[mlir][TilingInterface] Avoid looking at operands for getting slices to continue tile + fuse. (#107882)

Current implementation of `scf::tileConsumerAndFuseProducerUsingSCF`
looks at operands of tiled/tiled+fused operations to see if they are
produced by `extract_slice` operations to populate the worklist used to
continue fusion. This implicit assumption does not always work. Instead
make the implementations of `getTiledImplementation` return the slices
to use to continue fusion.

This is a breaking change

- To continue to get the same behavior of
`scf::tileConsumerAndFuseProducerUsingSCF`, change all out-of-tree
implementation of `TilingInterface::getTiledImplementation` to return
the slices to continue fusion on. All in-tree implementations have been
adapted to this.
- This change touches parts that required a simplification to the
`ControlFn` in `scf::SCFTileAndFuseOptions`. It now returns a
`std::optional<scf::SCFTileAndFuseOptions::ControlFnResult>` object that
should be `std::nullopt` if fusion is not to be performed.

Signed-off-by: MaheshRavishankar <mahesh.revishankar@gmail.com>
10 files changed
tree: c3cfa3ba2430c4a8862b67a0c6819af7f433a898
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. offload/
  21. openmp/
  22. polly/
  23. pstl/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-tidy
  29. .git-blame-ignore-revs
  30. .gitattributes
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. pyproject.toml
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.