| // -*- C++ -*- |
| //===----------------------------------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef _LIBCPP___ALGORITHM_RADIX_SORT_H |
| #define _LIBCPP___ALGORITHM_RADIX_SORT_H |
| |
| // This is an implementation of classic LSD radix sort algorithm, running in linear time and using `O(max(N, M))` |
| // additional memory, where `N` is size of an input range, `M` - maximum value of |
| // a radix of the sorted integer type. Type of the radix and its maximum value are determined at compile time |
| // based on type returned by function `__radix`. The default radix is uint8. |
| |
| // The algorithm is equivalent to several consecutive calls of counting sort for each |
| // radix of the sorted numbers from low to high byte. |
| // The algorithm uses a temporary buffer of size equal to size of the input range. Each `i`-th pass |
| // of the algorithm sorts values by `i`-th radix and moves values to the temporary buffer (for each even `i`, counted |
| // from zero), or moves them back to the initial range (for each odd `i`). If there is only one radix in sorted integers |
| // (e.g. int8), the sorted values are placed to the buffer, and then moved back to the initial range. |
| |
| // The implementation also has several optimizations: |
| // - the counters for the counting sort are calculated in one pass for all radices; |
| // - if all values of a radix are the same, we do not sort that radix, and just move items to the buffer; |
| // - if two consecutive radices satisfies condition above, we do nothing for these two radices. |
| |
| #include <__algorithm/for_each.h> |
| #include <__algorithm/move.h> |
| #include <__bit/bit_cast.h> |
| #include <__bit/bit_log2.h> |
| #include <__config> |
| #include <__cstddef/size_t.h> |
| #include <__functional/identity.h> |
| #include <__iterator/access.h> |
| #include <__iterator/distance.h> |
| #include <__iterator/iterator_traits.h> |
| #include <__iterator/move_iterator.h> |
| #include <__iterator/next.h> |
| #include <__iterator/reverse_iterator.h> |
| #include <__numeric/partial_sum.h> |
| #include <__type_traits/decay.h> |
| #include <__type_traits/enable_if.h> |
| #include <__type_traits/invoke.h> |
| #include <__type_traits/is_assignable.h> |
| #include <__type_traits/is_enum.h> |
| #include <__type_traits/is_integral.h> |
| #include <__type_traits/is_unsigned.h> |
| #include <__type_traits/make_unsigned.h> |
| #include <__type_traits/void_t.h> |
| #include <__utility/declval.h> |
| #include <__utility/forward.h> |
| #include <__utility/integer_sequence.h> |
| #include <__utility/move.h> |
| #include <__utility/pair.h> |
| #include <climits> |
| #include <cstdint> |
| #include <initializer_list> |
| #include <limits> |
| |
| #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) |
| # pragma GCC system_header |
| #endif |
| |
| _LIBCPP_PUSH_MACROS |
| #include <__undef_macros> |
| |
| _LIBCPP_BEGIN_NAMESPACE_STD |
| |
| #if _LIBCPP_STD_VER >= 14 |
| |
| template <class _InputIterator, class _OutputIterator> |
| _LIBCPP_HIDE_FROM_ABI constexpr pair<_OutputIterator, __iter_value_type<_InputIterator>> |
| __partial_sum_max(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { |
| if (__first == __last) |
| return {__result, 0}; |
| |
| auto __max = *__first; |
| __iter_value_type<_InputIterator> __sum = *__first; |
| *__result = __sum; |
| |
| while (++__first != __last) { |
| if (__max < *__first) { |
| __max = *__first; |
| } |
| __sum = std::move(__sum) + *__first; |
| *++__result = __sum; |
| } |
| return {++__result, __max}; |
| } |
| |
| template <class _Value, class _Map, class _Radix> |
| struct __radix_sort_traits { |
| using __image_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Map, _Value>>; |
| static_assert(is_unsigned<__image_type>::value); |
| |
| using __radix_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Radix, __image_type>>; |
| static_assert(is_integral<__radix_type>::value); |
| |
| static constexpr auto __radix_value_range = numeric_limits<__radix_type>::max() + 1; |
| static constexpr auto __radix_size = std::__bit_log2<uint64_t>(__radix_value_range); |
| static constexpr auto __radix_count = sizeof(__image_type) * CHAR_BIT / __radix_size; |
| }; |
| |
| template <class _Value, class _Map> |
| struct __counting_sort_traits { |
| using __image_type _LIBCPP_NODEBUG = decay_t<__invoke_result_t<_Map, _Value>>; |
| static_assert(is_unsigned<__image_type>::value); |
| |
| static constexpr const auto __value_range = numeric_limits<__image_type>::max() + 1; |
| static constexpr auto __radix_size = std::__bit_log2<uint64_t>(__value_range); |
| }; |
| |
| template <class _Radix, class _Integer> |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __nth_radix(size_t __radix_number, _Radix __radix, _Integer __n) { |
| static_assert(is_unsigned<_Integer>::value); |
| using __traits = __counting_sort_traits<_Integer, _Radix>; |
| |
| return __radix(static_cast<_Integer>(__n >> __traits::__radix_size * __radix_number)); |
| } |
| |
| template <class _ForwardIterator, class _Map, class _RandomAccessIterator> |
| _LIBCPP_HIDE_FROM_ABI constexpr void |
| __collect(_ForwardIterator __first, _ForwardIterator __last, _Map __map, _RandomAccessIterator __counters) { |
| using __value_type = __iter_value_type<_ForwardIterator>; |
| using __traits = __counting_sort_traits<__value_type, _Map>; |
| |
| std::for_each(__first, __last, [&__counters, &__map](const auto& __preimage) { ++__counters[__map(__preimage)]; }); |
| |
| const auto __counters_end = __counters + __traits::__value_range; |
| std::partial_sum(__counters, __counters_end, __counters); |
| } |
| |
| template <class _ForwardIterator, class _RandomAccessIterator1, class _Map, class _RandomAccessIterator2> |
| _LIBCPP_HIDE_FROM_ABI constexpr void |
| __dispose(_ForwardIterator __first, |
| _ForwardIterator __last, |
| _RandomAccessIterator1 __result, |
| _Map __map, |
| _RandomAccessIterator2 __counters) { |
| std::for_each(__first, __last, [&__result, &__counters, &__map](auto&& __preimage) { |
| auto __index = __counters[__map(__preimage)]++; |
| __result[__index] = std::move(__preimage); |
| }); |
| } |
| |
| template <class _ForwardIterator, |
| class _Map, |
| class _Radix, |
| class _RandomAccessIterator1, |
| class _RandomAccessIterator2, |
| size_t... _Radices> |
| _LIBCPP_HIDE_FROM_ABI constexpr bool __collect_impl( |
| _ForwardIterator __first, |
| _ForwardIterator __last, |
| _Map __map, |
| _Radix __radix, |
| _RandomAccessIterator1 __counters, |
| _RandomAccessIterator2 __maximums, |
| index_sequence<_Radices...>) { |
| using __value_type = __iter_value_type<_ForwardIterator>; |
| constexpr auto __radix_value_range = __radix_sort_traits<__value_type, _Map, _Radix>::__radix_value_range; |
| |
| auto __previous = numeric_limits<__invoke_result_t<_Map, __value_type>>::min(); |
| auto __is_sorted = true; |
| std::for_each(__first, __last, [&__counters, &__map, &__radix, &__previous, &__is_sorted](const auto& __value) { |
| auto __current = __map(__value); |
| __is_sorted &= (__current >= __previous); |
| __previous = __current; |
| |
| (++__counters[_Radices][std::__nth_radix(_Radices, __radix, __current)], ...); |
| }); |
| |
| ((__maximums[_Radices] = |
| std::__partial_sum_max(__counters[_Radices], __counters[_Radices] + __radix_value_range, __counters[_Radices]) |
| .second), |
| ...); |
| |
| return __is_sorted; |
| } |
| |
| template <class _ForwardIterator, class _Map, class _Radix, class _RandomAccessIterator1, class _RandomAccessIterator2> |
| _LIBCPP_HIDE_FROM_ABI constexpr bool |
| __collect(_ForwardIterator __first, |
| _ForwardIterator __last, |
| _Map __map, |
| _Radix __radix, |
| _RandomAccessIterator1 __counters, |
| _RandomAccessIterator2 __maximums) { |
| using __value_type = __iter_value_type<_ForwardIterator>; |
| constexpr auto __radix_count = __radix_sort_traits<__value_type, _Map, _Radix>::__radix_count; |
| return std::__collect_impl( |
| __first, __last, __map, __radix, __counters, __maximums, make_index_sequence<__radix_count>()); |
| } |
| |
| template <class _BidirectionalIterator, class _RandomAccessIterator1, class _Map, class _RandomAccessIterator2> |
| _LIBCPP_HIDE_FROM_ABI constexpr void __dispose_backward( |
| _BidirectionalIterator __first, |
| _BidirectionalIterator __last, |
| _RandomAccessIterator1 __result, |
| _Map __map, |
| _RandomAccessIterator2 __counters) { |
| std::for_each(std::make_reverse_iterator(__last), |
| std::make_reverse_iterator(__first), |
| [&__result, &__counters, &__map](auto&& __preimage) { |
| auto __index = --__counters[__map(__preimage)]; |
| __result[__index] = std::move(__preimage); |
| }); |
| } |
| |
| template <class _ForwardIterator, class _RandomAccessIterator, class _Map> |
| _LIBCPP_HIDE_FROM_ABI constexpr _RandomAccessIterator |
| __counting_sort_impl(_ForwardIterator __first, _ForwardIterator __last, _RandomAccessIterator __result, _Map __map) { |
| using __value_type = __iter_value_type<_ForwardIterator>; |
| using __traits = __counting_sort_traits<__value_type, _Map>; |
| |
| __iter_diff_t<_RandomAccessIterator> __counters[__traits::__value_range + 1] = {0}; |
| |
| std::__collect(__first, __last, __map, std::next(std::begin(__counters))); |
| std::__dispose(__first, __last, __result, __map, std::begin(__counters)); |
| |
| return __result + __counters[__traits::__value_range]; |
| } |
| |
| template <class _RandomAccessIterator1, |
| class _RandomAccessIterator2, |
| class _Map, |
| class _Radix, |
| enable_if_t< __radix_sort_traits<__iter_value_type<_RandomAccessIterator1>, _Map, _Radix>::__radix_count == 1, |
| int> = 0> |
| _LIBCPP_HIDE_FROM_ABI constexpr void __radix_sort_impl( |
| _RandomAccessIterator1 __first, |
| _RandomAccessIterator1 __last, |
| _RandomAccessIterator2 __buffer, |
| _Map __map, |
| _Radix __radix) { |
| auto __buffer_end = std::__counting_sort_impl(__first, __last, __buffer, [&__map, &__radix](const auto& __value) { |
| return __radix(__map(__value)); |
| }); |
| |
| std::move(__buffer, __buffer_end, __first); |
| } |
| |
| template < |
| class _RandomAccessIterator1, |
| class _RandomAccessIterator2, |
| class _Map, |
| class _Radix, |
| enable_if_t< __radix_sort_traits<__iter_value_type<_RandomAccessIterator1>, _Map, _Radix>::__radix_count % 2 == 0, |
| int> = 0 > |
| _LIBCPP_HIDE_FROM_ABI constexpr void __radix_sort_impl( |
| _RandomAccessIterator1 __first, |
| _RandomAccessIterator1 __last, |
| _RandomAccessIterator2 __buffer_begin, |
| _Map __map, |
| _Radix __radix) { |
| using __value_type = __iter_value_type<_RandomAccessIterator1>; |
| using __traits = __radix_sort_traits<__value_type, _Map, _Radix>; |
| |
| __iter_diff_t<_RandomAccessIterator1> __counters[__traits::__radix_count][__traits::__radix_value_range] = {{0}}; |
| __iter_diff_t<_RandomAccessIterator1> __maximums[__traits::__radix_count] = {0}; |
| const auto __is_sorted = std::__collect(__first, __last, __map, __radix, __counters, __maximums); |
| if (!__is_sorted) { |
| const auto __range_size = std::distance(__first, __last); |
| auto __buffer_end = __buffer_begin + __range_size; |
| for (size_t __radix_number = 0; __radix_number < __traits::__radix_count; __radix_number += 2) { |
| const auto __n0th_is_single = __maximums[__radix_number] == __range_size; |
| const auto __n1th_is_single = __maximums[__radix_number + 1] == __range_size; |
| |
| if (__n0th_is_single && __n1th_is_single) { |
| continue; |
| } |
| |
| if (__n0th_is_single) { |
| std::move(__first, __last, __buffer_begin); |
| } else { |
| auto __n0th = [__radix_number, &__map, &__radix](const auto& __v) { |
| return std::__nth_radix(__radix_number, __radix, __map(__v)); |
| }; |
| std::__dispose_backward(__first, __last, __buffer_begin, __n0th, __counters[__radix_number]); |
| } |
| |
| if (__n1th_is_single) { |
| std::move(__buffer_begin, __buffer_end, __first); |
| } else { |
| auto __n1th = [__radix_number, &__map, &__radix](const auto& __v) { |
| return std::__nth_radix(__radix_number + 1, __radix, __map(__v)); |
| }; |
| std::__dispose_backward(__buffer_begin, __buffer_end, __first, __n1th, __counters[__radix_number + 1]); |
| } |
| } |
| } |
| } |
| |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __shift_to_unsigned(bool __b) { return __b; } |
| |
| template <class _Ip> |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __shift_to_unsigned(_Ip __n) { |
| constexpr const auto __min_value = numeric_limits<_Ip>::min(); |
| return static_cast<make_unsigned_t<_Ip> >(__n ^ __min_value); |
| } |
| |
| template <size_t _Size> |
| struct __unsigned_integer_of_size; |
| |
| template <> |
| struct __unsigned_integer_of_size<1> { |
| using type _LIBCPP_NODEBUG = uint8_t; |
| }; |
| |
| template <> |
| struct __unsigned_integer_of_size<2> { |
| using type _LIBCPP_NODEBUG = uint16_t; |
| }; |
| |
| template <> |
| struct __unsigned_integer_of_size<4> { |
| using type _LIBCPP_NODEBUG = uint32_t; |
| }; |
| |
| template <> |
| struct __unsigned_integer_of_size<8> { |
| using type _LIBCPP_NODEBUG = uint64_t; |
| }; |
| |
| # if _LIBCPP_HAS_INT128 |
| template <> |
| struct __unsigned_integer_of_size<16> { |
| using type _LIBCPP_NODEBUG = unsigned __int128; |
| }; |
| # endif |
| |
| template <size_t _Size> |
| using __unsigned_integer_of_size_t _LIBCPP_NODEBUG = typename __unsigned_integer_of_size<_Size>::type; |
| |
| template <class _Sc> |
| using __unsigned_representation_for_t _LIBCPP_NODEBUG = __unsigned_integer_of_size_t<sizeof(_Sc)>; |
| |
| // The function `__to_ordered_integral` is defined for integers and IEEE 754 floating-point numbers. |
| // Returns an integer representation such that for any `x` and `y` such that `x < y`, the expression |
| // `__to_ordered_integral(x) < __to_ordered_integral(y)` is true, where `x`, `y` are integers or IEEE 754 floats. |
| template <class _Integral, enable_if_t< is_integral<_Integral>::value, int> = 0> |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Integral __n) { |
| return __n; |
| } |
| |
| // An overload for IEEE 754 floating-point numbers |
| |
| // For the floats conforming to IEEE 754 (IEC 559) standard, we know that: |
| // 1. The bit representation of positive floats directly reflects their order: |
| // When comparing floats by magnitude, the number with the larger exponent is greater, and if the exponents are |
| // equal, the one with the larger mantissa is greater. |
| // 2. The bit representation of negative floats reflects their reverse order (for the same reasons). |
| // 3. The most significant bit (sign bit) is zero for positive floats and one for negative floats. Therefore, in the raw |
| // bit representation, any negative number will be greater than any positive number. |
| |
| // The only exception from this rule is `NaN`, which is unordered by definition. |
| |
| // Based on the above, to obtain correctly ordered integral representation of floating-point numbers, we need to: |
| // 1. Invert the bit representation (including the sign bit) of negative floats to switch from reverse order to direct |
| // order; |
| // 2. Invert the sign bit for positive floats. |
| |
| // Thus, in final integral representation, we have reversed the order for negative floats and made all negative floats |
| // smaller than all positive numbers (by inverting the sign bit). |
| template <class _Floating, enable_if_t< numeric_limits<_Floating>::is_iec559, int> = 0> |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Floating __f) { |
| using __integral_type = __unsigned_representation_for_t<_Floating>; |
| constexpr auto __bit_count = std::numeric_limits<__integral_type>::digits; |
| constexpr auto __sign_bit_mask = static_cast<__integral_type>(__integral_type{1} << (__bit_count - 1)); |
| |
| const auto __u = std::__bit_cast<__integral_type>(__f); |
| |
| return static_cast<__integral_type>(__u & __sign_bit_mask ? ~__u : __u ^ __sign_bit_mask); |
| } |
| |
| // There may exist user-defined comparison for enum, so we cannot compare enums just like integers. |
| template <class _Enum, enable_if_t< is_enum<_Enum>::value, int> = 0> |
| _LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(_Enum __e) = delete; |
| |
| // `long double` varies significantly across platforms and compilers, making it practically |
| // impossible to determine its actual bit width for conversion to an ordered integer. |
| inline _LIBCPP_HIDE_FROM_ABI constexpr auto __to_ordered_integral(long double) = delete; |
| |
| template <class _Tp, class = void> |
| inline const bool __is_ordered_integer_representable_v = false; |
| |
| template <class _Tp> |
| inline const bool |
| __is_ordered_integer_representable_v<_Tp, __void_t<decltype(std::__to_ordered_integral(std::declval<_Tp>()))>> = |
| true; |
| |
| struct __low_byte_fn { |
| template <class _Ip> |
| _LIBCPP_HIDE_FROM_ABI constexpr uint8_t operator()(_Ip __integer) const { |
| static_assert(is_unsigned<_Ip>::value); |
| |
| return static_cast<uint8_t>(__integer & 0xff); |
| } |
| }; |
| |
| template <class _RandomAccessIterator1, class _RandomAccessIterator2, class _Map, class _Radix> |
| _LIBCPP_HIDE_FROM_ABI constexpr void |
| __radix_sort(_RandomAccessIterator1 __first, |
| _RandomAccessIterator1 __last, |
| _RandomAccessIterator2 __buffer, |
| _Map __map, |
| _Radix __radix) { |
| auto __map_to_unsigned = [__map = std::move(__map)](const auto& __x) { |
| return std::__shift_to_unsigned(__map(std::__to_ordered_integral(__x))); |
| }; |
| std::__radix_sort_impl(__first, __last, __buffer, __map_to_unsigned, __radix); |
| } |
| |
| template <class _RandomAccessIterator1, class _RandomAccessIterator2> |
| _LIBCPP_HIDE_FROM_ABI constexpr void |
| __radix_sort(_RandomAccessIterator1 __first, _RandomAccessIterator1 __last, _RandomAccessIterator2 __buffer) { |
| std::__radix_sort(__first, __last, __buffer, __identity{}, __low_byte_fn{}); |
| } |
| |
| #endif // _LIBCPP_STD_VER >= 14 |
| |
| _LIBCPP_END_NAMESPACE_STD |
| |
| _LIBCPP_POP_MACROS |
| |
| #endif // _LIBCPP___ALGORITHM_RADIX_SORT_H |