| //===-- Single-precision log1p(x) function --------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "src/math/log1pf.h" |
| #include "common_constants.h" // Lookup table for (1/f) and log(f) |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FMA.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" |
| |
| // This is an algorithm for log10(x) in single precision which is |
| // correctly rounded for all rounding modes. |
| // - An exhaustive test show that when x >= 2^45, log1pf(x) == logf(x) |
| // for all rounding modes. |
| // - When 2^(-6) <= |x| < 2^45, the sum (double(x) + 1.0) is exact, |
| // so we can adapt the correctly rounded algorithm of logf to compute |
| // log(double(x) + 1.0) correctly. For more information about the logf |
| // algorithm, see `libc/src/math/generic/logf.cpp`. |
| // - When |x| < 2^(-6), we use a degree-8 polynomial in double precision |
| // generated with Sollya using the following command: |
| // fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); |
| |
| namespace LIBC_NAMESPACE { |
| |
| namespace internal { |
| |
| // We don't need to treat denormal and 0 |
| LIBC_INLINE float log(double x) { |
| constexpr double LOG_2 = 0x1.62e42fefa39efp-1; |
| |
| using FPBits = typename fputil::FPBits<double>; |
| FPBits xbits(x); |
| |
| uint64_t x_u = xbits.uintval(); |
| |
| if (LIBC_UNLIKELY(x_u > FPBits::max_normal().uintval())) { |
| if (xbits.is_neg() && !xbits.is_nan()) { |
| fputil::set_errno_if_required(EDOM); |
| fputil::raise_except_if_required(FE_INVALID); |
| return fputil::FPBits<float>::build_quiet_nan().get_val(); |
| } |
| return static_cast<float>(x); |
| } |
| |
| double m = static_cast<double>(xbits.get_exponent()); |
| |
| // Get the 8 highest bits, use 7 bits (excluding the implicit hidden bit) for |
| // lookup tables. |
| int f_index = static_cast<int>(xbits.get_mantissa() >> |
| (fputil::FPBits<double>::FRACTION_LEN - 7)); |
| |
| // Set bits to 1.m |
| xbits.set_biased_exponent(0x3FF); |
| FPBits f = xbits; |
| |
| // Clear the lowest 45 bits. |
| f.bits &= ~0x0000'1FFF'FFFF'FFFFULL; |
| |
| double d = xbits.get_val() - f.get_val(); |
| d *= ONE_OVER_F[f_index]; |
| |
| double extra_factor = fputil::multiply_add(m, LOG_2, LOG_F[f_index]); |
| |
| double r = fputil::polyeval(d, extra_factor, 0x1.fffffffffffacp-1, |
| -0x1.fffffffef9cb2p-2, 0x1.5555513bc679ap-2, |
| -0x1.fff4805ea441p-3, 0x1.930180dbde91ap-3); |
| |
| return static_cast<float>(r); |
| } |
| |
| } // namespace internal |
| |
| LLVM_LIBC_FUNCTION(float, log1pf, (float x)) { |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| uint32_t x_u = xbits.uintval(); |
| uint32_t x_a = x_u & 0x7fff'ffffU; |
| double xd = static_cast<double>(x); |
| |
| // Use log1p(x) = log(1 + x) for |x| > 2^-6; |
| if (x_a > 0x3c80'0000U) { |
| // Hard-to-round cases. |
| switch (x_u) { |
| case 0x41078febU: // x = 0x1.0f1fd6p3 |
| return fputil::round_result_slightly_up(0x1.1fcbcep1f); |
| case 0x5cd69e88U: // x = 0x1.ad3d1p+58f |
| return fputil::round_result_slightly_up(0x1.45c146p+5f); |
| case 0x65d890d3U: // x = 0x1.b121a6p+76f |
| return fputil::round_result_slightly_down(0x1.a9a3f2p+5f); |
| case 0x6f31a8ecU: // x = 0x1.6351d8p+95f |
| return fputil::round_result_slightly_down(0x1.08b512p+6f); |
| case 0x7a17f30aU: // x = 0x1.2fe614p+117f |
| return fputil::round_result_slightly_up(0x1.451436p+6f); |
| case 0xbd1d20afU: // x = -0x1.3a415ep-5f |
| return fputil::round_result_slightly_up(-0x1.407112p-5f); |
| case 0xbf800000U: // x = -1.0 |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_DIVBYZERO); |
| return FPBits::inf(fputil::Sign::NEG).get_val(); |
| #ifndef LIBC_TARGET_CPU_HAS_FMA |
| case 0x4cc1c80bU: // x = 0x1.839016p+26f |
| return fputil::round_result_slightly_down(0x1.26fc04p+4f); |
| case 0x5ee8984eU: // x = 0x1.d1309cp+62f |
| return fputil::round_result_slightly_up(0x1.5c9442p+5f); |
| case 0x665e7ca6U: // x = 0x1.bcf94cp+77f |
| return fputil::round_result_slightly_up(0x1.af66cp+5f); |
| case 0x79e7ec37U: // x = 0x1.cfd86ep+116f |
| return fputil::round_result_slightly_up(0x1.43ff6ep+6f); |
| #endif // LIBC_TARGET_CPU_HAS_FMA |
| } |
| |
| return internal::log(xd + 1.0); |
| } |
| |
| // |x| <= 2^-6. |
| // Hard-to round cases. |
| switch (x_u) { |
| case 0x35400003U: // x = 0x1.800006p-21f |
| return fputil::round_result_slightly_down(0x1.7ffffep-21f); |
| case 0x3710001bU: // x = 0x1.200036p-17f |
| return fputil::round_result_slightly_down(0x1.1fffe6p-17f); |
| case 0xb53ffffdU: // x = -0x1.7ffffap-21 |
| return fputil::round_result_slightly_down(-0x1.800002p-21f); |
| case 0xb70fffe5U: // x = -0x1.1fffcap-17 |
| return fputil::round_result_slightly_down(-0x1.20001ap-17f); |
| case 0xbb0ec8c4U: // x = -0x1.1d9188p-9 |
| return fputil::round_result_slightly_up(-0x1.1de14ap-9f); |
| } |
| |
| // Polymial generated by Sollya with: |
| // > fpminimax(log(1 + x)/x, 7, [|D...|], [-2^-6; 2^-6]); |
| const double COEFFS[7] = {-0x1.0000000000000p-1, 0x1.5555555556aadp-2, |
| -0x1.000000000181ap-2, 0x1.999998998124ep-3, |
| -0x1.55555452e2a2bp-3, 0x1.24adb8cde4aa7p-3, |
| -0x1.0019db915ef6fp-3}; |
| |
| double xsq = xd * xd; |
| double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); |
| double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); |
| double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); |
| double r = fputil::polyeval(xsq, xd, c0, c1, c2, COEFFS[6]); |
| |
| return static_cast<float>(r); |
| } |
| |
| } // namespace LIBC_NAMESPACE |