| //===-- Single-precision log2(x) function ---------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/log2f.h" |
| #include "common_constants.h" // Lookup table for (1/f) |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| |
| // This is a correctly-rounded algorithm for log2(x) in single precision with |
| // round-to-nearest, tie-to-even mode from the RLIBM project at: |
| // https://people.cs.rutgers.edu/~sn349/rlibm |
| |
| // Step 1 - Range reduction: |
| // For x = 2^m * 1.mant, log2(x) = m + log2(1.m) |
| // If x is denormal, we normalize it by multiplying x by 2^23 and subtracting |
| // m by 23. |
| |
| // Step 2 - Another range reduction: |
| // To compute log(1.mant), let f be the highest 8 bits including the hidden |
| // bit, and d be the difference (1.mant - f), i.e. the remaining 16 bits of the |
| // mantissa. Then we have the following approximation formula: |
| // log2(1.mant) = log2(f) + log2(1.mant / f) |
| // = log2(f) + log2(1 + d/f) |
| // ~ log2(f) + P(d/f) |
| // since d/f is sufficiently small. |
| // log2(f) and 1/f are then stored in two 2^7 = 128 entries look-up tables. |
| |
| // Step 3 - Polynomial approximation: |
| // To compute P(d/f), we use a single degree-5 polynomial in double precision |
| // which provides correct rounding for all but few exception values. |
| // For more detail about how this polynomial is obtained, please refer to the |
| // papers: |
| // Lim, J. and Nagarakatte, S., "One Polynomial Approximation to Produce |
| // Correctly Rounded Results of an Elementary Function for Multiple |
| // Representations and Rounding Modes", Proceedings of the 49th ACM SIGPLAN |
| // Symposium on Principles of Programming Languages (POPL-2022), Philadelphia, |
| // USA, Jan. 16-22, 2022. |
| // https://people.cs.rutgers.edu/~sn349/papers/rlibmall-popl-2022.pdf |
| // Aanjaneya, M., Lim, J., and Nagarakatte, S., "RLibm-Prog: Progressive |
| // Polynomial Approximations for Fast Correctly Rounded Math Libraries", |
| // Dept. of Comp. Sci., Rutgets U., Technical Report DCS-TR-758, Nov. 2021. |
| // https://arxiv.org/pdf/2111.12852.pdf. |
| |
| namespace LIBC_NAMESPACE { |
| |
| LLVM_LIBC_FUNCTION(float, log2f, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| using Sign = fputil::Sign; |
| FPBits xbits(x); |
| uint32_t x_u = xbits.uintval(); |
| |
| // Hard to round value(s). |
| using fputil::round_result_slightly_up; |
| |
| int m = -FPBits::EXP_BIAS; |
| |
| // log2(1.0f) = 0.0f. |
| if (LIBC_UNLIKELY(x_u == 0x3f80'0000U)) |
| return 0.0f; |
| |
| // Exceptional inputs. |
| if (LIBC_UNLIKELY(x_u < FPBits::min_normal().uintval() || |
| x_u > FPBits::max_normal().uintval())) { |
| if (xbits.is_zero()) { |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| return FPBits::inf(Sign::NEG).get_val(); |
| } |
| if (xbits.is_neg() && !xbits.is_nan()) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except(FE_INVALID); |
| return FPBits::build_quiet_nan().get_val(); |
| } |
| if (xbits.is_inf_or_nan()) { |
| return x; |
| } |
| // Normalize denormal inputs. |
| xbits = FPBits(xbits.get_val() * 0x1.0p23f); |
| m -= 23; |
| } |
| |
| m += xbits.get_biased_exponent(); |
| int index = xbits.get_mantissa() >> 16; |
| // Set bits to 1.m |
| xbits.set_biased_exponent(0x7F); |
| |
| float u = xbits.get_val(); |
| double v; |
| #ifdef LIBC_TARGET_CPU_HAS_FMA |
| v = static_cast<double>(fputil::multiply_add(u, R[index], -1.0f)); // Exact. |
| #else |
| v = fputil::multiply_add(static_cast<double>(u), RD[index], -1.0); // Exact |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| |
| double extra_factor = static_cast<double>(m) + LOG2_R[index]; |
| |
| // Degree-5 polynomial approximation of log2 generated by Sollya with: |
| // > P = fpminimax(log2(1 + x)/x, 4, [|1, D...|], [-2^-8, 2^-7]); |
| constexpr double COEFFS[5] = {0x1.71547652b8133p0, -0x1.71547652d1e33p-1, |
| 0x1.ec70a098473dep-2, -0x1.7154c5ccdf121p-2, |
| 0x1.2514fd90a130ap-2}; |
| |
| double vsq = v * v; // Exact |
| double c0 = fputil::multiply_add(v, COEFFS[0], extra_factor); |
| double c1 = fputil::multiply_add(v, COEFFS[2], COEFFS[1]); |
| double c2 = fputil::multiply_add(v, COEFFS[4], COEFFS[3]); |
| |
| double r = fputil::polyeval(vsq, c0, c1, c2); |
| |
| return static_cast<float>(r); |
| } |
| |
| } // namespace LIBC_NAMESPACE |