[FuncSpec] Rework the discardment logic for unprofitable specializations.

Currently we make an arbitrary comparison between codesize and latency
in order to decide whether to keep a specialization or not. Sometimes
the latency savings are biased in favor of loops because of imprecise
block frequencies, therefore this metric contains a lot of noise. This
patch tries to address the problem as follows:

* Reject specializations whose codesize savings are less than X% of
  the original function size.
* Reject specializations whose latency savings are less than Y% of
  the original function size.
* Reject specializations whose inlining bonus is less than Z% of
  the original function size.

I am not saying this is super precise, but at least X, Y and Z are
configurable, allowing us to tweak the cost model. Moreover, it lets
us prioritize codesize over latency, which is a less noisy metric.

I am also increasing the minimum size a function should have to be
considered a candidate for specialization. Initially the cost of
a function was calculated as

  CodeMetrics::NumInsts * InlineConstants::getInstrCost()

which later in D150464 was altered into CodeMetrics::NumInsts since
the metric is supposed to model TargetTransformInfo::TCK_CodeSize.
However, we omitted adjusting MinFunctionSize in that commit.

Differential Revision: https://reviews.llvm.org/D157123
3 files changed
tree: f5abc9aa8f7b3da0b00ddb1388a575102cb9a5a7
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .arcconfig
  27. .arclint
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitignore
  32. .mailmap
  33. CONTRIBUTING.md
  34. LICENSE.TXT
  35. README.md
  36. SECURITY.md
README.md

The LLVM Compiler Infrastructure

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.