| // RUN: mlir-opt -allow-unregistered-dialect %s -split-input-file -affine-pipeline-data-transfer | FileCheck %s |
| |
| // ----- |
| |
| // CHECK-DAG: [[$MOD_2:#map[0-9]+]] = affine_map<(d0) -> (d0 mod 2)> |
| // CHECK-DAG: [[$MAP_MINUS_1:#map[0-9]+]] = affine_map<(d0) -> (d0 - 1)> |
| |
| // CHECK-LABEL: func @loop_nest_dma() { |
| func @loop_nest_dma() { |
| |
| %A = memref.alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 0> |
| %Ah = memref.alloc() : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| |
| %tag = memref.alloc() : memref<1 x f32> |
| |
| %zero = arith.constant 0 : index |
| %num_elts = arith.constant 32 : index |
| |
| affine.for %i = 0 to 8 { |
| affine.dma_start %A[%i], %Ah[%i], %tag[%zero], %num_elts : memref<256 x f32>, memref<32 x f32, 1>, memref<1 x f32> |
| affine.dma_wait %tag[%zero], %num_elts : memref<1 x f32> |
| %v = affine.load %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| %r = "compute"(%v) : (f32) -> (f32) |
| affine.store %r, %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| affine.for %j = 0 to 32 { |
| "do_more_compute"(%i, %j) : (index, index) -> () |
| } |
| } |
| memref.dealloc %tag : memref<1 x f32> |
| memref.dealloc %Ah : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| return |
| } |
| // CHECK: %{{.*}} = memref.alloc() : memref<256xf32> |
| // CHECK: %{{.*}} = memref.alloc() : memref<2x32xf32, 1> |
| // CHECK-NEXT: %{{.*}} = memref.alloc() : memref<2x1xf32> |
| // CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}} mod 2, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<256xf32>, memref<2x32xf32, 1>, memref<2x1xf32> |
| // CHECK-NEXT: affine.for %{{.*}} = 1 to 8 { |
| // CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}} mod 2, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<256xf32>, memref<2x32xf32, 1>, memref<2x1xf32> |
| // CHECK-NEXT: affine.apply [[$MAP_MINUS_1]](%{{.*}}) |
| // CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}}) |
| // CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}}) |
| // CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xf32> |
| // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1> |
| // CHECK-NEXT: "compute"(%{{.*}}) : (f32) -> f32 |
| // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1> |
| // CHECK-NEXT: affine.for %{{.*}} = 0 to 32 { |
| // CHECK-NEXT: "do_more_compute"(%{{.*}}, %{{.*}}) : (index, index) -> () |
| // CHECK-NEXT: } |
| // CHECK-NEXT: } |
| // CHECK-NEXT: affine.apply [[$MAP_MINUS_1]](%{{.*}}) |
| // CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}}) |
| // CHECK-NEXT: affine.apply [[$MOD_2]](%{{.*}}) |
| // CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xf32> |
| // CHECK-NEXT: affine.load %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1> |
| // CHECK-NEXT: "compute"(%{{.*}}) : (f32) -> f32 |
| // CHECK-NEXT: affine.store %{{.*}}, %{{.*}}[%{{.*}} mod 2, %{{.*}}] : memref<2x32xf32, 1> |
| // CHECK-NEXT: affine.for %{{.*}} = 0 to 32 { |
| // CHECK-NEXT: "do_more_compute"(%{{.*}}, %{{.*}}) : (index, index) -> () |
| // CHECK-NEXT: } |
| // CHECK-NEXT: memref.dealloc %{{.*}} : memref<2x1xf32> |
| // CHECK-NEXT: memref.dealloc %{{.*}} : memref<2x32xf32, 1> |
| // CHECK-NEXT: return |
| // CHECK-NEXT:} |
| |
| // ----- |
| |
| // CHECK-DAG: [[$FLOOR_MOD_2:#map[0-9]+]] = affine_map<(d0) -> ((d0 floordiv 4) mod 2)> |
| // CHECK-DAG: [[$REMAP_SHIFT_MINUS_4:#map[0-9]+]] = affine_map<(d0) -> (d0 - 4)> |
| |
| // CHECK-LABEL: @loop_step |
| func @loop_step(%arg0: memref<512xf32>, |
| %arg1: memref<512xf32>) { |
| %c0 = arith.constant 0 : index |
| %c4 = arith.constant 4 : index |
| affine.for %i0 = 0 to 512 step 4 { |
| %1 = memref.alloc() : memref<4xf32, 1> |
| %2 = memref.alloc() : memref<1xi32> |
| affine.dma_start %arg0[%i0], %1[%c0], %2[%c0], %c4, |
| : memref<512xf32>, memref<4xf32, 1>, memref<1xi32> |
| affine.dma_wait %2[%c0], %c4 : memref<1xi32> |
| "compute"(%i0) : (index) -> () |
| memref.dealloc %2 : memref<1xi32> |
| memref.dealloc %1 : memref<4xf32, 1> |
| } |
| return |
| } |
| // CHECK: [[BUF:%[0-9]+]] = memref.alloc() : memref<2x4xf32, 1> |
| // CHECK: [[TAG:%[0-9]+]] = memref.alloc() : memref<2x1xi32> |
| // CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[(%{{.*}} floordiv 4) mod 2, 0], [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<512xf32>, memref<2x4xf32, 1>, memref<2x1xi32> |
| // CHECK-NEXT: affine.for %{{.*}} = 4 to 512 step 4 { |
| // CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[(%{{.*}} floordiv 4) mod 2, 0], [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<512xf32>, memref<2x4xf32, 1>, memref<2x1xi32> |
| // CHECK-NEXT: affine.apply [[$REMAP_SHIFT_MINUS_4]](%{{.*}}) |
| // CHECK-NEXT: affine.apply [[$FLOOR_MOD_2]](%{{.*}}) |
| // CHECK: affine.dma_wait [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<2x1xi32> |
| // CHECK-NEXT: "compute"(%{{.*}}) : (index) -> () |
| // CHECK-NEXT: } |
| // CHECK-NEXT: [[SHIFTED:%[0-9]+]] = affine.apply [[$REMAP_SHIFT_MINUS_4]](%{{.*}}) |
| // CHECK-NEXT: %{{.*}} = affine.apply [[$FLOOR_MOD_2]]([[SHIFTED]]) |
| // CHECK: affine.dma_wait [[TAG]][(%{{.*}} floordiv 4) mod 2, 0], %{{.*}} : memref<2x1xi32> |
| // CHECK-NEXT: "compute"(%{{.*}}) : (index) -> () |
| // CHECK-NEXT: memref.dealloc [[TAG]] : memref<2x1xi32> |
| // CHECK-NEXT: memref.dealloc [[BUF]] : memref<2x4xf32, 1> |
| // CHECK-NEXT: return |
| // CHECK-NEXT: } |
| |
| // ----- |
| |
| #map1 = affine_map<(d0, d1) -> ((d0 * 2048 + d1 * 256) floordiv 32)> |
| #map2 = affine_map<(d0) -> ((d0 * 2048) floordiv 32)> |
| // CHECK-LABEL: func @loop_dma_nested(%{{.*}}: memref<512x32xvector<8xf32> |
| func @loop_dma_nested(%arg0: memref<512x32xvector<8xf32>>, %arg1: memref<512x32xvector<8xf32>>, %arg2: memref<512x32xvector<8xf32>>) { |
| %num_elts = arith.constant 256 : index |
| %c0 = arith.constant 0 : index |
| %0 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %1 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %2 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %3 = memref.alloc() : memref<2xi32> |
| %4 = memref.alloc() : memref<2xi32> |
| %5 = memref.alloc() : memref<2xi32> |
| // Prologue for DMA overlap on arg2. |
| // CHECK-DAG: [[BUF_ARG2:%[0-9]+]] = memref.alloc() : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK-DAG: [[TAG_ARG2:%[0-9]+]] = memref.alloc() : memref<2x2xi32> |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.for %{{.*}} = 1 to 8 { |
| affine.for %i0 = 0 to 8 { |
| %6 = affine.apply #map2(%i0) |
| affine.dma_start %arg2[%6, %c0], %2[%c0, %c0], %5[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32> |
| affine.dma_wait %5[%c0], %num_elts : memref<2xi32> |
| // Steady state for DMA overlap on arg2 |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_wait [[TAG_ARG2]] |
| // Prologue for DMA overlap on arg0, arg1 nested within i0 |
| // CHECK: [[BUF_ARG0:%[0-9]+]] = memref.alloc() : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK: [[BUF_ARG1:%[0-9]+]] = memref.alloc() : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK: [[TAG_ARG0:%[0-9]+]] = memref.alloc() : memref<2x2xi32> |
| // CHECK: [[TAG_ARG1:%[0-9]+]] = memref.alloc() : memref<2x2xi32> |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK-NEXT: affine.for %{{.*}} = 1 to 8 { |
| affine.for %i1 = 0 to 8 { |
| %7 = affine.apply #map1(%i0, %i1) |
| %8 = affine.apply #map2(%i1) |
| affine.dma_start %arg0[%7, %c0], %0[%c0, %c0], %3[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32> |
| affine.dma_start %arg1[%8, %c0], %1[%c0, %c0], %4[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32> |
| affine.dma_wait %3[%c0], %num_elts : memref<2xi32> |
| affine.dma_wait %4[%c0], %num_elts : memref<2xi32> |
| // Steady state for DMA overlap on arg0, arg1 |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_wait [[TAG_ARG0]] |
| // CHECK: affine.dma_wait [[TAG_ARG1]] |
| // CHECK-NEXT: affine.for %{{.*}} = 0 to 4 { |
| affine.for %i2 = 0 to 4 { |
| "foo"() : () -> () |
| } |
| } |
| // epilogue for arg0, arg1 |
| // CHECK: affine.dma_wait [[TAG_ARG0]] |
| // CHECK: affine.dma_wait [[TAG_ARG1]] |
| // CHECK-DAG: memref.dealloc [[TAG_ARG1]] : memref<2x2xi32> |
| // CHECK-DAG: memref.dealloc [[TAG_ARG0]] : memref<2x2xi32> |
| // CHECK-DAG: memref.dealloc [[BUF_ARG1]] : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK-DAG: memref.dealloc [[BUF_ARG0]] : memref<2x64x4xvector<8xf32>, 2> |
| // epilogue for DMA overlap on %arg2 |
| // CHECK: affine.dma_wait [[TAG_ARG2]] |
| // Within the epilogue for arg2's DMA, we have the DMAs on %arg1, %arg2 nested. |
| // CHECK: [[BUF_ARG0_NESTED:%[0-9]+]] = memref.alloc() : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK: [[BUF_ARG1_NESTED:%[0-9]+]] = memref.alloc() : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK: [[TAG_ARG0_NESTED:%[0-9]+]] = memref.alloc() : memref<2x2xi32> |
| // CHECK: [[TAG_ARG1_NESTED:%[0-9]+]] = memref.alloc() : memref<2x2xi32> |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.for %{{.*}} = 1 to 8 { |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_start %{{.*}}[ |
| // CHECK: affine.dma_wait [[TAG_ARG0_NESTED]] |
| // CHECK: affine.dma_wait [[TAG_ARG1_NESTED]] |
| // CHECK: affine.for %{{.*}} = 0 to 4 { |
| // CHECK: "foo"() : () -> () |
| // CHECK: affine.dma_wait [[TAG_ARG0_NESTED]] |
| // CHECK: affine.dma_wait [[TAG_ARG1_NESTED]] |
| // CHECK: affine.for %{{.*}} = 0 to 4 { |
| } |
| memref.dealloc %5 : memref<2xi32> |
| memref.dealloc %4 : memref<2xi32> |
| memref.dealloc %3 : memref<2xi32> |
| memref.dealloc %2 : memref<64x4xvector<8xf32>, 2> |
| memref.dealloc %1 : memref<64x4xvector<8xf32>, 2> |
| memref.dealloc %0 : memref<64x4xvector<8xf32>, 2> |
| return |
| // CHECK: } |
| // CHECK-DAG: memref.dealloc [[TAG_ARG1_NESTED]] : memref<2x2xi32> |
| // CHECK-DAG: memref.dealloc [[TAG_ARG0_NESTED]] : memref<2x2xi32> |
| // CHECK-DAG: memref.dealloc [[BUF_ARG1_NESTED]] : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK-DAG: memref.dealloc [[BUF_ARG0_NESTED]] : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK-DAG: memref.dealloc [[TAG_ARG2]] : memref<2x2xi32> |
| // CHECK-DAG: memref.dealloc [[BUF_ARG2]] : memref<2x64x4xvector<8xf32>, 2> |
| // CHECK-NEXT: return |
| } |
| |
| // ----- |
| #map2 = affine_map<(d0) -> ((d0 * 2048) floordiv 32)> |
| |
| // CHECK: func @loop_dma_dependent |
| func @loop_dma_dependent(%arg2: memref<512x32xvector<8xf32>>) { |
| %num_elts = arith.constant 256 : index |
| %c0 = arith.constant 0 : index |
| %0 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %1 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %2 = memref.alloc() : memref<64x4xvector<8xf32>, 2> |
| %3 = memref.alloc() : memref<2xi32> |
| %4 = memref.alloc() : memref<2xi32> |
| %5 = memref.alloc() : memref<2xi32> |
| |
| // The two DMAs below are dependent (incoming and outgoing on the same |
| // memref) in the same iteration; so no pipelining here. |
| // CHECK-NOT: affine.dma_start |
| // CHECK: affine.for %{{.*}} = 0 to 8 { |
| affine.for %i0 = 0 to 8 { |
| %6 = affine.apply #map2(%i0) |
| affine.dma_start %arg2[%6, %c0], %2[%c0, %c0], %5[%c0], %num_elts : memref<512x32xvector<8xf32>>, memref<64x4xvector<8xf32>, 2>, memref<2xi32> |
| affine.dma_wait %5[%c0], %num_elts : memref<2xi32> |
| |
| affine.dma_start %2[%c0, %c0], %arg2[%6, %c0], %5[%c0], %num_elts : memref<64x4xvector<8xf32>, 2>, memref<512x32xvector<8xf32>>, memref<2xi32> |
| affine.dma_wait %5[%c0], %num_elts : memref<2xi32> |
| } |
| memref.dealloc %5 : memref<2xi32> |
| memref.dealloc %4 : memref<2xi32> |
| memref.dealloc %3 : memref<2xi32> |
| memref.dealloc %2 : memref<64x4xvector<8xf32>, 2> |
| memref.dealloc %1 : memref<64x4xvector<8xf32>, 2> |
| memref.dealloc %0 : memref<64x4xvector<8xf32>, 2> |
| return |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @escaping_use |
| func @escaping_use(%arg0: memref<512 x 32 x f32>) { |
| %c32 = arith.constant 32 : index |
| %num_elt = arith.constant 512 : index |
| %zero = arith.constant 0 : index |
| %Av = memref.alloc() : memref<32 x 32 x f32, 2> |
| %tag = memref.alloc() : memref<1 x i32> |
| |
| // CHECK-NOT: affine.dma_start |
| // CHECK: affine.for %{{.*}} = 0 to 16 { |
| affine.for %kTT = 0 to 16 { |
| affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt : |
| memref<512 x 32 x f32>, |
| memref<32 x 32 x f32, 2>, memref<1 x i32> |
| affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32> |
| // escaping use; no DMA pipelining / double buffering will be done. |
| "foo"(%Av) : (memref<32 x 32 x f32, 2>) -> () |
| } |
| memref.dealloc %tag : memref<1 x i32> |
| memref.dealloc %Av : memref<32 x 32 x f32, 2> |
| return |
| // CHECK: "foo"(%{{[0-9]+}}) : (memref<32x32xf32, 2>) -> () |
| // CHECK: } |
| // CHECK: return |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @escaping_tag |
| func @escaping_tag(%arg0: memref<512 x 32 x f32>) { |
| %c32 = arith.constant 32 : index |
| %num_elt = arith.constant 512 : index |
| %zero = arith.constant 0 : index |
| %Av = memref.alloc() : memref<32 x 32 x f32, 2> |
| %tag = memref.alloc() : memref<1 x i32> |
| |
| // CHECK-NOT: affine.dma_start |
| // CHECK: affine.for %{{.*}} = 0 to 16 { |
| affine.for %kTT = 0 to 16 { |
| affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt : |
| memref<512 x 32 x f32>, |
| memref<32 x 32 x f32, 2>, memref<1 x i32> |
| affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32> |
| // escaping use; no DMA pipelining / double buffering will be done. |
| "foo"(%tag) : (memref<1 x i32>) -> () |
| } |
| memref.dealloc %tag : memref<1 x i32> |
| memref.dealloc %Av : memref<32 x 32 x f32, 2> |
| return |
| // CHECK: "foo"(%{{[0-9]+}}) : (memref<1xi32>) -> () |
| // CHECK: } |
| // CHECK: return |
| } |
| |
| |
| // ----- |
| |
| // CHECK-LABEL: func @live_out_use |
| func @live_out_use(%arg0: memref<512 x 32 x f32>) -> f32 { |
| %c32 = arith.constant 32 : index |
| %num_elt = arith.constant 512 : index |
| %zero = arith.constant 0 : index |
| %Av = memref.alloc() : memref<32 x 32 x f32, 2> |
| %tag = memref.alloc() : memref<1 x i32> |
| |
| // CHECK-NOT: affine.dma_start |
| // CHECK: affine.for %{{.*}} = 0 to 16 { |
| affine.for %kTT = 0 to 16 { |
| affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt : |
| memref<512 x 32 x f32>, |
| memref<32 x 32 x f32, 2>, memref<1 x i32> |
| affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32> |
| } |
| // Use live out of 'affine.for' op; no DMA pipelining will be done. |
| %v = affine.load %Av[%zero, %zero] : memref<32 x 32 x f32, 2> |
| memref.dealloc %tag : memref<1 x i32> |
| memref.dealloc %Av : memref<32 x 32 x f32, 2> |
| return %v : f32 |
| // CHECK: affine.load %{{[0-9]+}}[%{{.*}}, %{{.*}}] : memref<32x32xf32, 2> |
| // CHECK: return |
| } |
| |
| // ----- |
| |
| // CHECK-LABEL: func @dynamic_shape_dma_buffer |
| func @dynamic_shape_dma_buffer(%arg0: memref<512 x 32 x f32>, %Av: memref<? x ? x f32, 2>) { |
| %num_elt = arith.constant 512 : index |
| %zero = arith.constant 0 : index |
| %tag = memref.alloc() : memref<1 x i32> |
| |
| // Double buffering for dynamic shaped buffer. |
| // Note: Cannot capture C0 because there are multiple C0 constants in the IR. |
| // CHECK: memref.dim %{{.*}}, %{{.*}} : memref<?x?xf32, 2> |
| // CHECK-NEXT: %[[C1:.*]] = arith.constant 1 : index |
| // CHECK-NEXT: memref.dim %{{.*}}, %[[C1]] : memref<?x?xf32, 2> |
| // CHECK-NEXT: memref.alloc(%{{.*}}, %{{.*}}) : memref<2x?x?xf32, 2> |
| // CHECK: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0, 0], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} |
| affine.for %kTT = 0 to 16 { |
| affine.dma_start %arg0[%zero, %zero], %Av[%zero, %zero], %tag[%zero], %num_elt : |
| memref<512 x 32 x f32>, |
| memref<? x ? x f32, 2>, memref<1 x i32> |
| affine.dma_wait %tag[%zero], %num_elt : memref<1 x i32> |
| } |
| return |
| // CHECK-NEXT: affine.for %{{.*}} = 1 to 16 { |
| // CHECK: affine.dma_start %{{.*}}[%{{.*}}, %{{.*}}], %{{.*}}[%{{.*}} mod 2, 0, 0], %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} |
| // CHECK: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xi32> |
| // CHECK: } |
| // CHECK: affine.dma_wait %{{.*}}[%{{.*}} mod 2, 0], %{{.*}} : memref<2x1xi32> |
| // CHECK: return |
| } |
| |
| // Memref replacement will fail here due to a non-dereferencing use. However, |
| // no incorrect transformation is performed in spite of one of the uses being a |
| // dereferencing one since replaceAllMemRefUsesWith checks for escaping uses |
| // before performing any replacement. |
| // CHECK-LABEL: func @escaping_and_indexed_use_mix |
| func @escaping_and_indexed_use_mix() { |
| %A = memref.alloc() : memref<256 x f32, affine_map<(d0) -> (d0)>, 0> |
| %Ah = memref.alloc() : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| %tag = memref.alloc() : memref<1 x f32> |
| %zero = arith.constant 0 : index |
| %num_elts = arith.constant 32 : index |
| |
| // alloc for the buffer is created but no replacement should happen. |
| affine.for %i = 0 to 8 { |
| affine.dma_start %A[%i], %Ah[%i], %tag[%zero], %num_elts : memref<256 x f32>, memref<32 x f32, 1>, memref<1 x f32> |
| affine.dma_wait %tag[%zero], %num_elts : memref<1 x f32> |
| "compute"(%Ah) : (memref<32 x f32, 1>) -> () |
| %v = affine.load %Ah[%i] : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| "foo"(%v) : (f32) -> () |
| } |
| memref.dealloc %A : memref<256 x f32, affine_map<(d0) -> (d0)>, 0> |
| memref.dealloc %Ah : memref<32 x f32, affine_map<(d0) -> (d0)>, 1> |
| return |
| } |
| // No replacement. |
| // CHECK: affine.for %{{.*}} = 0 to 8 { |
| // CHECK-NEXT: affine.dma_start %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}}[%{{.*}}], %{{.*}} |
| // CHECK-NEXT: affine.dma_wait %{{.*}}[%{{.*}}], %{{.*}} : memref<1xf32> |
| // CHECK-NEXT: "compute"(%{{.*}}) : (memref<32xf32, 1>) -> () |
| // CHECK-NEXT: [[VAL:%[0-9]+]] = affine.load %{{.*}}[%{{.*}}] : memref<32xf32, 1> |
| // CHECK-NEXT: "foo"([[VAL]]) : (f32) -> () |