[lldb][TypeSystemClang] Create VLAs of explicitly 0-size as ConstantArrayType (#100710)

Depends on https://github.com/llvm/llvm-project/pull/100674

Currently, we treat VLAs declared as `int[]` and `int[0]` identically.
I.e., we create them as `IncompleteArrayType`s. However, the
`DW_AT_count` for `int[0]` *does* exist, and is retrievable without an
execution context. This patch decouples the notion of "has 0 elements"
from "has no known `DW_AT_count`".

This aligns with how Clang represents `int[0]` in the AST (it treats it
as a `ConstantArrayType` of 0 size).

This issue was surfaced when adapting LLDB to
https://github.com/llvm/llvm-project/issues/93069. There, the
`__compressed_pair_padding` type has a `char[0]` member. If we
previously got the `__compressed_pair_padding` out of a module (where
clang represents `char[0]` as a `ConstantArrayType`), and try to merge
the AST with one we got from DWARF (where LLDB used to represent
`char[0]` as an `IncompleteArrayType`), the AST structural equivalence
check fails, resulting in silent ASTImporter failures. This manifested
in a failure in `TestNonModuleTypeSeparation.py`.

**Implementation**
1. Adjust `ParseChildArrayInfo` to store the element counts of each VLA
dimension as an `optional<uint64_t>`, instead of a regular `uint64_t`.
So when we pass this down to `CreateArrayType`, we have a better
heuristic for what is an `IncompleteArrayType`.
2. In `TypeSystemClang::GetBitSize`, if we encounter a
`ConstantArrayType` simply return the size that it was created with. If
we couldn't determine the authoritative bound from DWARF during parsing,
we would've created an `IncompleteArrayType`. This ensures that
`GetBitSize` on arrays with `DW_AT_count 0x0` returns `0` (whereas
previously it would've returned a `std::nullopt`, causing that
`FieldDecl` to just get dropped during printing)
7 files changed
tree: 51f37accee4844869b4b6eba7e4ddaba5b387fd0
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.