| //===-- Single-precision 2^x function -------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |
| #define LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |
| |
| #include "src/__support/FPUtil/FEnvImpl.h" |
| #include "src/__support/FPUtil/FPBits.h" |
| #include "src/__support/FPUtil/PolyEval.h" |
| #include "src/__support/FPUtil/except_value_utils.h" |
| #include "src/__support/FPUtil/multiply_add.h" |
| #include "src/__support/FPUtil/nearest_integer.h" |
| #include "src/__support/FPUtil/rounding_mode.h" |
| #include "src/__support/common.h" |
| #include "src/__support/macros/optimization.h" // LIBC_UNLIKELY |
| #include "src/__support/macros/properties/cpu_features.h" |
| |
| #include <errno.h> |
| |
| #include "explogxf.h" |
| |
| namespace LIBC_NAMESPACE::generic { |
| |
| LIBC_INLINE float exp2f(float x) { |
| constexpr uint32_t EXVAL1 = 0x3b42'9d37U; |
| constexpr uint32_t EXVAL2 = 0xbcf3'a937U; |
| constexpr uint32_t EXVAL_MASK = EXVAL1 & EXVAL2; |
| |
| using FPBits = typename fputil::FPBits<float>; |
| FPBits xbits(x); |
| |
| uint32_t x_u = xbits.uintval(); |
| uint32_t x_abs = x_u & 0x7fff'ffffU; |
| |
| // When |x| >= 128, or x is nan, or |x| <= 2^-5 |
| if (LIBC_UNLIKELY(x_abs >= 0x4300'0000U || x_abs <= 0x3d00'0000U)) { |
| // |x| <= 2^-5 |
| if (x_abs <= 0x3d00'0000) { |
| // |x| < 2^-25 |
| if (LIBC_UNLIKELY(x_abs <= 0x3280'0000U)) { |
| return 1.0f + x; |
| } |
| |
| // Check exceptional values. |
| if (LIBC_UNLIKELY((x_u & EXVAL_MASK) == EXVAL_MASK)) { |
| if (LIBC_UNLIKELY(x_u == EXVAL1)) { // x = 0x1.853a6ep-9f |
| return fputil::round_result_slightly_down(0x1.00870ap+0f); |
| } else if (LIBC_UNLIKELY(x_u == EXVAL2)) { // x = -0x1.e7526ep-6f |
| return fputil::round_result_slightly_down(0x1.f58d62p-1f); |
| } |
| } |
| |
| // Minimax polynomial generated by Sollya with: |
| // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-2^-5, 2^-5]); |
| constexpr double COEFFS[] = { |
| 0x1.62e42fefa39f3p-1, 0x1.ebfbdff82c57bp-3, 0x1.c6b08d6f2d7aap-5, |
| 0x1.3b2ab6fc92f5dp-7, 0x1.5d897cfe27125p-10, 0x1.43090e61e6af1p-13}; |
| double xd = static_cast<double>(x); |
| double xsq = xd * xd; |
| double c0 = fputil::multiply_add(xd, COEFFS[1], COEFFS[0]); |
| double c1 = fputil::multiply_add(xd, COEFFS[3], COEFFS[2]); |
| double c2 = fputil::multiply_add(xd, COEFFS[5], COEFFS[4]); |
| double p = fputil::polyeval(xsq, c0, c1, c2); |
| double r = fputil::multiply_add(p, xd, 1.0); |
| return static_cast<float>(r); |
| } |
| |
| // x >= 128 |
| if (xbits.is_pos()) { |
| // x is finite |
| if (x_u < 0x7f80'0000U) { |
| int rounding = fputil::quick_get_round(); |
| if (rounding == FE_DOWNWARD || rounding == FE_TOWARDZERO) |
| return FPBits::max_normal().get_val(); |
| |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_OVERFLOW); |
| } |
| // x is +inf or nan |
| return x + FPBits::inf().get_val(); |
| } |
| // x <= -150 |
| if (x_u >= 0xc316'0000U) { |
| // exp(-Inf) = 0 |
| if (xbits.is_inf()) |
| return 0.0f; |
| // exp(nan) = nan |
| if (xbits.is_nan()) |
| return x; |
| if (fputil::fenv_is_round_up()) |
| return FPBits::min_subnormal().get_val(); |
| if (x != 0.0f) { |
| fputil::set_errno_if_required(ERANGE); |
| fputil::raise_except_if_required(FE_UNDERFLOW); |
| } |
| return 0.0f; |
| } |
| } |
| |
| // For -150 < x < 128, to compute 2^x, we perform the following range |
| // reduction: find hi, mid, lo such that: |
| // x = hi + mid + lo, in which |
| // hi is an integer, |
| // 0 <= mid * 2^5 < 32 is an integer |
| // -2^(-6) <= lo <= 2^-6. |
| // In particular, |
| // hi + mid = round(x * 2^5) * 2^(-5). |
| // Then, |
| // 2^x = 2^(hi + mid + lo) = 2^hi * 2^mid * 2^lo. |
| // 2^mid is stored in the lookup table of 32 elements. |
| // 2^lo is computed using a degree-5 minimax polynomial |
| // generated by Sollya. |
| // We perform 2^hi * 2^mid by simply add hi to the exponent field |
| // of 2^mid. |
| |
| // kf = (hi + mid) * 2^5 = round(x * 2^5) |
| float kf; |
| int k; |
| #ifdef LIBC_TARGET_CPU_HAS_NEAREST_INT |
| kf = fputil::nearest_integer(x * 32.0f); |
| k = static_cast<int>(kf); |
| #else |
| constexpr float HALF[2] = {0.5f, -0.5f}; |
| k = static_cast<int>(fputil::multiply_add(x, 32.0f, HALF[x < 0.0f])); |
| kf = static_cast<float>(k); |
| #endif // LIBC_TARGET_CPU_HAS_NEAREST_INT |
| |
| // dx = lo = x - (hi + mid) = x - kf * 2^(-5) |
| double dx = fputil::multiply_add(-0x1.0p-5f, kf, x); |
| |
| // hi = floor(kf * 2^(-4)) |
| // exp_hi = shift hi to the exponent field of double precision. |
| int64_t exp_hi = |
| static_cast<int64_t>(static_cast<uint64_t>(k >> ExpBase::MID_BITS) |
| << fputil::FPBits<double>::FRACTION_LEN); |
| // mh = 2^hi * 2^mid |
| // mh_bits = bit field of mh |
| int64_t mh_bits = ExpBase::EXP_2_MID[k & ExpBase::MID_MASK] + exp_hi; |
| double mh = fputil::FPBits<double>(uint64_t(mh_bits)).get_val(); |
| |
| // Degree-5 polynomial approximating (2^x - 1)/x generating by Sollya with: |
| // > P = fpminimax((2^x - 1)/x, 5, [|D...|], [-1/32. 1/32]); |
| constexpr double COEFFS[5] = {0x1.62e42fefa39efp-1, 0x1.ebfbdff8131c4p-3, |
| 0x1.c6b08d7061695p-5, 0x1.3b2b1bee74b2ap-7, |
| 0x1.5d88091198529p-10}; |
| double dx_sq = dx * dx; |
| double c1 = fputil::multiply_add(dx, COEFFS[0], 1.0); |
| double c2 = fputil::multiply_add(dx, COEFFS[2], COEFFS[1]); |
| double c3 = fputil::multiply_add(dx, COEFFS[4], COEFFS[3]); |
| double p = fputil::multiply_add(dx_sq, c3, c2); |
| // 2^x = 2^(hi + mid + lo) |
| // = 2^(hi + mid) * 2^lo |
| // ~ mh * (1 + lo * P(lo)) |
| // = mh + (mh*lo) * P(lo) |
| return static_cast<float>(fputil::multiply_add(p, dx_sq * mh, c1 * mh)); |
| } |
| |
| } // namespace LIBC_NAMESPACE::generic |
| |
| #endif // LLVM_LIBC_SRC_MATH_GENERIC_EXP2F_IMPL_H |