| //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Analysis/Presburger/Simplex.h" |
| #include "mlir/Analysis/Presburger/Matrix.h" |
| #include "mlir/Support/MathExtras.h" |
| #include "llvm/ADT/Optional.h" |
| |
| namespace mlir { |
| using Direction = Simplex::Direction; |
| |
| const int nullIndex = std::numeric_limits<int>::max(); |
| |
| /// Construct a Simplex object with `nVar` variables. |
| Simplex::Simplex(unsigned nVar) |
| : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { |
| colUnknown.push_back(nullIndex); |
| colUnknown.push_back(nullIndex); |
| for (unsigned i = 0; i < nVar; ++i) { |
| var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); |
| colUnknown.push_back(i); |
| nCol++; |
| } |
| } |
| |
| Simplex::Simplex(const FlatAffineConstraints &constraints) |
| : Simplex(constraints.getNumIds()) { |
| for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); |
| i < numIneqs; ++i) |
| addInequality(constraints.getInequality(i)); |
| for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) |
| addEquality(constraints.getEquality(i)); |
| } |
| |
| const Simplex::Unknown &Simplex::unknownFromIndex(int index) const { |
| assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); |
| return index >= 0 ? var[index] : con[~index]; |
| } |
| |
| const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const { |
| assert(col < nCol && "Invalid column"); |
| return unknownFromIndex(colUnknown[col]); |
| } |
| |
| const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const { |
| assert(row < nRow && "Invalid row"); |
| return unknownFromIndex(rowUnknown[row]); |
| } |
| |
| Simplex::Unknown &Simplex::unknownFromIndex(int index) { |
| assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); |
| return index >= 0 ? var[index] : con[~index]; |
| } |
| |
| Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) { |
| assert(col < nCol && "Invalid column"); |
| return unknownFromIndex(colUnknown[col]); |
| } |
| |
| Simplex::Unknown &Simplex::unknownFromRow(unsigned row) { |
| assert(row < nRow && "Invalid row"); |
| return unknownFromIndex(rowUnknown[row]); |
| } |
| |
| /// Add a new row to the tableau corresponding to the given constant term and |
| /// list of coefficients. The coefficients are specified as a vector of |
| /// (variable index, coefficient) pairs. |
| unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) { |
| assert(coeffs.size() == 1 + var.size() && |
| "Incorrect number of coefficients!"); |
| |
| ++nRow; |
| // If the tableau is not big enough to accomodate the extra row, we extend it. |
| if (nRow >= tableau.getNumRows()) |
| tableau.resizeVertically(nRow); |
| rowUnknown.push_back(~con.size()); |
| con.emplace_back(Orientation::Row, false, nRow - 1); |
| |
| tableau(nRow - 1, 0) = 1; |
| tableau(nRow - 1, 1) = coeffs.back(); |
| for (unsigned col = 2; col < nCol; ++col) |
| tableau(nRow - 1, col) = 0; |
| |
| // Process each given variable coefficient. |
| for (unsigned i = 0; i < var.size(); ++i) { |
| unsigned pos = var[i].pos; |
| if (coeffs[i] == 0) |
| continue; |
| |
| if (var[i].orientation == Orientation::Column) { |
| // If a variable is in column position at column col, then we just add the |
| // coefficient for that variable (scaled by the common row denominator) to |
| // the corresponding entry in the new row. |
| tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); |
| continue; |
| } |
| |
| // If the variable is in row position, we need to add that row to the new |
| // row, scaled by the coefficient for the variable, accounting for the two |
| // rows potentially having different denominators. The new denominator is |
| // the lcm of the two. |
| int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); |
| int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); |
| int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); |
| tableau(nRow - 1, 0) = lcm; |
| for (unsigned col = 1; col < nCol; ++col) |
| tableau(nRow - 1, col) = |
| nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); |
| } |
| |
| normalizeRow(nRow - 1); |
| // Push to undo log along with the index of the new constraint. |
| undoLog.push_back(UndoLogEntry::RemoveLastConstraint); |
| return con.size() - 1; |
| } |
| |
| /// Normalize the row by removing factors that are common between the |
| /// denominator and all the numerator coefficients. |
| void Simplex::normalizeRow(unsigned row) { |
| int64_t gcd = 0; |
| for (unsigned col = 0; col < nCol; ++col) { |
| if (gcd == 1) |
| break; |
| gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); |
| } |
| for (unsigned col = 0; col < nCol; ++col) |
| tableau(row, col) /= gcd; |
| } |
| |
| namespace { |
| bool signMatchesDirection(int64_t elem, Direction direction) { |
| assert(elem != 0 && "elem should not be 0"); |
| return direction == Direction::Up ? elem > 0 : elem < 0; |
| } |
| |
| Direction flippedDirection(Direction direction) { |
| return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; |
| } |
| } // anonymous namespace |
| |
| /// Find a pivot to change the sample value of the row in the specified |
| /// direction. The returned pivot row will involve `row` if and only if the |
| /// unknown is unbounded in the specified direction. |
| /// |
| /// To increase (resp. decrease) the value of a row, we need to find a live |
| /// column with a non-zero coefficient. If the coefficient is positive, we need |
| /// to increase (decrease) the value of the column, and if the coefficient is |
| /// negative, we need to decrease (increase) the value of the column. Also, |
| /// we cannot decrease the sample value of restricted columns. |
| /// |
| /// If multiple columns are valid, we break ties by considering a lexicographic |
| /// ordering where we prefer unknowns with lower index. |
| Optional<Simplex::Pivot> Simplex::findPivot(int row, |
| Direction direction) const { |
| Optional<unsigned> col; |
| for (unsigned j = 2; j < nCol; ++j) { |
| int64_t elem = tableau(row, j); |
| if (elem == 0) |
| continue; |
| |
| if (unknownFromColumn(j).restricted && |
| !signMatchesDirection(elem, direction)) |
| continue; |
| if (!col || colUnknown[j] < colUnknown[*col]) |
| col = j; |
| } |
| |
| if (!col) |
| return {}; |
| |
| Direction newDirection = |
| tableau(row, *col) < 0 ? flippedDirection(direction) : direction; |
| Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); |
| return Pivot{maybePivotRow.getValueOr(row), *col}; |
| } |
| |
| /// Swap the associated unknowns for the row and the column. |
| /// |
| /// First we swap the index associated with the row and column. Then we update |
| /// the unknowns to reflect their new position and orientation. |
| void Simplex::swapRowWithCol(unsigned row, unsigned col) { |
| std::swap(rowUnknown[row], colUnknown[col]); |
| Unknown &uCol = unknownFromColumn(col); |
| Unknown &uRow = unknownFromRow(row); |
| uCol.orientation = Orientation::Column; |
| uRow.orientation = Orientation::Row; |
| uCol.pos = col; |
| uRow.pos = row; |
| } |
| |
| void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); } |
| |
| /// Pivot pivotRow and pivotCol. |
| /// |
| /// Let R be the pivot row unknown and let C be the pivot col unknown. |
| /// Since initially R = a*C + sum b_i * X_i |
| /// (where the sum is over the other column's unknowns, x_i) |
| /// C = (R - (sum b_i * X_i))/a |
| /// |
| /// Let u be some other row unknown. |
| /// u = c*C + sum d_i * X_i |
| /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i |
| /// |
| /// This results in the following transform: |
| /// pivot col other col pivot col other col |
| /// pivot row a b -> pivot row 1/a -b/a |
| /// other row c d other row c/a d - bc/a |
| /// |
| /// Taking into account the common denominators p and q: |
| /// |
| /// pivot col other col pivot col other col |
| /// pivot row a/p b/p -> pivot row p/a -b/a |
| /// other row c/q d/q other row cp/aq (da - bc)/aq |
| /// |
| /// The pivot row transform is accomplished be swapping a with the pivot row's |
| /// common denominator and negating the pivot row except for the pivot column |
| /// element. |
| void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) { |
| assert(pivotCol >= 2 && "Refusing to pivot invalid column"); |
| |
| swapRowWithCol(pivotRow, pivotCol); |
| std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); |
| // We need to negate the whole pivot row except for the pivot column. |
| if (tableau(pivotRow, 0) < 0) { |
| // If the denominator is negative, we negate the row by simply negating the |
| // denominator. |
| tableau(pivotRow, 0) = -tableau(pivotRow, 0); |
| tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); |
| } else { |
| for (unsigned col = 1; col < nCol; ++col) { |
| if (col == pivotCol) |
| continue; |
| tableau(pivotRow, col) = -tableau(pivotRow, col); |
| } |
| } |
| normalizeRow(pivotRow); |
| |
| for (unsigned row = 0; row < nRow; ++row) { |
| if (row == pivotRow) |
| continue; |
| if (tableau(row, pivotCol) == 0) // Nothing to do. |
| continue; |
| tableau(row, 0) *= tableau(pivotRow, 0); |
| for (unsigned j = 1; j < nCol; ++j) { |
| if (j == pivotCol) |
| continue; |
| // Add rather than subtract because the pivot row has been negated. |
| tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + |
| tableau(row, pivotCol) * tableau(pivotRow, j); |
| } |
| tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); |
| normalizeRow(row); |
| } |
| } |
| |
| /// Perform pivots until the unknown has a non-negative sample value or until |
| /// no more upward pivots can be performed. Return success if we were able to |
| /// bring the row to a non-negative sample value, and failure otherwise. |
| LogicalResult Simplex::restoreRow(Unknown &u) { |
| assert(u.orientation == Orientation::Row && |
| "unknown should be in row position"); |
| |
| while (tableau(u.pos, 1) < 0) { |
| Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); |
| if (!maybePivot) |
| break; |
| |
| pivot(*maybePivot); |
| if (u.orientation == Orientation::Column) |
| return success(); // the unknown is unbounded above. |
| } |
| return success(tableau(u.pos, 1) >= 0); |
| } |
| |
| /// Find a row that can be used to pivot the column in the specified direction. |
| /// This returns an empty optional if and only if the column is unbounded in the |
| /// specified direction (ignoring skipRow, if skipRow is set). |
| /// |
| /// If skipRow is set, this row is not considered, and (if it is restricted) its |
| /// restriction may be violated by the returned pivot. Usually, skipRow is set |
| /// because we don't want to move it to column position unless it is unbounded, |
| /// and we are either trying to increase the value of skipRow or explicitly |
| /// trying to make skipRow negative, so we are not concerned about this. |
| /// |
| /// If the direction is up (resp. down) and a restricted row has a negative |
| /// (positive) coefficient for the column, then this row imposes a bound on how |
| /// much the sample value of the column can change. Such a row with constant |
| /// term c and coefficient f for the column imposes a bound of c/|f| on the |
| /// change in sample value (in the specified direction). (note that c is |
| /// non-negative here since the row is restricted and the tableau is consistent) |
| /// |
| /// We iterate through the rows and pick the row which imposes the most |
| /// stringent bound, since pivoting with a row changes the row's sample value to |
| /// 0 and hence saturates the bound it imposes. We break ties between rows that |
| /// impose the same bound by considering a lexicographic ordering where we |
| /// prefer unknowns with lower index value. |
| Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, |
| Direction direction, |
| unsigned col) const { |
| Optional<unsigned> retRow; |
| int64_t retElem, retConst; |
| for (unsigned row = nRedundant; row < nRow; ++row) { |
| if (skipRow && row == *skipRow) |
| continue; |
| int64_t elem = tableau(row, col); |
| if (elem == 0) |
| continue; |
| if (!unknownFromRow(row).restricted) |
| continue; |
| if (signMatchesDirection(elem, direction)) |
| continue; |
| int64_t constTerm = tableau(row, 1); |
| |
| if (!retRow) { |
| retRow = row; |
| retElem = elem; |
| retConst = constTerm; |
| continue; |
| } |
| |
| int64_t diff = retConst * elem - constTerm * retElem; |
| if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || |
| (diff != 0 && !signMatchesDirection(diff, direction))) { |
| retRow = row; |
| retElem = elem; |
| retConst = constTerm; |
| } |
| } |
| return retRow; |
| } |
| |
| bool Simplex::isEmpty() const { return empty; } |
| |
| void Simplex::swapRows(unsigned i, unsigned j) { |
| if (i == j) |
| return; |
| tableau.swapRows(i, j); |
| std::swap(rowUnknown[i], rowUnknown[j]); |
| unknownFromRow(i).pos = i; |
| unknownFromRow(j).pos = j; |
| } |
| |
| void Simplex::swapColumns(unsigned i, unsigned j) { |
| assert(i < nCol && j < nCol && "Invalid columns provided!"); |
| if (i == j) |
| return; |
| tableau.swapColumns(i, j); |
| std::swap(colUnknown[i], colUnknown[j]); |
| unknownFromColumn(i).pos = i; |
| unknownFromColumn(j).pos = j; |
| } |
| |
| /// Mark this tableau empty and push an entry to the undo stack. |
| void Simplex::markEmpty() { |
| // If the set is already empty, then we shouldn't add another UnmarkEmpty log |
| // entry, since in that case the Simplex will be erroneously marked as |
| // non-empty when rolling back past this point. |
| if (empty) |
| return; |
| undoLog.push_back(UndoLogEntry::UnmarkEmpty); |
| empty = true; |
| } |
| |
| /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| /// is the current number of variables, then the corresponding inequality is |
| /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. |
| /// |
| /// We add the inequality and mark it as restricted. We then try to make its |
| /// sample value non-negative. If this is not possible, the tableau has become |
| /// empty and we mark it as such. |
| void Simplex::addInequality(ArrayRef<int64_t> coeffs) { |
| unsigned conIndex = addRow(coeffs); |
| Unknown &u = con[conIndex]; |
| u.restricted = true; |
| LogicalResult result = restoreRow(u); |
| if (failed(result)) |
| markEmpty(); |
| } |
| |
| /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n |
| /// is the current number of variables, then the corresponding equality is |
| /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. |
| /// |
| /// We simply add two opposing inequalities, which force the expression to |
| /// be zero. |
| void Simplex::addEquality(ArrayRef<int64_t> coeffs) { |
| addInequality(coeffs); |
| SmallVector<int64_t, 8> negatedCoeffs; |
| for (int64_t coeff : coeffs) |
| negatedCoeffs.emplace_back(-coeff); |
| addInequality(negatedCoeffs); |
| } |
| |
| unsigned Simplex::getNumVariables() const { return var.size(); } |
| unsigned Simplex::getNumConstraints() const { return con.size(); } |
| |
| /// Return a snapshot of the current state. This is just the current size of the |
| /// undo log. |
| unsigned Simplex::getSnapshot() const { return undoLog.size(); } |
| |
| void Simplex::undo(UndoLogEntry entry) { |
| if (entry == UndoLogEntry::RemoveLastConstraint) { |
| Unknown &constraint = con.back(); |
| if (constraint.orientation == Orientation::Column) { |
| unsigned column = constraint.pos; |
| Optional<unsigned> row; |
| |
| // Try to find any pivot row for this column that preserves tableau |
| // consistency (except possibly the column itself, which is going to be |
| // deallocated anyway). |
| // |
| // If no pivot row is found in either direction, then the unknown is |
| // unbounded in both directions and we are free to |
| // perform any pivot at all. To do this, we just need to find any row with |
| // a non-zero coefficient for the column. |
| if (Optional<unsigned> maybeRow = |
| findPivotRow({}, Direction::Up, column)) { |
| row = *maybeRow; |
| } else if (Optional<unsigned> maybeRow = |
| findPivotRow({}, Direction::Down, column)) { |
| row = *maybeRow; |
| } else { |
| // The loop doesn't find a pivot row only if the column has zero |
| // coefficients for every row. But the unknown is a constraint, |
| // so it was added initially as a row. Such a row could never have been |
| // pivoted to a column. So a pivot row will always be found. |
| for (unsigned i = nRedundant; i < nRow; ++i) { |
| if (tableau(i, column) != 0) { |
| row = i; |
| break; |
| } |
| } |
| } |
| assert(row.hasValue() && "No pivot row found!"); |
| pivot(*row, column); |
| } |
| |
| // Move this unknown to the last row and remove the last row from the |
| // tableau. |
| swapRows(constraint.pos, nRow - 1); |
| // It is not strictly necessary to shrink the tableau, but for now we |
| // maintain the invariant that the tableau has exactly nRow rows. |
| tableau.resizeVertically(nRow - 1); |
| nRow--; |
| rowUnknown.pop_back(); |
| con.pop_back(); |
| } else if (entry == UndoLogEntry::RemoveLastVariable) { |
| // Whenever we are rolling back the addition of a variable, it is guaranteed |
| // that the variable will be in column position. |
| // |
| // We can see this as follows: any constraint that depends on this variable |
| // was added after this variable was added, so the addition of such |
| // constraints should already have been rolled back by the time we get to |
| // rolling back the addition of the variable. Therefore, no constraint |
| // currently has a component along the variable, so the variable itself must |
| // be part of the basis. |
| assert(var.back().orientation == Orientation::Column && |
| "Variable to be removed must be in column orientation!"); |
| |
| // Move this variable to the last column and remove the column from the |
| // tableau. |
| swapColumns(var.back().pos, nCol - 1); |
| tableau.resizeHorizontally(nCol - 1); |
| var.pop_back(); |
| colUnknown.pop_back(); |
| nCol--; |
| } else if (entry == UndoLogEntry::UnmarkEmpty) { |
| empty = false; |
| } else if (entry == UndoLogEntry::UnmarkLastRedundant) { |
| nRedundant--; |
| } |
| } |
| |
| /// Rollback to the specified snapshot. |
| /// |
| /// We undo all the log entries until the log size when the snapshot was taken |
| /// is reached. |
| void Simplex::rollback(unsigned snapshot) { |
| while (undoLog.size() > snapshot) { |
| undo(undoLog.back()); |
| undoLog.pop_back(); |
| } |
| } |
| |
| void Simplex::appendVariable(unsigned count) { |
| if (count == 0) |
| return; |
| var.reserve(var.size() + count); |
| colUnknown.reserve(colUnknown.size() + count); |
| for (unsigned i = 0; i < count; ++i) { |
| nCol++; |
| var.emplace_back(Orientation::Column, /*restricted=*/false, |
| /*pos=*/nCol - 1); |
| colUnknown.push_back(var.size() - 1); |
| } |
| tableau.resizeHorizontally(nCol); |
| undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); |
| } |
| |
| /// Add all the constraints from the given FlatAffineConstraints. |
| void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) { |
| assert(fac.getNumIds() == getNumVariables() && |
| "FlatAffineConstraints must have same dimensionality as simplex"); |
| for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) |
| addInequality(fac.getInequality(i)); |
| for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) |
| addEquality(fac.getEquality(i)); |
| } |
| |
| Optional<Fraction> Simplex::computeRowOptimum(Direction direction, |
| unsigned row) { |
| // Keep trying to find a pivot for the row in the specified direction. |
| while (Optional<Pivot> maybePivot = findPivot(row, direction)) { |
| // If findPivot returns a pivot involving the row itself, then the optimum |
| // is unbounded, so we return None. |
| if (maybePivot->row == row) |
| return {}; |
| pivot(*maybePivot); |
| } |
| |
| // The row has reached its optimal sample value, which we return. |
| // The sample value is the entry in the constant column divided by the common |
| // denominator for this row. |
| return Fraction(tableau(row, 1), tableau(row, 0)); |
| } |
| |
| /// Compute the optimum of the specified expression in the specified direction, |
| /// or None if it is unbounded. |
| Optional<Fraction> Simplex::computeOptimum(Direction direction, |
| ArrayRef<int64_t> coeffs) { |
| assert(!empty && "Simplex should not be empty"); |
| |
| unsigned snapshot = getSnapshot(); |
| unsigned conIndex = addRow(coeffs); |
| unsigned row = con[conIndex].pos; |
| Optional<Fraction> optimum = computeRowOptimum(direction, row); |
| rollback(snapshot); |
| return optimum; |
| } |
| |
| Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { |
| assert(!empty && "Simplex should not be empty!"); |
| if (u.orientation == Orientation::Column) { |
| unsigned column = u.pos; |
| Optional<unsigned> pivotRow = findPivotRow({}, direction, column); |
| // If no pivot is returned, the constraint is unbounded in the specified |
| // direction. |
| if (!pivotRow) |
| return {}; |
| pivot(*pivotRow, column); |
| } |
| |
| unsigned row = u.pos; |
| Optional<Fraction> optimum = computeRowOptimum(direction, row); |
| if (u.restricted && direction == Direction::Down && |
| (!optimum || *optimum < Fraction(0, 1))) |
| (void)restoreRow(u); |
| return optimum; |
| } |
| |
| bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { |
| assert(!empty && "It is not meaningful to ask whether a direction is bounded " |
| "in an empty set."); |
| // The constraint's perpendicular is already bounded below, since it is a |
| // constraint. If it is also bounded above, we can return true. |
| return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); |
| } |
| |
| /// Redundant constraints are those that are in row orientation and lie in |
| /// rows 0 to nRedundant - 1. |
| bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { |
| const Unknown &u = con[constraintIndex]; |
| return u.orientation == Orientation::Row && u.pos < nRedundant; |
| } |
| |
| /// Mark the specified row redundant. |
| /// |
| /// This is done by moving the unknown to the end of the block of redundant |
| /// rows (namely, to row nRedundant) and incrementing nRedundant to |
| /// accomodate the new redundant row. |
| void Simplex::markRowRedundant(Unknown &u) { |
| assert(u.orientation == Orientation::Row && |
| "Unknown should be in row position!"); |
| assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); |
| swapRows(u.pos, nRedundant); |
| ++nRedundant; |
| undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); |
| } |
| |
| /// Find a subset of constraints that is redundant and mark them redundant. |
| void Simplex::detectRedundant() { |
| // It is not meaningful to talk about redundancy for empty sets. |
| if (empty) |
| return; |
| |
| // Iterate through the constraints and check for each one if it can attain |
| // negative sample values. If it can, it's not redundant. Otherwise, it is. |
| // We mark redundant constraints redundant. |
| // |
| // Constraints that get marked redundant in one iteration are not respected |
| // when checking constraints in later iterations. This prevents, for example, |
| // two identical constraints both being marked redundant since each is |
| // redundant given the other one. In this example, only the first of the |
| // constraints that is processed will get marked redundant, as it should be. |
| for (Unknown &u : con) { |
| if (u.orientation == Orientation::Column) { |
| unsigned column = u.pos; |
| Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); |
| // If no downward pivot is returned, the constraint is unbounded below |
| // and hence not redundant. |
| if (!pivotRow) |
| continue; |
| pivot(*pivotRow, column); |
| } |
| |
| unsigned row = u.pos; |
| Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); |
| if (!minimum || *minimum < Fraction(0, 1)) { |
| // Constraint is unbounded below or can attain negative sample values and |
| // hence is not redundant. |
| (void)restoreRow(u); |
| continue; |
| } |
| |
| markRowRedundant(u); |
| } |
| } |
| |
| bool Simplex::isUnbounded() { |
| if (empty) |
| return false; |
| |
| SmallVector<int64_t, 8> dir(var.size() + 1); |
| for (unsigned i = 0; i < var.size(); ++i) { |
| dir[i] = 1; |
| |
| Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); |
| if (!maybeMax) |
| return true; |
| |
| Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); |
| if (!maybeMin) |
| return true; |
| |
| dir[i] = 0; |
| } |
| return false; |
| } |
| |
| /// Make a tableau to represent a pair of points in the original tableau. |
| /// |
| /// The product constraints and variables are stored as: first A's, then B's. |
| /// |
| /// The product tableau has row layout: |
| /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. |
| /// |
| /// It has column layout: |
| /// denominator, constant, A's columns, B's columns. |
| Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { |
| unsigned numVar = a.getNumVariables() + b.getNumVariables(); |
| unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); |
| Simplex result(numVar); |
| |
| result.tableau.resizeVertically(numCon); |
| result.empty = a.empty || b.empty; |
| |
| auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { |
| SmallVector<Unknown, 8> result; |
| result.reserve(v.size() + w.size()); |
| result.insert(result.end(), v.begin(), v.end()); |
| result.insert(result.end(), w.begin(), w.end()); |
| return result; |
| }; |
| result.con = concat(a.con, b.con); |
| result.var = concat(a.var, b.var); |
| |
| auto indexFromBIndex = [&](int index) { |
| return index >= 0 ? a.getNumVariables() + index |
| : ~(a.getNumConstraints() + ~index); |
| }; |
| |
| result.colUnknown.assign(2, nullIndex); |
| for (unsigned i = 2; i < a.nCol; ++i) { |
| result.colUnknown.push_back(a.colUnknown[i]); |
| result.unknownFromIndex(result.colUnknown.back()).pos = |
| result.colUnknown.size() - 1; |
| } |
| for (unsigned i = 2; i < b.nCol; ++i) { |
| result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); |
| result.unknownFromIndex(result.colUnknown.back()).pos = |
| result.colUnknown.size() - 1; |
| } |
| |
| auto appendRowFromA = [&](unsigned row) { |
| for (unsigned col = 0; col < a.nCol; ++col) |
| result.tableau(result.nRow, col) = a.tableau(row, col); |
| result.rowUnknown.push_back(a.rowUnknown[row]); |
| result.unknownFromIndex(result.rowUnknown.back()).pos = |
| result.rowUnknown.size() - 1; |
| result.nRow++; |
| }; |
| |
| // Also fixes the corresponding entry in rowUnknown and var/con (as the case |
| // may be). |
| auto appendRowFromB = [&](unsigned row) { |
| result.tableau(result.nRow, 0) = b.tableau(row, 0); |
| result.tableau(result.nRow, 1) = b.tableau(row, 1); |
| |
| unsigned offset = a.nCol - 2; |
| for (unsigned col = 2; col < b.nCol; ++col) |
| result.tableau(result.nRow, offset + col) = b.tableau(row, col); |
| result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); |
| result.unknownFromIndex(result.rowUnknown.back()).pos = |
| result.rowUnknown.size() - 1; |
| result.nRow++; |
| }; |
| |
| result.nRedundant = a.nRedundant + b.nRedundant; |
| for (unsigned row = 0; row < a.nRedundant; ++row) |
| appendRowFromA(row); |
| for (unsigned row = 0; row < b.nRedundant; ++row) |
| appendRowFromB(row); |
| for (unsigned row = a.nRedundant; row < a.nRow; ++row) |
| appendRowFromA(row); |
| for (unsigned row = b.nRedundant; row < b.nRow; ++row) |
| appendRowFromB(row); |
| |
| return result; |
| } |
| |
| SmallVector<Fraction, 8> Simplex::getRationalSample() const { |
| assert(!empty && "This should not be called when Simplex is empty."); |
| |
| SmallVector<Fraction, 8> sample; |
| sample.reserve(var.size()); |
| // Push the sample value for each variable into the vector. |
| for (const Unknown &u : var) { |
| if (u.orientation == Orientation::Column) { |
| // If the variable is in column position, its sample value is zero. |
| sample.emplace_back(0, 1); |
| } else { |
| // If the variable is in row position, its sample value is the entry in |
| // the constant column divided by the entry in the common denominator |
| // column. |
| sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0)); |
| } |
| } |
| return sample; |
| } |
| |
| Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { |
| // If the tableau is empty, no sample point exists. |
| if (empty) |
| return {}; |
| SmallVector<Fraction, 8> rationalSample = getRationalSample(); |
| SmallVector<int64_t, 8> integerSample; |
| integerSample.reserve(var.size()); |
| for (const Fraction &coord : rationalSample) { |
| // If the sample is non-integral, return None. |
| if (coord.num % coord.den != 0) |
| return {}; |
| integerSample.push_back(coord.num / coord.den); |
| } |
| return integerSample; |
| } |
| |
| /// Given a simplex for a polytope, construct a new simplex whose variables are |
| /// identified with a pair of points (x, y) in the original polytope. Supports |
| /// some operations needed for generalized basis reduction. In what follows, |
| /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the |
| /// dimension of the original polytope. |
| /// |
| /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It |
| /// also supports rolling back this addition, by maintaining a snapshot stack |
| /// that contains a snapshot of the Simplex's state for each equality, just |
| /// before that equality was added. |
| class GBRSimplex { |
| using Orientation = Simplex::Orientation; |
| |
| public: |
| GBRSimplex(const Simplex &originalSimplex) |
| : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), |
| simplexConstraintOffset(simplex.getNumConstraints()) {} |
| |
| /// Add an equality dotProduct(dir, x - y) == 0. |
| /// First pushes a snapshot for the current simplex state to the stack so |
| /// that this can be rolled back later. |
| void addEqualityForDirection(ArrayRef<int64_t> dir) { |
| assert( |
| std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && |
| "Direction passed is the zero vector!"); |
| snapshotStack.push_back(simplex.getSnapshot()); |
| simplex.addEquality(getCoeffsForDirection(dir)); |
| } |
| |
| /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only |
| /// the direction equalities to `dual`. |
| Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, |
| SmallVectorImpl<int64_t> &dual, |
| int64_t &dualDenom) { |
| unsigned snap = simplex.getSnapshot(); |
| unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); |
| unsigned row = simplex.con[conIndex].pos; |
| Optional<Fraction> maybeWidth = |
| simplex.computeRowOptimum(Simplex::Direction::Up, row); |
| assert(maybeWidth.hasValue() && "Width should not be unbounded!"); |
| dualDenom = simplex.tableau(row, 0); |
| dual.clear(); |
| // The increment is i += 2 because equalities are added as two inequalities, |
| // one positive and one negative. Each iteration processes one equality. |
| for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { |
| // The dual variable is the negative of the coefficient of the new row |
| // in the column of the constraint, if the constraint is in a column. |
| // Note that the second inequality for the equality is negated. |
| // |
| // We want the dual for the original equality. If the positive inequality |
| // is in column position, the negative of its row coefficient is the |
| // desired dual. If the negative inequality is in column position, its row |
| // coefficient is the desired dual. (its coefficients are already the |
| // negated coefficients of the original equality, so we don't need to |
| // negate it now.) |
| // |
| // If neither are in column position, we move the negated inequality to |
| // column position. Since the inequality must have sample value zero |
| // (since it corresponds to an equality), we are free to pivot with |
| // any column. Since both the unknowns have sample value before and after |
| // pivoting, no other sample values will change and the tableau will |
| // remain consistent. To pivot, we just need to find a column that has a |
| // non-zero coefficient in this row. There must be one since otherwise the |
| // equality would be 0 == 0, which should never be passed to |
| // addEqualityForDirection. |
| // |
| // After finding a column, we pivot with the column, after which we can |
| // get the dual from the inequality in column position as explained above. |
| if (simplex.con[i].orientation == Orientation::Column) { |
| dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); |
| } else { |
| if (simplex.con[i + 1].orientation == Orientation::Row) { |
| unsigned ineqRow = simplex.con[i + 1].pos; |
| // Since it is an equality, the sample value must be zero. |
| assert(simplex.tableau(ineqRow, 1) == 0 && |
| "Equality's sample value must be zero."); |
| for (unsigned col = 2; col < simplex.nCol; ++col) { |
| if (simplex.tableau(ineqRow, col) != 0) { |
| simplex.pivot(ineqRow, col); |
| break; |
| } |
| } |
| assert(simplex.con[i + 1].orientation == Orientation::Column && |
| "No pivot found. Equality has all-zeros row in tableau!"); |
| } |
| dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); |
| } |
| } |
| simplex.rollback(snap); |
| return *maybeWidth; |
| } |
| |
| /// Remove the last equality that was added through addEqualityForDirection. |
| /// |
| /// We do this by rolling back to the snapshot at the top of the stack, which |
| /// should be a snapshot taken just before the last equality was added. |
| void removeLastEquality() { |
| assert(!snapshotStack.empty() && "Snapshot stack is empty!"); |
| simplex.rollback(snapshotStack.back()); |
| snapshotStack.pop_back(); |
| } |
| |
| private: |
| /// Returns coefficients of the expression 'dot_product(dir, x - y)', |
| /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n |
| /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, |
| /// where n is the dimension of the original polytope. |
| SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { |
| assert(2 * dir.size() == simplex.getNumVariables() && |
| "Direction vector has wrong dimensionality"); |
| SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); |
| coeffs.reserve(2 * dir.size()); |
| for (int64_t coeff : dir) |
| coeffs.push_back(-coeff); |
| coeffs.push_back(0); // constant term |
| return coeffs; |
| } |
| |
| Simplex simplex; |
| /// The first index of the equality constraints, the index immediately after |
| /// the last constraint in the initial product simplex. |
| unsigned simplexConstraintOffset; |
| /// A stack of snapshots, used for rolling back. |
| SmallVector<unsigned, 8> snapshotStack; |
| }; |
| |
| /// Reduce the basis to try and find a direction in which the polytope is |
| /// "thin". This only works for bounded polytopes. |
| /// |
| /// This is an implementation of the algorithm described in the paper |
| /// "An Implementation of Generalized Basis Reduction for Integer Programming" |
| /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. |
| /// |
| /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. |
| /// Let width_i(v) = max <v, x - y> where x and y are points in the original |
| /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. |
| /// |
| /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u |
| /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i |
| /// be the dual variable associated with the constraint <b_i, x - y> = 0 when |
| /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the |
| /// minimizing value of u, if it were allowed to be fractional. Due to |
| /// convexity, the minimizing integer value is either floor(dual_i) or |
| /// ceil(dual_i), so we just need to check which of these gives a lower |
| /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. |
| /// |
| /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) |
| /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the |
| /// same i). Otherwise, we increment i. |
| /// |
| /// We keep f values and duals cached and invalidate them when necessary. |
| /// Whenever possible, we use them instead of recomputing them. We implement the |
| /// algorithm as follows. |
| /// |
| /// In an iteration at i we need to compute: |
| /// a) width_i(b_{i + 1}) |
| /// b) width_i(b_i) |
| /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) |
| /// |
| /// If width_i(b_i) is not already cached, we compute it. |
| /// |
| /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and |
| /// store the duals from this computation. |
| /// |
| /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value |
| /// of u as explained before, caches the duals from this computation, sets |
| /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). |
| /// |
| /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and |
| /// decrement i, resulting in the basis |
| /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... |
| /// with corresponding f values |
| /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... |
| /// The values up to i - 1 remain unchanged. We have just gotten the middle |
| /// value from updateBasisWithUAndGetFCandidate, so we can update that in the |
| /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from |
| /// the cache. The iteration after decrementing needs exactly the duals from the |
| /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. |
| /// |
| /// When incrementing i, no cached f values get invalidated. However, the cached |
| /// duals do get invalidated as the duals for the higher levels are different. |
| void Simplex::reduceBasis(Matrix &basis, unsigned level) { |
| const Fraction epsilon(3, 4); |
| |
| if (level == basis.getNumRows() - 1) |
| return; |
| |
| GBRSimplex gbrSimplex(*this); |
| SmallVector<Fraction, 8> width; |
| SmallVector<int64_t, 8> dual; |
| int64_t dualDenom; |
| |
| // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the |
| // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns |
| // the new value of width_i(b_{i+1}). |
| // |
| // If dual_i is not an integer, the minimizing value must be either |
| // floor(dual_i) or ceil(dual_i). We compute the expression for both and |
| // choose the minimizing value. |
| // |
| // If dual_i is an integer, we don't need to perform these computations. We |
| // know that in this case, |
| // a) u = dual_i. |
| // b) one can show that dual_j for j < i are the same duals we would have |
| // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals |
| // are the ones already in the cache. |
| // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), |
| // which |
| // one can show is equal to width_{i+1}(b_{i+1}). The latter value must |
| // be in the cache, so we get it from there and return it. |
| auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { |
| assert(i < level + dual.size() && "dual_i is not known!"); |
| |
| int64_t u = floorDiv(dual[i - level], dualDenom); |
| basis.addToRow(i, i + 1, u); |
| if (dual[i - level] % dualDenom != 0) { |
| SmallVector<int64_t, 8> candidateDual[2]; |
| int64_t candidateDualDenom[2]; |
| Fraction widthI[2]; |
| |
| // Initially u is floor(dual) and basis reflects this. |
| widthI[0] = gbrSimplex.computeWidthAndDuals( |
| basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); |
| |
| // Now try ceil(dual), i.e. floor(dual) + 1. |
| ++u; |
| basis.addToRow(i, i + 1, 1); |
| widthI[1] = gbrSimplex.computeWidthAndDuals( |
| basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); |
| |
| unsigned j = widthI[0] < widthI[1] ? 0 : 1; |
| if (j == 0) |
| // Subtract 1 to go from u = ceil(dual) back to floor(dual). |
| basis.addToRow(i, i + 1, -1); |
| dual = std::move(candidateDual[j]); |
| dualDenom = candidateDualDenom[j]; |
| return widthI[j]; |
| } |
| assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); |
| // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to |
| // width_{i+1}(b_{i+1}). |
| return width[i + 1 - level]; |
| }; |
| |
| // In the ith iteration of the loop, gbrSimplex has constraints for directions |
| // from `level` to i - 1. |
| unsigned i = level; |
| while (i < basis.getNumRows() - 1) { |
| if (i >= level + width.size()) { |
| // We don't even know the value of f_i(b_i), so let's find that first. |
| // We have to do this first since later we assume that width already |
| // contains values up to and including i. |
| |
| assert((i == 0 || i - 1 < level + width.size()) && |
| "We are at level i but we don't know the value of width_{i-1}"); |
| |
| // We don't actually use these duals at all, but it doesn't matter |
| // because this case should only occur when i is level, and there are no |
| // duals in that case anyway. |
| assert(i == level && "This case should only occur when i == level"); |
| width.push_back( |
| gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); |
| } |
| |
| if (i >= level + dual.size()) { |
| assert(i + 1 >= level + width.size() && |
| "We don't know dual_i but we know width_{i+1}"); |
| // We don't know dual for our level, so let's find it. |
| gbrSimplex.addEqualityForDirection(basis.getRow(i)); |
| width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, |
| dualDenom)); |
| gbrSimplex.removeLastEquality(); |
| } |
| |
| // This variable stores width_i(b_{i+1} + u*b_i). |
| Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); |
| if (widthICandidate < epsilon * width[i - level]) { |
| basis.swapRows(i, i + 1); |
| width[i - level] = widthICandidate; |
| // The values of width_{i+1}(b_{i+1}) and higher may change after the |
| // swap, so we remove the cached values here. |
| width.resize(i - level + 1); |
| if (i == level) { |
| dual.clear(); |
| continue; |
| } |
| |
| gbrSimplex.removeLastEquality(); |
| i--; |
| continue; |
| } |
| |
| // Invalidate duals since the higher level needs to recompute its own duals. |
| dual.clear(); |
| gbrSimplex.addEqualityForDirection(basis.getRow(i)); |
| i++; |
| } |
| } |
| |
| /// Search for an integer sample point using a branch and bound algorithm. |
| /// |
| /// Each row in the basis matrix is a vector, and the set of basis vectors |
| /// should span the space. Initially this is the identity matrix, |
| /// i.e., the basis vectors are just the variables. |
| /// |
| /// In every level, a value is assigned to the level-th basis vector, as |
| /// follows. Compute the minimum and maximum rational values of this direction. |
| /// If only one integer point lies in this range, constrain the variable to |
| /// have this value and recurse to the next variable. |
| /// |
| /// If the range has multiple values, perform generalized basis reduction via |
| /// reduceBasis and then compute the bounds again. Now we try constraining |
| /// this direction in the first value in this range and "recurse" to the next |
| /// level. If we fail to find a sample, we try assigning the direction the next |
| /// value in this range, and so on. |
| /// |
| /// If no integer sample is found from any of the assignments, or if the range |
| /// contains no integer value, then of course the polytope is empty for the |
| /// current assignment of the values in previous levels, so we return to |
| /// the previous level. |
| /// |
| /// If we reach the last level where all the variables have been assigned values |
| /// already, then we simply return the current sample point if it is integral, |
| /// and go back to the previous level otherwise. |
| /// |
| /// To avoid potentially arbitrarily large recursion depths leading to stack |
| /// overflows, this algorithm is implemented iteratively. |
| Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { |
| if (empty) |
| return {}; |
| |
| unsigned nDims = var.size(); |
| Matrix basis = Matrix::identity(nDims); |
| |
| unsigned level = 0; |
| // The snapshot just before constraining a direction to a value at each level. |
| SmallVector<unsigned, 8> snapshotStack; |
| // The maximum value in the range of the direction for each level. |
| SmallVector<int64_t, 8> upperBoundStack; |
| // The next value to try constraining the basis vector to at each level. |
| SmallVector<int64_t, 8> nextValueStack; |
| |
| snapshotStack.reserve(basis.getNumRows()); |
| upperBoundStack.reserve(basis.getNumRows()); |
| nextValueStack.reserve(basis.getNumRows()); |
| while (level != -1u) { |
| if (level == basis.getNumRows()) { |
| // We've assigned values to all variables. Return if we have a sample, |
| // or go back up to the previous level otherwise. |
| if (auto maybeSample = getSamplePointIfIntegral()) |
| return maybeSample; |
| level--; |
| continue; |
| } |
| |
| if (level >= upperBoundStack.size()) { |
| // We haven't populated the stack values for this level yet, so we have |
| // just come down a level ("recursed"). Find the lower and upper bounds. |
| // If there is more than one integer point in the range, perform |
| // generalized basis reduction. |
| SmallVector<int64_t, 8> basisCoeffs = |
| llvm::to_vector<8>(basis.getRow(level)); |
| basisCoeffs.push_back(0); |
| |
| int64_t minRoundedUp, maxRoundedDown; |
| std::tie(minRoundedUp, maxRoundedDown) = |
| computeIntegerBounds(basisCoeffs); |
| |
| // Heuristic: if the sample point is integral at this point, just return |
| // it. |
| if (auto maybeSample = getSamplePointIfIntegral()) |
| return *maybeSample; |
| |
| if (minRoundedUp < maxRoundedDown) { |
| reduceBasis(basis, level); |
| basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); |
| basisCoeffs.push_back(0); |
| std::tie(minRoundedUp, maxRoundedDown) = |
| computeIntegerBounds(basisCoeffs); |
| } |
| |
| snapshotStack.push_back(getSnapshot()); |
| // The smallest value in the range is the next value to try. |
| nextValueStack.push_back(minRoundedUp); |
| upperBoundStack.push_back(maxRoundedDown); |
| } |
| |
| assert((snapshotStack.size() - 1 == level && |
| nextValueStack.size() - 1 == level && |
| upperBoundStack.size() - 1 == level) && |
| "Mismatched variable stack sizes!"); |
| |
| // Whether we "recursed" or "returned" from a lower level, we rollback |
| // to the snapshot of the starting state at this level. (in the "recursed" |
| // case this has no effect) |
| rollback(snapshotStack.back()); |
| int64_t nextValue = nextValueStack.back(); |
| nextValueStack.back()++; |
| if (nextValue > upperBoundStack.back()) { |
| // We have exhausted the range and found no solution. Pop the stack and |
| // return up a level. |
| snapshotStack.pop_back(); |
| nextValueStack.pop_back(); |
| upperBoundStack.pop_back(); |
| level--; |
| continue; |
| } |
| |
| // Try the next value in the range and "recurse" into the next level. |
| SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), |
| basis.getRow(level).end()); |
| basisCoeffs.push_back(-nextValue); |
| addEquality(basisCoeffs); |
| level++; |
| } |
| |
| return {}; |
| } |
| |
| /// Compute the minimum and maximum integer values the expression can take. We |
| /// compute each separately. |
| std::pair<int64_t, int64_t> |
| Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { |
| int64_t minRoundedUp; |
| if (Optional<Fraction> maybeMin = |
| computeOptimum(Simplex::Direction::Down, coeffs)) |
| minRoundedUp = ceil(*maybeMin); |
| else |
| llvm_unreachable("Tableau should not be unbounded"); |
| |
| int64_t maxRoundedDown; |
| if (Optional<Fraction> maybeMax = |
| computeOptimum(Simplex::Direction::Up, coeffs)) |
| maxRoundedDown = floor(*maybeMax); |
| else |
| llvm_unreachable("Tableau should not be unbounded"); |
| |
| return {minRoundedUp, maxRoundedDown}; |
| } |
| |
| void Simplex::print(raw_ostream &os) const { |
| os << "rows = " << nRow << ", columns = " << nCol << "\n"; |
| if (empty) |
| os << "Simplex marked empty!\n"; |
| os << "var: "; |
| for (unsigned i = 0; i < var.size(); ++i) { |
| if (i > 0) |
| os << ", "; |
| var[i].print(os); |
| } |
| os << "\ncon: "; |
| for (unsigned i = 0; i < con.size(); ++i) { |
| if (i > 0) |
| os << ", "; |
| con[i].print(os); |
| } |
| os << '\n'; |
| for (unsigned row = 0; row < nRow; ++row) { |
| if (row > 0) |
| os << ", "; |
| os << "r" << row << ": " << rowUnknown[row]; |
| } |
| os << '\n'; |
| os << "c0: denom, c1: const"; |
| for (unsigned col = 2; col < nCol; ++col) |
| os << ", c" << col << ": " << colUnknown[col]; |
| os << '\n'; |
| for (unsigned row = 0; row < nRow; ++row) { |
| for (unsigned col = 0; col < nCol; ++col) |
| os << tableau(row, col) << '\t'; |
| os << '\n'; |
| } |
| os << '\n'; |
| } |
| |
| void Simplex::dump() const { print(llvm::errs()); } |
| |
| } // namespace mlir |