| // RUN: mlir-opt -normalize-memrefs -allow-unregistered-dialect %s | FileCheck %s |
| |
| // This file tests whether the memref type having non-trivial map layouts |
| // are normalized to trivial (identity) layouts. |
| |
| // CHECK-LABEL: func @permute() |
| func @permute() { |
| %A = memref.alloc() : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>> |
| affine.for %i = 0 to 64 { |
| affine.for %j = 0 to 256 { |
| %1 = affine.load %A[%i, %j] : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>> |
| "prevent.dce"(%1) : (f32) -> () |
| } |
| } |
| memref.dealloc %A : memref<64x256xf32, affine_map<(d0, d1) -> (d1, d0)>> |
| return |
| } |
| // The old memref alloc should disappear. |
| // CHECK-NOT: memref<64x256xf32> |
| // CHECK: [[MEM:%[0-9]+]] = memref.alloc() : memref<256x64xf32> |
| // CHECK-NEXT: affine.for %[[I:arg[0-9]+]] = 0 to 64 { |
| // CHECK-NEXT: affine.for %[[J:arg[0-9]+]] = 0 to 256 { |
| // CHECK-NEXT: affine.load [[MEM]][%[[J]], %[[I]]] : memref<256x64xf32> |
| // CHECK-NEXT: "prevent.dce" |
| // CHECK-NEXT: } |
| // CHECK-NEXT: } |
| // CHECK-NEXT: memref.dealloc [[MEM]] |
| // CHECK-NEXT: return |
| |
| // CHECK-LABEL: func @shift |
| func @shift(%idx : index) { |
| // CHECK-NEXT: memref.alloc() : memref<65xf32> |
| %A = memref.alloc() : memref<64xf32, affine_map<(d0) -> (d0 + 1)>> |
| // CHECK-NEXT: affine.load %{{.*}}[symbol(%arg0) + 1] : memref<65xf32> |
| affine.load %A[%idx] : memref<64xf32, affine_map<(d0) -> (d0 + 1)>> |
| affine.for %i = 0 to 64 { |
| %1 = affine.load %A[%i] : memref<64xf32, affine_map<(d0) -> (d0 + 1)>> |
| "prevent.dce"(%1) : (f32) -> () |
| // CHECK: %{{.*}} = affine.load %{{.*}}[%arg{{.*}} + 1] : memref<65xf32> |
| } |
| return |
| } |
| |
| // CHECK-LABEL: func @high_dim_permute() |
| func @high_dim_permute() { |
| // CHECK-NOT: memref<64x128x256xf32, |
| %A = memref.alloc() : memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>> |
| // CHECK: %[[I:arg[0-9]+]] |
| affine.for %i = 0 to 64 { |
| // CHECK: %[[J:arg[0-9]+]] |
| affine.for %j = 0 to 128 { |
| // CHECK: %[[K:arg[0-9]+]] |
| affine.for %k = 0 to 256 { |
| %1 = affine.load %A[%i, %j, %k] : memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>> |
| // CHECK: %{{.*}} = affine.load %{{.*}}[%[[K]], %[[I]], %[[J]]] : memref<256x64x128xf32> |
| "prevent.dce"(%1) : (f32) -> () |
| } |
| } |
| } |
| return |
| } |
| |
| // CHECK-LABEL: func @invalid_map |
| func @invalid_map() { |
| %A = memref.alloc() : memref<64x128xf32, affine_map<(d0, d1) -> (d0, -d1 - 10)>> |
| // CHECK: %{{.*}} = memref.alloc() : memref<64x128xf32, |
| return |
| } |
| |
| // A tiled layout. |
| // CHECK-LABEL: func @data_tiling |
| func @data_tiling(%idx : index) { |
| // CHECK: memref.alloc() : memref<8x32x8x16xf32> |
| %A = memref.alloc() : memref<64x512xf32, affine_map<(d0, d1) -> (d0 floordiv 8, d1 floordiv 16, d0 mod 8, d1 mod 16)>> |
| // CHECK: affine.load %{{.*}}[symbol(%arg0) floordiv 8, symbol(%arg0) floordiv 16, symbol(%arg0) mod 8, symbol(%arg0) mod 16] |
| %1 = affine.load %A[%idx, %idx] : memref<64x512xf32, affine_map<(d0, d1) -> (d0 floordiv 8, d1 floordiv 16, d0 mod 8, d1 mod 16)>> |
| "prevent.dce"(%1) : (f32) -> () |
| return |
| } |
| |
| // Strides 2 and 4 along respective dimensions. |
| // CHECK-LABEL: func @strided |
| func @strided() { |
| %A = memref.alloc() : memref<64x128xf32, affine_map<(d0, d1) -> (2*d0, 4*d1)>> |
| // CHECK: affine.for %[[IV0:.*]] = |
| affine.for %i = 0 to 64 { |
| // CHECK: affine.for %[[IV1:.*]] = |
| affine.for %j = 0 to 128 { |
| // CHECK: affine.load %{{.*}}[%[[IV0]] * 2, %[[IV1]] * 4] : memref<127x509xf32> |
| %1 = affine.load %A[%i, %j] : memref<64x128xf32, affine_map<(d0, d1) -> (2*d0, 4*d1)>> |
| "prevent.dce"(%1) : (f32) -> () |
| } |
| } |
| return |
| } |
| |
| // Strided, but the strides are in the linearized space. |
| // CHECK-LABEL: func @strided_cumulative |
| func @strided_cumulative() { |
| %A = memref.alloc() : memref<2x5xf32, affine_map<(d0, d1) -> (3*d0 + 17*d1)>> |
| // CHECK: affine.for %[[IV0:.*]] = |
| affine.for %i = 0 to 2 { |
| // CHECK: affine.for %[[IV1:.*]] = |
| affine.for %j = 0 to 5 { |
| // CHECK: affine.load %{{.*}}[%[[IV0]] * 3 + %[[IV1]] * 17] : memref<72xf32> |
| %1 = affine.load %A[%i, %j] : memref<2x5xf32, affine_map<(d0, d1) -> (3*d0 + 17*d1)>> |
| "prevent.dce"(%1) : (f32) -> () |
| } |
| } |
| return |
| } |
| |
| // Symbolic operand for alloc, although unused. Tests replaceAllMemRefUsesWith |
| // when the index remap has symbols. |
| // CHECK-LABEL: func @symbolic_operands |
| func @symbolic_operands(%s : index) { |
| // CHECK: memref.alloc() : memref<100xf32> |
| %A = memref.alloc()[%s] : memref<10x10xf32, affine_map<(d0,d1)[s0] -> (10*d0 + d1)>> |
| affine.for %i = 0 to 10 { |
| affine.for %j = 0 to 10 { |
| // CHECK: affine.load %{{.*}}[%{{.*}} * 10 + %{{.*}}] : memref<100xf32> |
| %1 = affine.load %A[%i, %j] : memref<10x10xf32, affine_map<(d0,d1)[s0] -> (10*d0 + d1)>> |
| "prevent.dce"(%1) : (f32) -> () |
| } |
| } |
| return |
| } |
| |
| // Semi-affine maps, normalization not implemented yet. |
| // CHECK-LABEL: func @semi_affine_layout_map |
| func @semi_affine_layout_map(%s0: index, %s1: index) { |
| %A = memref.alloc()[%s0, %s1] : memref<256x1024xf32, affine_map<(d0, d1)[s0, s1] -> (d0*s0 + d1*s1)>> |
| affine.for %i = 0 to 256 { |
| affine.for %j = 0 to 1024 { |
| // CHECK: memref<256x1024xf32, #map{{[0-9]+}}> |
| affine.load %A[%i, %j] : memref<256x1024xf32, affine_map<(d0, d1)[s0, s1] -> (d0*s0 + d1*s1)>> |
| } |
| } |
| return |
| } |
| |
| // CHECK-LABEL: func @alignment |
| func @alignment() { |
| %A = memref.alloc() {alignment = 32 : i64}: memref<64x128x256xf32, affine_map<(d0, d1, d2) -> (d2, d0, d1)>> |
| // CHECK-NEXT: memref.alloc() {alignment = 32 : i64} : memref<256x64x128xf32> |
| return |
| } |
| |
| #tile = affine_map < (i)->(i floordiv 4, i mod 4) > |
| |
| // Following test cases check the inter-procedural memref normalization. |
| |
| // Test case 1: Check normalization for multiple memrefs in a function argument list. |
| // CHECK-LABEL: func @multiple_argument_type |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<4x4xf64>, %[[B:arg[0-9]+]]: f64, %[[C:arg[0-9]+]]: memref<2x4xf64>, %[[D:arg[0-9]+]]: memref<24xf64>) -> f64 |
| func @multiple_argument_type(%A: memref<16xf64, #tile>, %B: f64, %C: memref<8xf64, #tile>, %D: memref<24xf64>) -> f64 { |
| %a = affine.load %A[0] : memref<16xf64, #tile> |
| %p = arith.mulf %a, %a : f64 |
| affine.store %p, %A[10] : memref<16xf64, #tile> |
| call @single_argument_type(%C): (memref<8xf64, #tile>) -> () |
| return %B : f64 |
| } |
| |
| // CHECK: %[[a:[0-9]+]] = affine.load %[[A]][0, 0] : memref<4x4xf64> |
| // CHECK: %[[p:[0-9]+]] = arith.mulf %[[a]], %[[a]] : f64 |
| // CHECK: affine.store %[[p]], %[[A]][2, 2] : memref<4x4xf64> |
| // CHECK: call @single_argument_type(%[[C]]) : (memref<2x4xf64>) -> () |
| // CHECK: return %[[B]] : f64 |
| |
| // Test case 2: Check normalization for single memref argument in a function. |
| // CHECK-LABEL: func @single_argument_type |
| // CHECK-SAME: (%[[C:arg[0-9]+]]: memref<2x4xf64>) |
| func @single_argument_type(%C : memref<8xf64, #tile>) { |
| %a = memref.alloc(): memref<8xf64, #tile> |
| %b = memref.alloc(): memref<16xf64, #tile> |
| %d = arith.constant 23.0 : f64 |
| %e = memref.alloc(): memref<24xf64> |
| call @single_argument_type(%a): (memref<8xf64, #tile>) -> () |
| call @single_argument_type(%C): (memref<8xf64, #tile>) -> () |
| call @multiple_argument_type(%b, %d, %a, %e): (memref<16xf64, #tile>, f64, memref<8xf64, #tile>, memref<24xf64>) -> f64 |
| return |
| } |
| |
| // CHECK: %[[a:[0-9]+]] = memref.alloc() : memref<2x4xf64> |
| // CHECK: %[[b:[0-9]+]] = memref.alloc() : memref<4x4xf64> |
| // CHECK: %cst = arith.constant 2.300000e+01 : f64 |
| // CHECK: %[[e:[0-9]+]] = memref.alloc() : memref<24xf64> |
| // CHECK: call @single_argument_type(%[[a]]) : (memref<2x4xf64>) -> () |
| // CHECK: call @single_argument_type(%[[C]]) : (memref<2x4xf64>) -> () |
| // CHECK: call @multiple_argument_type(%[[b]], %cst, %[[a]], %[[e]]) : (memref<4x4xf64>, f64, memref<2x4xf64>, memref<24xf64>) -> f64 |
| |
| // Test case 3: Check function returning any other type except memref. |
| // CHECK-LABEL: func @non_memref_ret |
| // CHECK-SAME: (%[[C:arg[0-9]+]]: memref<2x4xf64>) -> i1 |
| func @non_memref_ret(%A: memref<8xf64, #tile>) -> i1 { |
| %d = arith.constant 1 : i1 |
| return %d : i1 |
| } |
| |
| // Test cases here onwards deal with normalization of memref in function signature, caller site. |
| |
| // Test case 4: Check successful memref normalization in case of inter/intra-recursive calls. |
| // CHECK-LABEL: func @ret_multiple_argument_type |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<4x4xf64>, %[[B:arg[0-9]+]]: f64, %[[C:arg[0-9]+]]: memref<2x4xf64>) -> (memref<2x4xf64>, f64) |
| func @ret_multiple_argument_type(%A: memref<16xf64, #tile>, %B: f64, %C: memref<8xf64, #tile>) -> (memref<8xf64, #tile>, f64) { |
| %a = affine.load %A[0] : memref<16xf64, #tile> |
| %p = arith.mulf %a, %a : f64 |
| %cond = arith.constant 1 : i1 |
| cond_br %cond, ^bb1, ^bb2 |
| ^bb1: |
| %res1, %res2 = call @ret_single_argument_type(%C) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>) |
| return %res2, %p: memref<8xf64, #tile>, f64 |
| ^bb2: |
| return %C, %p: memref<8xf64, #tile>, f64 |
| } |
| |
| // CHECK: %[[a:[0-9]+]] = affine.load %[[A]][0, 0] : memref<4x4xf64> |
| // CHECK: %[[p:[0-9]+]] = arith.mulf %[[a]], %[[a]] : f64 |
| // CHECK: %true = arith.constant true |
| // CHECK: cond_br %true, ^bb1, ^bb2 |
| // CHECK: ^bb1: // pred: ^bb0 |
| // CHECK: %[[res:[0-9]+]]:2 = call @ret_single_argument_type(%[[C]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>) |
| // CHECK: return %[[res]]#1, %[[p]] : memref<2x4xf64>, f64 |
| // CHECK: ^bb2: // pred: ^bb0 |
| // CHECK: return %{{.*}}, %{{.*}} : memref<2x4xf64>, f64 |
| |
| // CHECK-LABEL: func @ret_single_argument_type |
| // CHECK-SAME: (%[[C:arg[0-9]+]]: memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>) |
| func @ret_single_argument_type(%C: memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>){ |
| %a = memref.alloc() : memref<8xf64, #tile> |
| %b = memref.alloc() : memref<16xf64, #tile> |
| %d = arith.constant 23.0 : f64 |
| call @ret_single_argument_type(%a) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>) |
| call @ret_single_argument_type(%C) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>) |
| %res1, %res2 = call @ret_multiple_argument_type(%b, %d, %a) : (memref<16xf64, #tile>, f64, memref<8xf64, #tile>) -> (memref<8xf64, #tile>, f64) |
| %res3, %res4 = call @ret_single_argument_type(%res1) : (memref<8xf64, #tile>) -> (memref<16xf64, #tile>, memref<8xf64, #tile>) |
| return %b, %a: memref<16xf64, #tile>, memref<8xf64, #tile> |
| } |
| |
| // CHECK: %[[a:[0-9]+]] = memref.alloc() : memref<2x4xf64> |
| // CHECK: %[[b:[0-9]+]] = memref.alloc() : memref<4x4xf64> |
| // CHECK: %cst = arith.constant 2.300000e+01 : f64 |
| // CHECK: %[[resA:[0-9]+]]:2 = call @ret_single_argument_type(%[[a]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>) |
| // CHECK: %[[resB:[0-9]+]]:2 = call @ret_single_argument_type(%[[C]]) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>) |
| // CHECK: %[[resC:[0-9]+]]:2 = call @ret_multiple_argument_type(%[[b]], %cst, %[[a]]) : (memref<4x4xf64>, f64, memref<2x4xf64>) -> (memref<2x4xf64>, f64) |
| // CHECK: %[[resD:[0-9]+]]:2 = call @ret_single_argument_type(%[[resC]]#0) : (memref<2x4xf64>) -> (memref<4x4xf64>, memref<2x4xf64>) |
| // CHECK: return %{{.*}}, %{{.*}} : memref<4x4xf64>, memref<2x4xf64> |
| |
| // Test case set #5: To check normalization in a chain of interconnected functions. |
| // CHECK-LABEL: func @func_A |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<2x4xf64>) |
| func @func_A(%A: memref<8xf64, #tile>) { |
| call @func_B(%A) : (memref<8xf64, #tile>) -> () |
| return |
| } |
| // CHECK: call @func_B(%[[A]]) : (memref<2x4xf64>) -> () |
| |
| // CHECK-LABEL: func @func_B |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<2x4xf64>) |
| func @func_B(%A: memref<8xf64, #tile>) { |
| call @func_C(%A) : (memref<8xf64, #tile>) -> () |
| return |
| } |
| // CHECK: call @func_C(%[[A]]) : (memref<2x4xf64>) -> () |
| |
| // CHECK-LABEL: func @func_C |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<2x4xf64>) |
| func @func_C(%A: memref<8xf64, #tile>) { |
| return |
| } |
| |
| // Test case set #6: Checking if no normalization takes place in a scenario: A -> B -> C and B has an unsupported type. |
| // CHECK-LABEL: func @some_func_A |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<8xf64, #map{{[0-9]+}}>) |
| func @some_func_A(%A: memref<8xf64, #tile>) { |
| call @some_func_B(%A) : (memref<8xf64, #tile>) -> () |
| return |
| } |
| // CHECK: call @some_func_B(%[[A]]) : (memref<8xf64, #map{{[0-9]+}}>) -> () |
| |
| // CHECK-LABEL: func @some_func_B |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<8xf64, #map{{[0-9]+}}>) |
| func @some_func_B(%A: memref<8xf64, #tile>) { |
| "test.test"(%A) : (memref<8xf64, #tile>) -> () |
| call @some_func_C(%A) : (memref<8xf64, #tile>) -> () |
| return |
| } |
| // CHECK: call @some_func_C(%[[A]]) : (memref<8xf64, #map{{[0-9]+}}>) -> () |
| |
| // CHECK-LABEL: func @some_func_C |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<8xf64, #map{{[0-9]+}}>) |
| func @some_func_C(%A: memref<8xf64, #tile>) { |
| return |
| } |
| |
| // Test case set #7: Check normalization in case of external functions. |
| // CHECK-LABEL: func private @external_func_A |
| // CHECK-SAME: (memref<4x4xf64>) |
| func private @external_func_A(memref<16xf64, #tile>) -> () |
| |
| // CHECK-LABEL: func private @external_func_B |
| // CHECK-SAME: (memref<4x4xf64>, f64) -> memref<2x4xf64> |
| func private @external_func_B(memref<16xf64, #tile>, f64) -> (memref<8xf64, #tile>) |
| |
| // CHECK-LABEL: func @simply_call_external() |
| func @simply_call_external() { |
| %a = memref.alloc() : memref<16xf64, #tile> |
| call @external_func_A(%a) : (memref<16xf64, #tile>) -> () |
| return |
| } |
| // CHECK: %[[a:[0-9]+]] = memref.alloc() : memref<4x4xf64> |
| // CHECK: call @external_func_A(%[[a]]) : (memref<4x4xf64>) -> () |
| |
| // CHECK-LABEL: func @use_value_of_external |
| // CHECK-SAME: (%[[A:arg[0-9]+]]: memref<4x4xf64>, %[[B:arg[0-9]+]]: f64) -> memref<2x4xf64> |
| func @use_value_of_external(%A: memref<16xf64, #tile>, %B: f64) -> (memref<8xf64, #tile>) { |
| %res = call @external_func_B(%A, %B) : (memref<16xf64, #tile>, f64) -> (memref<8xf64, #tile>) |
| return %res : memref<8xf64, #tile> |
| } |
| // CHECK: %[[res:[0-9]+]] = call @external_func_B(%[[A]], %[[B]]) : (memref<4x4xf64>, f64) -> memref<2x4xf64> |
| // CHECK: return %{{.*}} : memref<2x4xf64> |
| |
| // CHECK-LABEL: func @affine_parallel_norm |
| func @affine_parallel_norm() -> memref<8xf32, #tile> { |
| %c = arith.constant 23.0 : f32 |
| %a = memref.alloc() : memref<8xf32, #tile> |
| // CHECK: affine.parallel (%{{.*}}) = (0) to (8) reduce ("assign") -> (memref<2x4xf32>) |
| %1 = affine.parallel (%i) = (0) to (8) reduce ("assign") -> memref<8xf32, #tile> { |
| affine.store %c, %a[%i] : memref<8xf32, #tile> |
| // CHECK: affine.yield %{{.*}} : memref<2x4xf32> |
| affine.yield %a : memref<8xf32, #tile> |
| } |
| return %1 : memref<8xf32, #tile> |
| } |