f is sufficiently small.
// log(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables.
// Step 3 - Polynomial approximation:
// To compute P(d/f), we use a single degree-5 polynomial in double precision
// which provides correct rounding for all but few exception values.
// For more detail about how this polynomial is obtained, please refer to the
// paper:
// Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce
// Correctly Rounded Results of an Elementary Function for Multiple
// Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN
// Symposium on Principles of Programming Languages (POPL-2022), Philadelphia,
// USA, January 16-22, 2022.
// https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf
namespace LIBC_NAMESPACE {
LLVM_LIBC_FUNCTION(float, logf, (float x)) {
constexpr double LOG_2 = 0x1.62e42fefa39efp-1;
using FPBits = typename fputil::FPBits<float>;
using Sign = fputil::Sign;
FPBits xbits(x);
uint32_t x_u = xbits.uintval();
int m = -FPBits::EXP_BIAS;
using fputil::round_result_slightly_down;
using fputil::round_result_slightly_up;
// Small inputs
if (x_u < 0x4c5d65a5U) {
// Hard-to-round cases.
switch (x_u) {
case 0x3f7f4d6fU: // x = 0x1.fe9adep-1f
return round_result_slightly_up(-0x1.659ec8p-9f);
case 0x41178febU: // x = 0x1.2f1fd6p+3f
return round_result_slightly_up(0x1.1fcbcep+1f);
#ifdef LIBC_TARGET_CPU_HAS_FMA
case 0x3f800000U: // x = 1.0f
return 0.0f;
#else
case 0x1e88452dU: // x = 0x1.108a5ap-66f
return round_result_slightly_up(-0x1.6d7b18p+5f);
#endif // LIBC_TARGET_CPU_HAS_FMA
}
// Subnormal inputs.
if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval())) {
if (x_u == 0) {
// Return -inf and raise FE_DIVBYZERO
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_DIVBYZERO);
return FPBits::inf(Sign::NEG).get_val();
}
// Normalize denormal inputs.
xbits = FPBits(xbits.get_val() * 0x1.0p23f);
m -= 23;
x_u = xbits.uintval();
}
} else {
// Hard-to-round cases.
switch (x_u) {
case 0x4c5d65a5U: // x = 0x1.bacb4ap+25f
return round_result_slightly_down(0x1.1e0696p+4f);
case 0x65d890d3U: // x = 0x1.b121a6p+76f
return round_result_slightly_down(0x1.a9a3f2p+5f);
case 0x6f31a8ecU: // x = 0x1.6351d8p+95f
return round_result_slightly_down(0x1.08b512p+6f);
case 0x7a17f30aU: // x = 0x1.2fe614p+117f
return round_result_slightly_up(0x1.451436p+6f);
#ifndef LIBC_TARGET_CPU_HAS_FMA
case 0x500ffb03U: // x = 0x1.1ff606p+33f
return round_result_slightly_up(0x1.6fdd34p+4f);
case 0x5cd69e88U: // x = 0x1.ad3d1p+58f
return round_result_slightly_up(0x1.45c146p+5f);
case 0x5ee8984eU: // x = 0x1.d1309cp+62f;
return round_result_slightly_up(0x1.5c9442p+5f);
#endif // LIBC_TARGET_CPU_HAS_FMA
}
// Exceptional inputs.
if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) {
if (x_u == 0x8000'0000U) {
// Return -inf and raise FE_DIVBYZERO
fputil::set_errno_if_required(ERANGE);
fputil::raise_except_if_required(FE_DIVBYZERO);
return FPBits::inf(Sign::NEG).get_val();
}
if (xbits.is_neg() && !xbits.is_nan()) {
// Return NaN and raise FE_INVALID
fputil::set_errno_if_required(EDOM);
fputil::raise_except_if_required(FE_INVALID);
return FPBits::build_quiet_nan().get_val();
}
// x is +inf or nan
return x;
}
}
#ifndef LIBC_TARGET_CPU_HAS_FMA
// Returning the correct +0 when x = 1.0 for non-FMA targets with FE_DOWNWARD
// rounding mode.
if (LIBC_UNLIKELY((x_u & 0x007f'ffffU) == 0))
return static_cast<float>(
static_cast<double>(m + xbits.get_biased_exponent()) * LOG_2);
#endif // LIBC_TARGET_CPU_HAS_FMA
uint32_t mant = xbits.get_mantissa();
// Extract 7 leading fractional bits of the mantissa
int index = mant >> 16;
// Add unbiased exponent. Add an extra 1 if the 7 leading fractional bits are
// all 1's.
m += static_cast<int>((x_u + (1 << 16)) >> 23);
// Set bits to 1.m
xbits.set_biased_exponent(0x7F);
float u = xbits.get_val();
double v;
#ifdef LIBC_TARGET_CPU_HAS_FMA
v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact.
#else
v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact
#endif // LIBC_TARGET_CPU_HAS_FMA
// Degree-5 polynomial approximation of log generated by Sollya with:
// > P = fpminimax(log(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]);
constexpr double COEFFS[4] = {-0x1.000000000fe63p-1, 0x1.555556e963c16p-2,
-0x1.000028dedf986p-2, 0x1.966681bfda7f7p-3};
double v2 = v * v; // Exact
double p2 = fputil::multiply_add(v, COEFFS[3], COEFFS[2]);
double p1 = fputil::multiply_add(v, COEFFS[1], COEFFS[0]);
double p0 = LOG_R[index] + v;
double r = fputil::multiply_add(static_cast<double>(m), LOG_2,
fputil::polyeval(v2, p0, p1, p2));
return static_cast<float>(r);
}
} // namespace LIBC_NAMESPACE