[LLVM][DWARF] Fix accelerator table switching between CU and TU (#77511)

Bug 1 is triggered when a TU is already created, and we process the same
DICompositeType at a top level. We would switch to TU accelerator table,
but
would not switch back on early exit. As the result we would add CU
entries to the TU
accelerator table. When we try to write out TUs and normalize entries,
the
offsets for DIEs that are part of a CU would not have been computed, and
it
would assert on getOffset().

Bug 2 is triggered when processing nested TUs. When we exit from
addDwarfTypeUnitType we switched back to CU accelerator table. If we
were processing nested TUs, the rest of the entries from TUs would be
added to CU accelerator table. When we write out TUs, all the DIE
pointers will become invalid. Eventually it will assert during
normalization step after CU is processed.
3 files changed
tree: 38721b06f44c25861e98050457bba222c8de2036
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .arcconfig
  27. .arclint
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. README.md
  38. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.