| //===-- CodeGen.cpp -- bridge to lower to LLVM ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/ |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "flang/Optimizer/CodeGen/CodeGen.h" |
| #include "PassDetail.h" |
| #include "flang/ISO_Fortran_binding.h" |
| #include "flang/Optimizer/Dialect/FIRAttr.h" |
| #include "flang/Optimizer/Dialect/FIROps.h" |
| #include "flang/Optimizer/Support/TypeCode.h" |
| #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h" |
| #include "mlir/Conversion/LLVMCommon/Pattern.h" |
| #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h" |
| #include "mlir/IR/BuiltinTypes.h" |
| #include "mlir/IR/Matchers.h" |
| #include "mlir/Pass/Pass.h" |
| #include "llvm/ADT/ArrayRef.h" |
| |
| #define DEBUG_TYPE "flang-codegen" |
| |
| // fir::LLVMTypeConverter for converting to LLVM IR dialect types. |
| #include "TypeConverter.h" |
| |
| // TODO: This should really be recovered from the specified target. |
| static constexpr unsigned defaultAlign = 8; |
| |
| /// `fir.box` attribute values as defined for CFI_attribute_t in |
| /// flang/ISO_Fortran_binding.h. |
| static constexpr unsigned kAttrPointer = CFI_attribute_pointer; |
| static constexpr unsigned kAttrAllocatable = CFI_attribute_allocatable; |
| |
| static mlir::LLVM::ConstantOp |
| genConstantIndex(mlir::Location loc, mlir::Type ity, |
| mlir::ConversionPatternRewriter &rewriter, |
| std::int64_t offset) { |
| auto cattr = rewriter.getI64IntegerAttr(offset); |
| return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr); |
| } |
| |
| static Block *createBlock(mlir::ConversionPatternRewriter &rewriter, |
| mlir::Block *insertBefore) { |
| assert(insertBefore && "expected valid insertion block"); |
| return rewriter.createBlock(insertBefore->getParent(), |
| mlir::Region::iterator(insertBefore)); |
| } |
| |
| namespace { |
| /// FIR conversion pattern template |
| template <typename FromOp> |
| class FIROpConversion : public mlir::ConvertOpToLLVMPattern<FromOp> { |
| public: |
| explicit FIROpConversion(fir::LLVMTypeConverter &lowering) |
| : mlir::ConvertOpToLLVMPattern<FromOp>(lowering) {} |
| |
| protected: |
| mlir::Type convertType(mlir::Type ty) const { |
| return lowerTy().convertType(ty); |
| } |
| |
| mlir::LLVM::ConstantOp |
| genI32Constant(mlir::Location loc, mlir::ConversionPatternRewriter &rewriter, |
| int value) const { |
| mlir::Type i32Ty = rewriter.getI32Type(); |
| mlir::IntegerAttr attr = rewriter.getI32IntegerAttr(value); |
| return rewriter.create<mlir::LLVM::ConstantOp>(loc, i32Ty, attr); |
| } |
| |
| mlir::LLVM::ConstantOp |
| genConstantOffset(mlir::Location loc, |
| mlir::ConversionPatternRewriter &rewriter, |
| int offset) const { |
| mlir::Type ity = lowerTy().offsetType(); |
| mlir::IntegerAttr cattr = rewriter.getI32IntegerAttr(offset); |
| return rewriter.create<mlir::LLVM::ConstantOp>(loc, ity, cattr); |
| } |
| |
| /// Construct code sequence to extract the specifc value from a `fir.box`. |
| mlir::Value getValueFromBox(mlir::Location loc, mlir::Value box, |
| mlir::Type resultTy, |
| mlir::ConversionPatternRewriter &rewriter, |
| unsigned boxValue) const { |
| mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); |
| mlir::LLVM::ConstantOp cValuePos = |
| genConstantOffset(loc, rewriter, boxValue); |
| auto pty = mlir::LLVM::LLVMPointerType::get(resultTy); |
| auto p = rewriter.create<mlir::LLVM::GEPOp>( |
| loc, pty, mlir::ValueRange{box, c0, cValuePos}); |
| return rewriter.create<mlir::LLVM::LoadOp>(loc, resultTy, p); |
| } |
| |
| /// Method to construct code sequence to get the triple for dimension `dim` |
| /// from a box. |
| SmallVector<mlir::Value, 3> |
| getDimsFromBox(mlir::Location loc, ArrayRef<mlir::Type> retTys, |
| mlir::Value box, mlir::Value dim, |
| mlir::ConversionPatternRewriter &rewriter) const { |
| mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); |
| mlir::LLVM::ConstantOp cDims = |
| genConstantOffset(loc, rewriter, kDimsPosInBox); |
| mlir::LLVM::LoadOp l0 = |
| loadFromOffset(loc, box, c0, cDims, dim, 0, retTys[0], rewriter); |
| mlir::LLVM::LoadOp l1 = |
| loadFromOffset(loc, box, c0, cDims, dim, 1, retTys[1], rewriter); |
| mlir::LLVM::LoadOp l2 = |
| loadFromOffset(loc, box, c0, cDims, dim, 2, retTys[2], rewriter); |
| return {l0.getResult(), l1.getResult(), l2.getResult()}; |
| } |
| |
| mlir::LLVM::LoadOp |
| loadFromOffset(mlir::Location loc, mlir::Value a, mlir::LLVM::ConstantOp c0, |
| mlir::LLVM::ConstantOp cDims, mlir::Value dim, int off, |
| mlir::Type ty, |
| mlir::ConversionPatternRewriter &rewriter) const { |
| auto pty = mlir::LLVM::LLVMPointerType::get(ty); |
| mlir::LLVM::ConstantOp c = genConstantOffset(loc, rewriter, off); |
| mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, a, c0, cDims, dim, c); |
| return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p); |
| } |
| |
| /// Read base address from a fir.box. Returned address has type ty. |
| mlir::Value |
| loadBaseAddrFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box, |
| mlir::ConversionPatternRewriter &rewriter) const { |
| mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); |
| mlir::LLVM::ConstantOp cAddr = |
| genConstantOffset(loc, rewriter, kAddrPosInBox); |
| auto pty = mlir::LLVM::LLVMPointerType::get(ty); |
| mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cAddr); |
| return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p); |
| } |
| |
| mlir::Value |
| loadElementSizeFromBox(mlir::Location loc, mlir::Type ty, mlir::Value box, |
| mlir::ConversionPatternRewriter &rewriter) const { |
| mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); |
| mlir::LLVM::ConstantOp cElemLen = |
| genConstantOffset(loc, rewriter, kElemLenPosInBox); |
| auto pty = mlir::LLVM::LLVMPointerType::get(ty); |
| mlir::LLVM::GEPOp p = genGEP(loc, pty, rewriter, box, c0, cElemLen); |
| return rewriter.create<mlir::LLVM::LoadOp>(loc, ty, p); |
| } |
| |
| // Load the attribute from the \p box and perform a check against \p maskValue |
| // The final comparison is implemented as `(attribute & maskValue) != 0`. |
| mlir::Value genBoxAttributeCheck(mlir::Location loc, mlir::Value box, |
| mlir::ConversionPatternRewriter &rewriter, |
| unsigned maskValue) const { |
| mlir::Type attrTy = rewriter.getI32Type(); |
| mlir::Value attribute = |
| getValueFromBox(loc, box, attrTy, rewriter, kAttributePosInBox); |
| mlir::LLVM::ConstantOp attrMask = |
| genConstantOffset(loc, rewriter, maskValue); |
| auto maskRes = |
| rewriter.create<mlir::LLVM::AndOp>(loc, attrTy, attribute, attrMask); |
| mlir::LLVM::ConstantOp c0 = genConstantOffset(loc, rewriter, 0); |
| return rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::ne, maskRes, c0); |
| } |
| |
| // Get the element type given an LLVM type that is of the form |
| // [llvm.ptr](array|struct|vector)+ and the provided indexes. |
| static mlir::Type getBoxEleTy(mlir::Type type, |
| llvm::ArrayRef<unsigned> indexes) { |
| if (auto t = type.dyn_cast<mlir::LLVM::LLVMPointerType>()) |
| type = t.getElementType(); |
| for (auto i : indexes) { |
| if (auto t = type.dyn_cast<mlir::LLVM::LLVMStructType>()) { |
| assert(!t.isOpaque() && i < t.getBody().size()); |
| type = t.getBody()[i]; |
| } else if (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) { |
| type = t.getElementType(); |
| } else if (auto t = type.dyn_cast<mlir::VectorType>()) { |
| type = t.getElementType(); |
| } else { |
| fir::emitFatalError(mlir::UnknownLoc::get(type.getContext()), |
| "request for invalid box element type"); |
| } |
| } |
| return type; |
| } |
| |
| template <typename... ARGS> |
| mlir::LLVM::GEPOp genGEP(mlir::Location loc, mlir::Type ty, |
| mlir::ConversionPatternRewriter &rewriter, |
| mlir::Value base, ARGS... args) const { |
| SmallVector<mlir::Value> cv{args...}; |
| return rewriter.create<mlir::LLVM::GEPOp>(loc, ty, base, cv); |
| } |
| |
| /// Perform an extension or truncation as needed on an integer value. Lowering |
| /// to the specific target may involve some sign-extending or truncation of |
| /// values, particularly to fit them from abstract box types to the |
| /// appropriate reified structures. |
| mlir::Value integerCast(mlir::Location loc, |
| mlir::ConversionPatternRewriter &rewriter, |
| mlir::Type ty, mlir::Value val) const { |
| auto valTy = val.getType(); |
| // If the value was not yet lowered, lower its type so that it can |
| // be used in getPrimitiveTypeSizeInBits. |
| if (!valTy.isa<mlir::IntegerType>()) |
| valTy = convertType(valTy); |
| auto toSize = mlir::LLVM::getPrimitiveTypeSizeInBits(ty); |
| auto fromSize = mlir::LLVM::getPrimitiveTypeSizeInBits(valTy); |
| if (toSize < fromSize) |
| return rewriter.create<mlir::LLVM::TruncOp>(loc, ty, val); |
| if (toSize > fromSize) |
| return rewriter.create<mlir::LLVM::SExtOp>(loc, ty, val); |
| return val; |
| } |
| |
| fir::LLVMTypeConverter &lowerTy() const { |
| return *static_cast<fir::LLVMTypeConverter *>(this->getTypeConverter()); |
| } |
| }; |
| |
| /// FIR conversion pattern template |
| template <typename FromOp> |
| class FIROpAndTypeConversion : public FIROpConversion<FromOp> { |
| public: |
| using FIROpConversion<FromOp>::FIROpConversion; |
| using OpAdaptor = typename FromOp::Adaptor; |
| |
| mlir::LogicalResult |
| matchAndRewrite(FromOp op, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const final { |
| mlir::Type ty = this->convertType(op.getType()); |
| return doRewrite(op, ty, adaptor, rewriter); |
| } |
| |
| virtual mlir::LogicalResult |
| doRewrite(FromOp addr, mlir::Type ty, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const = 0; |
| }; |
| |
| /// Create value signaling an absent optional argument in a call, e.g. |
| /// `fir.absent !fir.ref<i64>` --> `llvm.mlir.null : !llvm.ptr<i64>` |
| struct AbsentOpConversion : public FIROpConversion<fir::AbsentOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::AbsentOp absent, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Type ty = convertType(absent.getType()); |
| mlir::Location loc = absent.getLoc(); |
| |
| if (absent.getType().isa<fir::BoxCharType>()) { |
| auto structTy = ty.cast<mlir::LLVM::LLVMStructType>(); |
| assert(!structTy.isOpaque() && !structTy.getBody().empty()); |
| auto undefStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, ty); |
| auto nullField = |
| rewriter.create<mlir::LLVM::NullOp>(loc, structTy.getBody()[0]); |
| mlir::MLIRContext *ctx = absent.getContext(); |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>( |
| absent, ty, undefStruct, nullField, c0); |
| } else { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(absent, ty); |
| } |
| return success(); |
| } |
| }; |
| |
| // Lower `fir.address_of` operation to `llvm.address_of` operation. |
| struct AddrOfOpConversion : public FIROpConversion<fir::AddrOfOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::AddrOfOp addr, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto ty = convertType(addr.getType()); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::AddressOfOp>( |
| addr, ty, addr.symbol().getRootReference().getValue()); |
| return success(); |
| } |
| }; |
| } // namespace |
| |
| /// Lookup the function to compute the memory size of this parametric derived |
| /// type. The size of the object may depend on the LEN type parameters of the |
| /// derived type. |
| static mlir::LLVM::LLVMFuncOp |
| getDependentTypeMemSizeFn(fir::RecordType recTy, fir::AllocaOp op, |
| mlir::ConversionPatternRewriter &rewriter) { |
| auto module = op->getParentOfType<mlir::ModuleOp>(); |
| std::string name = recTy.getName().str() + "P.mem.size"; |
| return module.lookupSymbol<mlir::LLVM::LLVMFuncOp>(name); |
| } |
| |
| namespace { |
| /// convert to LLVM IR dialect `alloca` |
| struct AllocaOpConversion : public FIROpConversion<fir::AllocaOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::AllocaOp alloc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::ValueRange operands = adaptor.getOperands(); |
| auto loc = alloc.getLoc(); |
| mlir::Type ity = lowerTy().indexType(); |
| unsigned i = 0; |
| mlir::Value size = genConstantIndex(loc, ity, rewriter, 1).getResult(); |
| mlir::Type ty = convertType(alloc.getType()); |
| mlir::Type resultTy = ty; |
| if (alloc.hasLenParams()) { |
| unsigned end = alloc.numLenParams(); |
| llvm::SmallVector<mlir::Value> lenParams; |
| for (; i < end; ++i) |
| lenParams.push_back(operands[i]); |
| mlir::Type scalarType = fir::unwrapSequenceType(alloc.getInType()); |
| if (auto chrTy = scalarType.dyn_cast<fir::CharacterType>()) { |
| fir::CharacterType rawCharTy = fir::CharacterType::getUnknownLen( |
| chrTy.getContext(), chrTy.getFKind()); |
| ty = mlir::LLVM::LLVMPointerType::get(convertType(rawCharTy)); |
| assert(end == 1); |
| size = integerCast(loc, rewriter, ity, lenParams[0]); |
| } else if (auto recTy = scalarType.dyn_cast<fir::RecordType>()) { |
| mlir::LLVM::LLVMFuncOp memSizeFn = |
| getDependentTypeMemSizeFn(recTy, alloc, rewriter); |
| if (!memSizeFn) |
| emitError(loc, "did not find allocation function"); |
| mlir::NamedAttribute attr = rewriter.getNamedAttr( |
| "callee", mlir::SymbolRefAttr::get(memSizeFn)); |
| auto call = rewriter.create<mlir::LLVM::CallOp>( |
| loc, ity, lenParams, llvm::ArrayRef<mlir::NamedAttribute>{attr}); |
| size = call.getResult(0); |
| ty = mlir::LLVM::LLVMPointerType::get( |
| mlir::IntegerType::get(alloc.getContext(), 8)); |
| } else { |
| return emitError(loc, "unexpected type ") |
| << scalarType << " with type parameters"; |
| } |
| } |
| if (alloc.hasShapeOperands()) { |
| mlir::Type allocEleTy = fir::unwrapRefType(alloc.getType()); |
| // Scale the size by constant factors encoded in the array type. |
| if (auto seqTy = allocEleTy.dyn_cast<fir::SequenceType>()) { |
| fir::SequenceType::Extent constSize = 1; |
| for (auto extent : seqTy.getShape()) |
| if (extent != fir::SequenceType::getUnknownExtent()) |
| constSize *= extent; |
| mlir::Value constVal{ |
| genConstantIndex(loc, ity, rewriter, constSize).getResult()}; |
| size = rewriter.create<mlir::LLVM::MulOp>(loc, ity, size, constVal); |
| } |
| unsigned end = operands.size(); |
| for (; i < end; ++i) |
| size = rewriter.create<mlir::LLVM::MulOp>( |
| loc, ity, size, integerCast(loc, rewriter, ity, operands[i])); |
| } |
| if (ty == resultTy) { |
| // Do not emit the bitcast if ty and resultTy are the same. |
| rewriter.replaceOpWithNewOp<mlir::LLVM::AllocaOp>(alloc, ty, size, |
| alloc->getAttrs()); |
| } else { |
| auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, ty, size, |
| alloc->getAttrs()); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(alloc, resultTy, al); |
| } |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_addr` to the sequence of operations to extract the first |
| /// element of the box. |
| struct BoxAddrOpConversion : public FIROpConversion<fir::BoxAddrOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxAddrOp boxaddr, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value a = adaptor.getOperands()[0]; |
| auto loc = boxaddr.getLoc(); |
| mlir::Type ty = convertType(boxaddr.getType()); |
| if (auto argty = boxaddr.val().getType().dyn_cast<fir::BoxType>()) { |
| rewriter.replaceOp(boxaddr, loadBaseAddrFromBox(loc, ty, a, rewriter)); |
| } else { |
| auto c0attr = rewriter.getI32IntegerAttr(0); |
| auto c0 = mlir::ArrayAttr::get(boxaddr.getContext(), c0attr); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>(boxaddr, ty, a, |
| c0); |
| } |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_dims` to a sequence of operations to extract the requested |
| /// dimension infomartion from the boxed value. |
| /// Result in a triple set of GEPs and loads. |
| struct BoxDimsOpConversion : public FIROpConversion<fir::BoxDimsOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxDimsOp boxdims, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| SmallVector<mlir::Type, 3> resultTypes = { |
| convertType(boxdims.getResult(0).getType()), |
| convertType(boxdims.getResult(1).getType()), |
| convertType(boxdims.getResult(2).getType()), |
| }; |
| auto results = |
| getDimsFromBox(boxdims.getLoc(), resultTypes, adaptor.getOperands()[0], |
| adaptor.getOperands()[1], rewriter); |
| rewriter.replaceOp(boxdims, results); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_elesize` to a sequence of operations ro extract the size of |
| /// an element in the boxed value. |
| struct BoxEleSizeOpConversion : public FIROpConversion<fir::BoxEleSizeOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxEleSizeOp boxelesz, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value a = adaptor.getOperands()[0]; |
| auto loc = boxelesz.getLoc(); |
| auto ty = convertType(boxelesz.getType()); |
| auto elemSize = getValueFromBox(loc, a, ty, rewriter, kElemLenPosInBox); |
| rewriter.replaceOp(boxelesz, elemSize); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_isalloc` to a sequence of operations to determine if the |
| /// boxed value was from an ALLOCATABLE entity. |
| struct BoxIsAllocOpConversion : public FIROpConversion<fir::BoxIsAllocOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxIsAllocOp boxisalloc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value box = adaptor.getOperands()[0]; |
| auto loc = boxisalloc.getLoc(); |
| mlir::Value check = |
| genBoxAttributeCheck(loc, box, rewriter, kAttrAllocatable); |
| rewriter.replaceOp(boxisalloc, check); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_isarray` to a sequence of operations to determine if the |
| /// boxed is an array. |
| struct BoxIsArrayOpConversion : public FIROpConversion<fir::BoxIsArrayOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxIsArrayOp boxisarray, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value a = adaptor.getOperands()[0]; |
| auto loc = boxisarray.getLoc(); |
| auto rank = |
| getValueFromBox(loc, a, rewriter.getI32Type(), rewriter, kRankPosInBox); |
| auto c0 = genConstantOffset(loc, rewriter, 0); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| boxisarray, mlir::LLVM::ICmpPredicate::ne, rank, c0); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_isptr` to a sequence of operations to determined if the |
| /// boxed value was from a POINTER entity. |
| struct BoxIsPtrOpConversion : public FIROpConversion<fir::BoxIsPtrOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxIsPtrOp boxisptr, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value box = adaptor.getOperands()[0]; |
| auto loc = boxisptr.getLoc(); |
| mlir::Value check = genBoxAttributeCheck(loc, box, rewriter, kAttrPointer); |
| rewriter.replaceOp(boxisptr, check); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.box_rank` to the sequence of operation to extract the rank from |
| /// the box. |
| struct BoxRankOpConversion : public FIROpConversion<fir::BoxRankOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxRankOp boxrank, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value a = adaptor.getOperands()[0]; |
| auto loc = boxrank.getLoc(); |
| mlir::Type ty = convertType(boxrank.getType()); |
| auto result = getValueFromBox(loc, a, ty, rewriter, kRankPosInBox); |
| rewriter.replaceOp(boxrank, result); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.string_lit` to LLVM IR dialect operation. |
| struct StringLitOpConversion : public FIROpConversion<fir::StringLitOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::StringLitOp constop, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto ty = convertType(constop.getType()); |
| auto attr = constop.getValue(); |
| if (attr.isa<mlir::StringAttr>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>(constop, ty, attr); |
| return success(); |
| } |
| |
| auto arr = attr.cast<mlir::ArrayAttr>(); |
| auto charTy = constop.getType().cast<fir::CharacterType>(); |
| unsigned bits = lowerTy().characterBitsize(charTy); |
| mlir::Type intTy = rewriter.getIntegerType(bits); |
| auto attrs = llvm::map_range( |
| arr.getValue(), [intTy, bits](mlir::Attribute attr) -> Attribute { |
| return mlir::IntegerAttr::get( |
| intTy, |
| attr.cast<mlir::IntegerAttr>().getValue().sextOrTrunc(bits)); |
| }); |
| mlir::Type vecType = mlir::VectorType::get(arr.size(), intTy); |
| auto denseAttr = mlir::DenseElementsAttr::get( |
| vecType.cast<mlir::ShapedType>(), llvm::to_vector<8>(attrs)); |
| rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>(constop, ty, |
| denseAttr); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.boxproc_host` operation. Extracts the host pointer from the |
| /// boxproc. |
| /// TODO: Part of supporting Fortran 2003 procedure pointers. |
| struct BoxProcHostOpConversion : public FIROpConversion<fir::BoxProcHostOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxProcHostOp boxprochost, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| boxprochost, "fir.boxproc_host codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.box_tdesc` to the sequence of operations to extract the type |
| /// descriptor from the box. |
| struct BoxTypeDescOpConversion : public FIROpConversion<fir::BoxTypeDescOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxTypeDescOp boxtypedesc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value box = adaptor.getOperands()[0]; |
| auto loc = boxtypedesc.getLoc(); |
| mlir::Type typeTy = |
| fir::getDescFieldTypeModel<kTypePosInBox>()(boxtypedesc.getContext()); |
| auto result = getValueFromBox(loc, box, typeTy, rewriter, kTypePosInBox); |
| auto typePtrTy = mlir::LLVM::LLVMPointerType::get(typeTy); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(boxtypedesc, typePtrTy, |
| result); |
| return success(); |
| } |
| }; |
| |
| // `fir.call` -> `llvm.call` |
| struct CallOpConversion : public FIROpConversion<fir::CallOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::CallOp call, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| SmallVector<mlir::Type> resultTys; |
| for (auto r : call.getResults()) |
| resultTys.push_back(convertType(r.getType())); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>( |
| call, resultTys, adaptor.getOperands(), call->getAttrs()); |
| return success(); |
| } |
| }; |
| |
| static mlir::Type getComplexEleTy(mlir::Type complex) { |
| if (auto cc = complex.dyn_cast<mlir::ComplexType>()) |
| return cc.getElementType(); |
| return complex.cast<fir::ComplexType>().getElementType(); |
| } |
| |
| /// Compare complex values |
| /// |
| /// Per 10.1, the only comparisons available are .EQ. (oeq) and .NE. (une). |
| /// |
| /// For completeness, all other comparison are done on the real component only. |
| struct CmpcOpConversion : public FIROpConversion<fir::CmpcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::CmpcOp cmp, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::ValueRange operands = adaptor.getOperands(); |
| mlir::MLIRContext *ctxt = cmp.getContext(); |
| mlir::Type eleTy = convertType(getComplexEleTy(cmp.lhs().getType())); |
| mlir::Type resTy = convertType(cmp.getType()); |
| mlir::Location loc = cmp.getLoc(); |
| auto pos0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0)); |
| SmallVector<mlir::Value, 2> rp{rewriter.create<mlir::LLVM::ExtractValueOp>( |
| loc, eleTy, operands[0], pos0), |
| rewriter.create<mlir::LLVM::ExtractValueOp>( |
| loc, eleTy, operands[1], pos0)}; |
| auto rcp = |
| rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, rp, cmp->getAttrs()); |
| auto pos1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1)); |
| SmallVector<mlir::Value, 2> ip{rewriter.create<mlir::LLVM::ExtractValueOp>( |
| loc, eleTy, operands[0], pos1), |
| rewriter.create<mlir::LLVM::ExtractValueOp>( |
| loc, eleTy, operands[1], pos1)}; |
| auto icp = |
| rewriter.create<mlir::LLVM::FCmpOp>(loc, resTy, ip, cmp->getAttrs()); |
| SmallVector<mlir::Value, 2> cp{rcp, icp}; |
| switch (cmp.getPredicate()) { |
| case mlir::arith::CmpFPredicate::OEQ: // .EQ. |
| rewriter.replaceOpWithNewOp<mlir::LLVM::AndOp>(cmp, resTy, cp); |
| break; |
| case mlir::arith::CmpFPredicate::UNE: // .NE. |
| rewriter.replaceOpWithNewOp<mlir::LLVM::OrOp>(cmp, resTy, cp); |
| break; |
| default: |
| rewriter.replaceOp(cmp, rcp.getResult()); |
| break; |
| } |
| return success(); |
| } |
| }; |
| |
| /// Lower complex constants |
| struct ConstcOpConversion : public FIROpConversion<fir::ConstcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::ConstcOp conc, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Location loc = conc.getLoc(); |
| mlir::MLIRContext *ctx = conc.getContext(); |
| mlir::Type ty = convertType(conc.getType()); |
| mlir::Type ety = convertType(getComplexEleTy(conc.getType())); |
| auto realFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getReal())); |
| auto realPart = |
| rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, realFloatAttr); |
| auto imFloatAttr = mlir::FloatAttr::get(ety, getValue(conc.getImaginary())); |
| auto imPart = |
| rewriter.create<mlir::LLVM::ConstantOp>(loc, ety, imFloatAttr); |
| auto realIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| auto imIndex = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); |
| auto undef = rewriter.create<mlir::LLVM::UndefOp>(loc, ty); |
| auto setReal = rewriter.create<mlir::LLVM::InsertValueOp>( |
| loc, ty, undef, realPart, realIndex); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(conc, ty, setReal, |
| imPart, imIndex); |
| return success(); |
| } |
| |
| inline APFloat getValue(mlir::Attribute attr) const { |
| return attr.cast<fir::RealAttr>().getValue(); |
| } |
| }; |
| |
| /// convert value of from-type to value of to-type |
| struct ConvertOpConversion : public FIROpConversion<fir::ConvertOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| static bool isFloatingPointTy(mlir::Type ty) { |
| return ty.isa<mlir::FloatType>(); |
| } |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::ConvertOp convert, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto fromTy = convertType(convert.value().getType()); |
| auto toTy = convertType(convert.res().getType()); |
| mlir::Value op0 = adaptor.getOperands()[0]; |
| if (fromTy == toTy) { |
| rewriter.replaceOp(convert, op0); |
| return success(); |
| } |
| auto loc = convert.getLoc(); |
| auto convertFpToFp = [&](mlir::Value val, unsigned fromBits, |
| unsigned toBits, mlir::Type toTy) -> mlir::Value { |
| if (fromBits == toBits) { |
| // TODO: Converting between two floating-point representations with the |
| // same bitwidth is not allowed for now. |
| mlir::emitError(loc, |
| "cannot implicitly convert between two floating-point " |
| "representations of the same bitwidth"); |
| return {}; |
| } |
| if (fromBits > toBits) |
| return rewriter.create<mlir::LLVM::FPTruncOp>(loc, toTy, val); |
| return rewriter.create<mlir::LLVM::FPExtOp>(loc, toTy, val); |
| }; |
| // Complex to complex conversion. |
| if (fir::isa_complex(convert.value().getType()) && |
| fir::isa_complex(convert.res().getType())) { |
| // Special case: handle the conversion of a complex such that both the |
| // real and imaginary parts are converted together. |
| auto zero = mlir::ArrayAttr::get(convert.getContext(), |
| rewriter.getI32IntegerAttr(0)); |
| auto one = mlir::ArrayAttr::get(convert.getContext(), |
| rewriter.getI32IntegerAttr(1)); |
| auto ty = convertType(getComplexEleTy(convert.value().getType())); |
| auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, zero); |
| auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, op0, one); |
| auto nt = convertType(getComplexEleTy(convert.res().getType())); |
| auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(ty); |
| auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(nt); |
| auto rc = convertFpToFp(rp, fromBits, toBits, nt); |
| auto ic = convertFpToFp(ip, fromBits, toBits, nt); |
| auto un = rewriter.create<mlir::LLVM::UndefOp>(loc, toTy); |
| auto i1 = |
| rewriter.create<mlir::LLVM::InsertValueOp>(loc, toTy, un, rc, zero); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(convert, toTy, i1, |
| ic, one); |
| return mlir::success(); |
| } |
| // Floating point to floating point conversion. |
| if (isFloatingPointTy(fromTy)) { |
| if (isFloatingPointTy(toTy)) { |
| auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy); |
| auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy); |
| auto v = convertFpToFp(op0, fromBits, toBits, toTy); |
| rewriter.replaceOp(convert, v); |
| return mlir::success(); |
| } |
| if (toTy.isa<mlir::IntegerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::FPToSIOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| } else if (fromTy.isa<mlir::IntegerType>()) { |
| // Integer to integer conversion. |
| if (toTy.isa<mlir::IntegerType>()) { |
| auto fromBits = mlir::LLVM::getPrimitiveTypeSizeInBits(fromTy); |
| auto toBits = mlir::LLVM::getPrimitiveTypeSizeInBits(toTy); |
| assert(fromBits != toBits); |
| if (fromBits > toBits) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::TruncOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| rewriter.replaceOpWithNewOp<mlir::LLVM::SExtOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| // Integer to floating point conversion. |
| if (isFloatingPointTy(toTy)) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::SIToFPOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| // Integer to pointer conversion. |
| if (toTy.isa<mlir::LLVM::LLVMPointerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::IntToPtrOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| } else if (fromTy.isa<mlir::LLVM::LLVMPointerType>()) { |
| // Pointer to integer conversion. |
| if (toTy.isa<mlir::IntegerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::PtrToIntOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| // Pointer to pointer conversion. |
| if (toTy.isa<mlir::LLVM::LLVMPointerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::BitcastOp>(convert, toTy, op0); |
| return mlir::success(); |
| } |
| } |
| return emitError(loc) << "cannot convert " << fromTy << " to " << toTy; |
| } |
| }; |
| |
| /// Lower `fir.dispatch` operation. A virtual call to a method in a dispatch |
| /// table. |
| struct DispatchOpConversion : public FIROpConversion<fir::DispatchOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::DispatchOp dispatch, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| dispatch, "fir.dispatch codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.dispatch_table` operation. The dispatch table for a Fortran |
| /// derived type. |
| struct DispatchTableOpConversion |
| : public FIROpConversion<fir::DispatchTableOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::DispatchTableOp dispTab, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| dispTab, "fir.dispatch_table codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.dt_entry` operation. An entry in a dispatch table; binds a |
| /// method-name to a function. |
| struct DTEntryOpConversion : public FIROpConversion<fir::DTEntryOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::DTEntryOp dtEnt, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| dtEnt, "fir.dt_entry codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.global_len` operation. |
| struct GlobalLenOpConversion : public FIROpConversion<fir::GlobalLenOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::GlobalLenOp globalLen, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| globalLen, "fir.global_len codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower fir.len_param_index |
| struct LenParamIndexOpConversion |
| : public FIROpConversion<fir::LenParamIndexOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| // FIXME: this should be specialized by the runtime target |
| mlir::LogicalResult |
| matchAndRewrite(fir::LenParamIndexOp lenp, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| lenp, "fir.len_param_index codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.gentypedesc` to a global constant. |
| struct GenTypeDescOpConversion : public FIROpConversion<fir::GenTypeDescOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::GenTypeDescOp gentypedesc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| gentypedesc, "fir.fir.gentypedesc codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Convert `fir.end` |
| struct FirEndOpConversion : public FIROpConversion<fir::FirEndOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::FirEndOp firEnd, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| firEnd, "fir.end codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Lower `fir.has_value` operation to `llvm.return` operation. |
| struct HasValueOpConversion : public FIROpConversion<fir::HasValueOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::HasValueOp op, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, adaptor.getOperands()); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.global` operation to `llvm.global` operation. |
| /// `fir.insert_on_range` operations are replaced with constant dense attribute |
| /// if they are applied on the full range. |
| struct GlobalOpConversion : public FIROpConversion<fir::GlobalOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::GlobalOp global, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto tyAttr = convertType(global.getType()); |
| if (global.getType().isa<fir::BoxType>()) |
| tyAttr = tyAttr.cast<mlir::LLVM::LLVMPointerType>().getElementType(); |
| auto loc = global.getLoc(); |
| mlir::Attribute initAttr{}; |
| if (global.initVal()) |
| initAttr = global.initVal().getValue(); |
| auto linkage = convertLinkage(global.linkName()); |
| auto isConst = global.constant().hasValue(); |
| auto g = rewriter.create<mlir::LLVM::GlobalOp>( |
| loc, tyAttr, isConst, linkage, global.sym_name(), initAttr); |
| auto &gr = g.getInitializerRegion(); |
| rewriter.inlineRegionBefore(global.region(), gr, gr.end()); |
| if (!gr.empty()) { |
| // Replace insert_on_range with a constant dense attribute if the |
| // initialization is on the full range. |
| auto insertOnRangeOps = gr.front().getOps<fir::InsertOnRangeOp>(); |
| for (auto insertOp : insertOnRangeOps) { |
| if (isFullRange(insertOp.coor(), insertOp.getType())) { |
| auto seqTyAttr = convertType(insertOp.getType()); |
| auto *op = insertOp.val().getDefiningOp(); |
| auto constant = mlir::dyn_cast<mlir::arith::ConstantOp>(op); |
| if (!constant) { |
| auto convertOp = mlir::dyn_cast<fir::ConvertOp>(op); |
| if (!convertOp) |
| continue; |
| constant = cast<mlir::arith::ConstantOp>( |
| convertOp.value().getDefiningOp()); |
| } |
| mlir::Type vecType = mlir::VectorType::get( |
| insertOp.getType().getShape(), constant.getType()); |
| auto denseAttr = mlir::DenseElementsAttr::get( |
| vecType.cast<ShapedType>(), constant.value()); |
| rewriter.setInsertionPointAfter(insertOp); |
| rewriter.replaceOpWithNewOp<mlir::arith::ConstantOp>( |
| insertOp, seqTyAttr, denseAttr); |
| } |
| } |
| } |
| rewriter.eraseOp(global); |
| return success(); |
| } |
| |
| bool isFullRange(mlir::DenseIntElementsAttr indexes, |
| fir::SequenceType seqTy) const { |
| auto extents = seqTy.getShape(); |
| if (indexes.size() / 2 != static_cast<int64_t>(extents.size())) |
| return false; |
| auto cur_index = indexes.value_begin<int64_t>(); |
| for (unsigned i = 0; i < indexes.size(); i += 2) { |
| if (*(cur_index++) != 0) |
| return false; |
| if (*(cur_index++) != extents[i / 2] - 1) |
| return false; |
| } |
| return true; |
| } |
| |
| // TODO: String comparaison should be avoided. Replace linkName with an |
| // enumeration. |
| mlir::LLVM::Linkage convertLinkage(Optional<StringRef> optLinkage) const { |
| if (optLinkage.hasValue()) { |
| auto name = optLinkage.getValue(); |
| if (name == "internal") |
| return mlir::LLVM::Linkage::Internal; |
| if (name == "linkonce") |
| return mlir::LLVM::Linkage::Linkonce; |
| if (name == "common") |
| return mlir::LLVM::Linkage::Common; |
| if (name == "weak") |
| return mlir::LLVM::Linkage::Weak; |
| } |
| return mlir::LLVM::Linkage::External; |
| } |
| }; |
| |
| void genCondBrOp(mlir::Location loc, mlir::Value cmp, mlir::Block *dest, |
| Optional<mlir::ValueRange> destOps, |
| mlir::ConversionPatternRewriter &rewriter, |
| mlir::Block *newBlock) { |
| if (destOps.hasValue()) |
| rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, destOps.getValue(), |
| newBlock, mlir::ValueRange()); |
| else |
| rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, dest, newBlock); |
| } |
| |
| template <typename A, typename B> |
| void genBrOp(A caseOp, mlir::Block *dest, Optional<B> destOps, |
| mlir::ConversionPatternRewriter &rewriter) { |
| if (destOps.hasValue()) |
| rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, destOps.getValue(), |
| dest); |
| else |
| rewriter.replaceOpWithNewOp<mlir::LLVM::BrOp>(caseOp, llvm::None, dest); |
| } |
| |
| void genCaseLadderStep(mlir::Location loc, mlir::Value cmp, mlir::Block *dest, |
| Optional<mlir::ValueRange> destOps, |
| mlir::ConversionPatternRewriter &rewriter) { |
| auto *thisBlock = rewriter.getInsertionBlock(); |
| auto *newBlock = createBlock(rewriter, dest); |
| rewriter.setInsertionPointToEnd(thisBlock); |
| genCondBrOp(loc, cmp, dest, destOps, rewriter, newBlock); |
| rewriter.setInsertionPointToEnd(newBlock); |
| } |
| |
| /// Conversion of `fir.select_case` |
| /// |
| /// The `fir.select_case` operation is converted to a if-then-else ladder. |
| /// Depending on the case condition type, one or several comparison and |
| /// conditional branching can be generated. |
| /// |
| /// A a point value case such as `case(4)`, a lower bound case such as |
| /// `case(5:)` or an upper bound case such as `case(:3)` are converted to a |
| /// simple comparison between the selector value and the constant value in the |
| /// case. The block associated with the case condition is then executed if |
| /// the comparison succeed otherwise it branch to the next block with the |
| /// comparison for the the next case conditon. |
| /// |
| /// A closed interval case condition such as `case(7:10)` is converted with a |
| /// first comparison and conditional branching for the lower bound. If |
| /// successful, it branch to a second block with the comparison for the |
| /// upper bound in the same case condition. |
| /// |
| /// TODO: lowering of CHARACTER type cases is not handled yet. |
| struct SelectCaseOpConversion : public FIROpConversion<fir::SelectCaseOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::SelectCaseOp caseOp, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| unsigned conds = caseOp.getNumConditions(); |
| llvm::ArrayRef<mlir::Attribute> cases = caseOp.getCases().getValue(); |
| // Type can be CHARACTER, INTEGER, or LOGICAL (C1145) |
| LLVM_ATTRIBUTE_UNUSED auto ty = caseOp.getSelector().getType(); |
| if (ty.isa<fir::CharacterType>()) |
| return rewriter.notifyMatchFailure(caseOp, |
| "conversion of fir.select_case with " |
| "character type not implemented yet"); |
| mlir::Value selector = caseOp.getSelector(adaptor.getOperands()); |
| auto loc = caseOp.getLoc(); |
| for (unsigned t = 0; t != conds; ++t) { |
| mlir::Block *dest = caseOp.getSuccessor(t); |
| llvm::Optional<mlir::ValueRange> destOps = |
| caseOp.getSuccessorOperands(adaptor.getOperands(), t); |
| llvm::Optional<mlir::ValueRange> cmpOps = |
| *caseOp.getCompareOperands(adaptor.getOperands(), t); |
| mlir::Value caseArg = *(cmpOps.getValue().begin()); |
| mlir::Attribute attr = cases[t]; |
| if (attr.isa<fir::PointIntervalAttr>()) { |
| auto cmp = rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::eq, selector, caseArg); |
| genCaseLadderStep(loc, cmp, dest, destOps, rewriter); |
| continue; |
| } |
| if (attr.isa<fir::LowerBoundAttr>()) { |
| auto cmp = rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector); |
| genCaseLadderStep(loc, cmp, dest, destOps, rewriter); |
| continue; |
| } |
| if (attr.isa<fir::UpperBoundAttr>()) { |
| auto cmp = rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg); |
| genCaseLadderStep(loc, cmp, dest, destOps, rewriter); |
| continue; |
| } |
| if (attr.isa<fir::ClosedIntervalAttr>()) { |
| auto cmp = rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::sle, caseArg, selector); |
| auto *thisBlock = rewriter.getInsertionBlock(); |
| auto *newBlock1 = createBlock(rewriter, dest); |
| auto *newBlock2 = createBlock(rewriter, dest); |
| rewriter.setInsertionPointToEnd(thisBlock); |
| rewriter.create<mlir::LLVM::CondBrOp>(loc, cmp, newBlock1, newBlock2); |
| rewriter.setInsertionPointToEnd(newBlock1); |
| mlir::Value caseArg0 = *(cmpOps.getValue().begin() + 1); |
| auto cmp0 = rewriter.create<mlir::LLVM::ICmpOp>( |
| loc, mlir::LLVM::ICmpPredicate::sle, selector, caseArg0); |
| genCondBrOp(loc, cmp0, dest, destOps, rewriter, newBlock2); |
| rewriter.setInsertionPointToEnd(newBlock2); |
| continue; |
| } |
| assert(attr.isa<mlir::UnitAttr>()); |
| assert((t + 1 == conds) && "unit must be last"); |
| genBrOp(caseOp, dest, destOps, rewriter); |
| } |
| return success(); |
| } |
| }; |
| |
| template <typename OP> |
| void selectMatchAndRewrite(fir::LLVMTypeConverter &lowering, OP select, |
| typename OP::Adaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) { |
| unsigned conds = select.getNumConditions(); |
| auto cases = select.getCases().getValue(); |
| mlir::Value selector = adaptor.selector(); |
| auto loc = select.getLoc(); |
| assert(conds > 0 && "select must have cases"); |
| |
| llvm::SmallVector<mlir::Block *> destinations; |
| llvm::SmallVector<mlir::ValueRange> destinationsOperands; |
| mlir::Block *defaultDestination; |
| mlir::ValueRange defaultOperands; |
| llvm::SmallVector<int32_t> caseValues; |
| |
| for (unsigned t = 0; t != conds; ++t) { |
| mlir::Block *dest = select.getSuccessor(t); |
| auto destOps = select.getSuccessorOperands(adaptor.getOperands(), t); |
| const mlir::Attribute &attr = cases[t]; |
| if (auto intAttr = attr.template dyn_cast<mlir::IntegerAttr>()) { |
| destinations.push_back(dest); |
| destinationsOperands.push_back(destOps.hasValue() ? *destOps |
| : ValueRange()); |
| caseValues.push_back(intAttr.getInt()); |
| continue; |
| } |
| assert(attr.template dyn_cast_or_null<mlir::UnitAttr>()); |
| assert((t + 1 == conds) && "unit must be last"); |
| defaultDestination = dest; |
| defaultOperands = destOps.hasValue() ? *destOps : ValueRange(); |
| } |
| |
| // LLVM::SwitchOp takes a i32 type for the selector. |
| if (select.getSelector().getType() != rewriter.getI32Type()) |
| selector = |
| rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), selector); |
| |
| rewriter.replaceOpWithNewOp<mlir::LLVM::SwitchOp>( |
| select, selector, |
| /*defaultDestination=*/defaultDestination, |
| /*defaultOperands=*/defaultOperands, |
| /*caseValues=*/caseValues, |
| /*caseDestinations=*/destinations, |
| /*caseOperands=*/destinationsOperands, |
| /*branchWeights=*/ArrayRef<int32_t>()); |
| } |
| |
| /// conversion of fir::SelectOp to an if-then-else ladder |
| struct SelectOpConversion : public FIROpConversion<fir::SelectOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::SelectOp op, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| selectMatchAndRewrite<fir::SelectOp>(lowerTy(), op, adaptor, rewriter); |
| return success(); |
| } |
| }; |
| |
| /// `fir.load` --> `llvm.load` |
| struct LoadOpConversion : public FIROpConversion<fir::LoadOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::LoadOp load, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // fir.box is a special case because it is considered as an ssa values in |
| // fir, but it is lowered as a pointer to a descriptor. So fir.ref<fir.box> |
| // and fir.box end up being the same llvm types and loading a |
| // fir.ref<fir.box> is actually a no op in LLVM. |
| if (load.getType().isa<fir::BoxType>()) { |
| rewriter.replaceOp(load, adaptor.getOperands()[0]); |
| } else { |
| mlir::Type ty = convertType(load.getType()); |
| ArrayRef<NamedAttribute> at = load->getAttrs(); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::LoadOp>( |
| load, ty, adaptor.getOperands(), at); |
| } |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.no_reassoc` to LLVM IR dialect. |
| /// TODO: how do we want to enforce this in LLVM-IR? Can we manipulate the fast |
| /// math flags? |
| struct NoReassocOpConversion : public FIROpConversion<fir::NoReassocOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::NoReassocOp noreassoc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| rewriter.replaceOp(noreassoc, adaptor.getOperands()[0]); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.select_type` to LLVM IR dialect. |
| struct SelectTypeOpConversion : public FIROpConversion<fir::SelectTypeOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::SelectTypeOp select, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| select, "fir.select_type codegen is not implemented yet"); |
| } |
| }; |
| |
| /// conversion of fir::SelectRankOp to an if-then-else ladder |
| struct SelectRankOpConversion : public FIROpConversion<fir::SelectRankOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::SelectRankOp op, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| selectMatchAndRewrite<fir::SelectRankOp>(lowerTy(), op, adaptor, rewriter); |
| return success(); |
| } |
| }; |
| |
| /// `fir.store` --> `llvm.store` |
| struct StoreOpConversion : public FIROpConversion<fir::StoreOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::StoreOp store, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| if (store.value().getType().isa<fir::BoxType>()) { |
| // fir.box value is actually in memory, load it first before storing it. |
| mlir::Location loc = store.getLoc(); |
| mlir::Type boxPtrTy = adaptor.getOperands()[0].getType(); |
| auto val = rewriter.create<mlir::LLVM::LoadOp>( |
| loc, boxPtrTy.cast<mlir::LLVM::LLVMPointerType>().getElementType(), |
| adaptor.getOperands()[0]); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>( |
| store, val, adaptor.getOperands()[1]); |
| } else { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::StoreOp>( |
| store, adaptor.getOperands()[0], adaptor.getOperands()[1]); |
| } |
| return success(); |
| } |
| }; |
| |
| /// convert to LLVM IR dialect `undef` |
| struct UndefOpConversion : public FIROpConversion<fir::UndefOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::UndefOp undef, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::UndefOp>( |
| undef, convertType(undef.getType())); |
| return success(); |
| } |
| }; |
| |
| /// `fir.unreachable` --> `llvm.unreachable` |
| struct UnreachableOpConversion : public FIROpConversion<fir::UnreachableOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::UnreachableOp unreach, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::UnreachableOp>(unreach); |
| return success(); |
| } |
| }; |
| |
| struct ZeroOpConversion : public FIROpConversion<fir::ZeroOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::ZeroOp zero, OpAdaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto ty = convertType(zero.getType()); |
| if (ty.isa<mlir::LLVM::LLVMPointerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::NullOp>(zero, ty); |
| } else if (ty.isa<mlir::IntegerType>()) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
| zero, ty, mlir::IntegerAttr::get(zero.getType(), 0)); |
| } else if (mlir::LLVM::isCompatibleFloatingPointType(ty)) { |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ConstantOp>( |
| zero, ty, mlir::FloatAttr::get(zero.getType(), 0.0)); |
| } else { |
| // TODO: create ConstantAggregateZero for FIR aggregate/array types. |
| return rewriter.notifyMatchFailure( |
| zero, |
| "conversion of fir.zero with aggregate type not implemented yet"); |
| } |
| return success(); |
| } |
| }; |
| |
| /// Common base class for embox to descriptor conversion. |
| template <typename OP> |
| struct EmboxCommonConversion : public FIROpConversion<OP> { |
| using FIROpConversion<OP>::FIROpConversion; |
| |
| // Find the LLVMFuncOp in whose entry block the alloca should be inserted. |
| // The order to find the LLVMFuncOp is as follows: |
| // 1. The parent operation of the current block if it is a LLVMFuncOp. |
| // 2. The first ancestor that is a LLVMFuncOp. |
| mlir::LLVM::LLVMFuncOp |
| getFuncForAllocaInsert(mlir::ConversionPatternRewriter &rewriter) const { |
| mlir::Operation *parentOp = rewriter.getInsertionBlock()->getParentOp(); |
| return mlir::isa<mlir::LLVM::LLVMFuncOp>(parentOp) |
| ? mlir::cast<mlir::LLVM::LLVMFuncOp>(parentOp) |
| : parentOp->getParentOfType<mlir::LLVM::LLVMFuncOp>(); |
| } |
| |
| // Generate an alloca of size 1 and type \p toTy. |
| mlir::LLVM::AllocaOp |
| genAllocaWithType(mlir::Location loc, mlir::Type toTy, unsigned alignment, |
| mlir::ConversionPatternRewriter &rewriter) const { |
| auto thisPt = rewriter.saveInsertionPoint(); |
| mlir::LLVM::LLVMFuncOp func = getFuncForAllocaInsert(rewriter); |
| rewriter.setInsertionPointToStart(&func.front()); |
| auto size = this->genI32Constant(loc, rewriter, 1); |
| auto al = rewriter.create<mlir::LLVM::AllocaOp>(loc, toTy, size, alignment); |
| rewriter.restoreInsertionPoint(thisPt); |
| return al; |
| } |
| |
| static int getCFIAttr(fir::BoxType boxTy) { |
| auto eleTy = boxTy.getEleTy(); |
| if (eleTy.isa<fir::PointerType>()) |
| return CFI_attribute_pointer; |
| if (eleTy.isa<fir::HeapType>()) |
| return CFI_attribute_allocatable; |
| return CFI_attribute_other; |
| } |
| |
| static fir::RecordType unwrapIfDerived(fir::BoxType boxTy) { |
| return fir::unwrapSequenceType(fir::dyn_cast_ptrOrBoxEleTy(boxTy)) |
| .template dyn_cast<fir::RecordType>(); |
| } |
| static bool isDerivedTypeWithLenParams(fir::BoxType boxTy) { |
| auto recTy = unwrapIfDerived(boxTy); |
| return recTy && recTy.getNumLenParams() > 0; |
| } |
| static bool isDerivedType(fir::BoxType boxTy) { |
| return unwrapIfDerived(boxTy) != nullptr; |
| } |
| |
| // Get the element size and CFI type code of the boxed value. |
| std::tuple<mlir::Value, mlir::Value> getSizeAndTypeCode( |
| mlir::Location loc, mlir::ConversionPatternRewriter &rewriter, |
| mlir::Type boxEleTy, mlir::ValueRange lenParams = {}) const { |
| auto doInteger = |
| [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> { |
| int typeCode = fir::integerBitsToTypeCode(width); |
| return {this->genConstantOffset(loc, rewriter, width / 8), |
| this->genConstantOffset(loc, rewriter, typeCode)}; |
| }; |
| auto doLogical = |
| [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> { |
| int typeCode = fir::logicalBitsToTypeCode(width); |
| return {this->genConstantOffset(loc, rewriter, width / 8), |
| this->genConstantOffset(loc, rewriter, typeCode)}; |
| }; |
| auto doFloat = [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> { |
| int typeCode = fir::realBitsToTypeCode(width); |
| return {this->genConstantOffset(loc, rewriter, width / 8), |
| this->genConstantOffset(loc, rewriter, typeCode)}; |
| }; |
| auto doComplex = |
| [&](unsigned width) -> std::tuple<mlir::Value, mlir::Value> { |
| auto typeCode = fir::complexBitsToTypeCode(width); |
| return {this->genConstantOffset(loc, rewriter, width / 8 * 2), |
| this->genConstantOffset(loc, rewriter, typeCode)}; |
| }; |
| auto doCharacter = |
| [&](unsigned width, |
| mlir::Value len) -> std::tuple<mlir::Value, mlir::Value> { |
| auto typeCode = fir::characterBitsToTypeCode(width); |
| auto typeCodeVal = this->genConstantOffset(loc, rewriter, typeCode); |
| if (width == 8) |
| return {len, typeCodeVal}; |
| auto byteWidth = this->genConstantOffset(loc, rewriter, width / 8); |
| auto i64Ty = mlir::IntegerType::get(&this->lowerTy().getContext(), 64); |
| auto size = |
| rewriter.create<mlir::LLVM::MulOp>(loc, i64Ty, byteWidth, len); |
| return {size, typeCodeVal}; |
| }; |
| auto getKindMap = [&]() -> fir::KindMapping & { |
| return this->lowerTy().getKindMap(); |
| }; |
| // Pointer-like types. |
| if (auto eleTy = fir::dyn_cast_ptrEleTy(boxEleTy)) |
| boxEleTy = eleTy; |
| // Integer types. |
| if (fir::isa_integer(boxEleTy)) { |
| if (auto ty = boxEleTy.dyn_cast<mlir::IntegerType>()) |
| return doInteger(ty.getWidth()); |
| auto ty = boxEleTy.cast<fir::IntegerType>(); |
| return doInteger(getKindMap().getIntegerBitsize(ty.getFKind())); |
| } |
| // Floating point types. |
| if (fir::isa_real(boxEleTy)) { |
| if (auto ty = boxEleTy.dyn_cast<mlir::FloatType>()) |
| return doFloat(ty.getWidth()); |
| auto ty = boxEleTy.cast<fir::RealType>(); |
| return doFloat(getKindMap().getRealBitsize(ty.getFKind())); |
| } |
| // Complex types. |
| if (fir::isa_complex(boxEleTy)) { |
| if (auto ty = boxEleTy.dyn_cast<mlir::ComplexType>()) |
| return doComplex( |
| ty.getElementType().cast<mlir::FloatType>().getWidth()); |
| auto ty = boxEleTy.cast<fir::ComplexType>(); |
| return doComplex(getKindMap().getRealBitsize(ty.getFKind())); |
| } |
| // Character types. |
| if (auto ty = boxEleTy.dyn_cast<fir::CharacterType>()) { |
| auto charWidth = getKindMap().getCharacterBitsize(ty.getFKind()); |
| if (ty.getLen() != fir::CharacterType::unknownLen()) { |
| auto len = this->genConstantOffset(loc, rewriter, ty.getLen()); |
| return doCharacter(charWidth, len); |
| } |
| assert(!lenParams.empty()); |
| return doCharacter(charWidth, lenParams.back()); |
| } |
| // Logical type. |
| if (auto ty = boxEleTy.dyn_cast<fir::LogicalType>()) |
| return doLogical(getKindMap().getLogicalBitsize(ty.getFKind())); |
| // Array types. |
| if (auto seqTy = boxEleTy.dyn_cast<fir::SequenceType>()) |
| return getSizeAndTypeCode(loc, rewriter, seqTy.getEleTy(), lenParams); |
| // Derived-type types. |
| if (boxEleTy.isa<fir::RecordType>()) { |
| auto ptrTy = mlir::LLVM::LLVMPointerType::get( |
| this->lowerTy().convertType(boxEleTy)); |
| auto nullPtr = rewriter.create<mlir::LLVM::NullOp>(loc, ptrTy); |
| auto one = |
| genConstantIndex(loc, this->lowerTy().offsetType(), rewriter, 1); |
| auto gep = rewriter.create<mlir::LLVM::GEPOp>( |
| loc, ptrTy, mlir::ValueRange{nullPtr, one}); |
| auto eleSize = rewriter.create<mlir::LLVM::PtrToIntOp>( |
| loc, this->lowerTy().indexType(), gep); |
| return {eleSize, |
| this->genConstantOffset(loc, rewriter, fir::derivedToTypeCode())}; |
| } |
| // Reference type. |
| if (fir::isa_ref_type(boxEleTy)) { |
| // FIXME: use the target pointer size rather than sizeof(void*) |
| return {this->genConstantOffset(loc, rewriter, sizeof(void *)), |
| this->genConstantOffset(loc, rewriter, CFI_type_cptr)}; |
| } |
| fir::emitFatalError(loc, "unhandled type in fir.box code generation"); |
| } |
| |
| /// Basic pattern to write a field in the descriptor |
| mlir::Value insertField(mlir::ConversionPatternRewriter &rewriter, |
| mlir::Location loc, mlir::Value dest, |
| ArrayRef<unsigned> fldIndexes, mlir::Value value, |
| bool bitcast = false) const { |
| auto boxTy = dest.getType(); |
| auto fldTy = this->getBoxEleTy(boxTy, fldIndexes); |
| if (bitcast) |
| value = rewriter.create<mlir::LLVM::BitcastOp>(loc, fldTy, value); |
| else |
| value = this->integerCast(loc, rewriter, fldTy, value); |
| SmallVector<mlir::Attribute, 2> attrs; |
| for (auto i : fldIndexes) |
| attrs.push_back(rewriter.getI32IntegerAttr(i)); |
| auto indexesAttr = mlir::ArrayAttr::get(rewriter.getContext(), attrs); |
| return rewriter.create<mlir::LLVM::InsertValueOp>(loc, boxTy, dest, value, |
| indexesAttr); |
| } |
| |
| inline mlir::Value |
| insertBaseAddress(mlir::ConversionPatternRewriter &rewriter, |
| mlir::Location loc, mlir::Value dest, |
| mlir::Value base) const { |
| return insertField(rewriter, loc, dest, {0}, base, /*bitCast=*/true); |
| } |
| |
| /// Get the address of the type descriptor global variable that was created by |
| /// lowering for derived type \p recType. |
| template <typename BOX> |
| mlir::Value |
| getTypeDescriptor(BOX box, mlir::ConversionPatternRewriter &rewriter, |
| mlir::Location loc, fir::RecordType recType) const { |
| std::string name = recType.getLoweredName(); |
| auto module = box->template getParentOfType<mlir::ModuleOp>(); |
| if (auto global = module.template lookupSymbol<fir::GlobalOp>(name)) { |
| auto ty = mlir::LLVM::LLVMPointerType::get( |
| this->lowerTy().convertType(global.getType())); |
| return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty, |
| global.sym_name()); |
| } |
| if (auto global = |
| module.template lookupSymbol<mlir::LLVM::GlobalOp>(name)) { |
| // The global may have already been translated to LLVM. |
| auto ty = mlir::LLVM::LLVMPointerType::get(global.getType()); |
| return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty, |
| global.sym_name()); |
| } |
| // The global does not exist in the current translation unit, but may be |
| // defined elsewhere (e.g., type defined in a module). |
| // For now, create a extern_weak symbol (will become nullptr if unresolved) |
| // to support generating code without the front-end generated symbols. |
| // These could be made available_externally to require the symbols to be |
| // defined elsewhere and to cause link-time failure otherwise. |
| auto i8Ty = rewriter.getIntegerType(8); |
| mlir::OpBuilder modBuilder(module.getBodyRegion()); |
| // TODO: The symbol should be lowered to constant in lowering, they are read |
| // only. |
| modBuilder.create<mlir::LLVM::GlobalOp>(loc, i8Ty, /*isConstant=*/false, |
| mlir::LLVM::Linkage::ExternWeak, |
| name, mlir::Attribute{}); |
| auto ty = mlir::LLVM::LLVMPointerType::get(i8Ty); |
| return rewriter.create<mlir::LLVM::AddressOfOp>(loc, ty, name); |
| } |
| |
| template <typename BOX> |
| std::tuple<fir::BoxType, mlir::Value, mlir::Value> |
| consDescriptorPrefix(BOX box, mlir::ConversionPatternRewriter &rewriter, |
| unsigned rank, mlir::ValueRange lenParams) const { |
| auto loc = box.getLoc(); |
| auto boxTy = box.getType().template dyn_cast<fir::BoxType>(); |
| auto convTy = this->lowerTy().convertBoxType(boxTy, rank); |
| auto llvmBoxPtrTy = convTy.template cast<mlir::LLVM::LLVMPointerType>(); |
| auto llvmBoxTy = llvmBoxPtrTy.getElementType(); |
| mlir::Value descriptor = |
| rewriter.create<mlir::LLVM::UndefOp>(loc, llvmBoxTy); |
| |
| llvm::SmallVector<mlir::Value> typeparams = lenParams; |
| if constexpr (!std::is_same_v<BOX, fir::EmboxOp>) { |
| if (!box.substr().empty() && fir::hasDynamicSize(boxTy.getEleTy())) |
| typeparams.push_back(box.substr()[1]); |
| } |
| |
| // Write each of the fields with the appropriate values |
| auto [eleSize, cfiTy] = |
| getSizeAndTypeCode(loc, rewriter, boxTy.getEleTy(), typeparams); |
| descriptor = |
| insertField(rewriter, loc, descriptor, {kElemLenPosInBox}, eleSize); |
| descriptor = insertField(rewriter, loc, descriptor, {kVersionPosInBox}, |
| this->genI32Constant(loc, rewriter, CFI_VERSION)); |
| descriptor = insertField(rewriter, loc, descriptor, {kRankPosInBox}, |
| this->genI32Constant(loc, rewriter, rank)); |
| descriptor = insertField(rewriter, loc, descriptor, {kTypePosInBox}, cfiTy); |
| descriptor = |
| insertField(rewriter, loc, descriptor, {kAttributePosInBox}, |
| this->genI32Constant(loc, rewriter, getCFIAttr(boxTy))); |
| const bool hasAddendum = isDerivedType(boxTy); |
| descriptor = |
| insertField(rewriter, loc, descriptor, {kF18AddendumPosInBox}, |
| this->genI32Constant(loc, rewriter, hasAddendum ? 1 : 0)); |
| |
| if (hasAddendum) { |
| auto isArray = |
| fir::dyn_cast_ptrOrBoxEleTy(boxTy).template isa<fir::SequenceType>(); |
| unsigned typeDescFieldId = isArray ? kOptTypePtrPosInBox : kDimsPosInBox; |
| auto typeDesc = |
| getTypeDescriptor(box, rewriter, loc, unwrapIfDerived(boxTy)); |
| descriptor = |
| insertField(rewriter, loc, descriptor, {typeDescFieldId}, typeDesc, |
| /*bitCast=*/true); |
| } |
| |
| return {boxTy, descriptor, eleSize}; |
| } |
| |
| /// If the embox is not in a globalOp body, allocate storage for the box; |
| /// store the value inside and return the generated alloca. Return the input |
| /// value otherwise. |
| mlir::Value |
| placeInMemoryIfNotGlobalInit(mlir::ConversionPatternRewriter &rewriter, |
| mlir::Location loc, mlir::Value boxValue) const { |
| auto *thisBlock = rewriter.getInsertionBlock(); |
| if (thisBlock && mlir::isa<mlir::LLVM::GlobalOp>(thisBlock->getParentOp())) |
| return boxValue; |
| auto boxPtrTy = mlir::LLVM::LLVMPointerType::get(boxValue.getType()); |
| auto alloca = genAllocaWithType(loc, boxPtrTy, defaultAlign, rewriter); |
| rewriter.create<mlir::LLVM::StoreOp>(loc, boxValue, alloca); |
| return alloca; |
| } |
| }; |
| |
| /// Create a generic box on a memory reference. This conversions lowers the |
| /// abstract box to the appropriate, initialized descriptor. |
| struct EmboxOpConversion : public EmboxCommonConversion<fir::EmboxOp> { |
| using EmboxCommonConversion::EmboxCommonConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::EmboxOp embox, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| assert(!embox.getShape() && "There should be no dims on this embox op"); |
| auto [boxTy, dest, eleSize] = |
| consDescriptorPrefix(embox, rewriter, /*rank=*/0, |
| /*lenParams=*/adaptor.getOperands().drop_front(1)); |
| dest = insertBaseAddress(rewriter, embox.getLoc(), dest, |
| adaptor.getOperands()[0]); |
| if (isDerivedTypeWithLenParams(boxTy)) |
| return rewriter.notifyMatchFailure( |
| embox, "fir.embox codegen of derived with length parameters not " |
| "implemented yet"); |
| auto result = placeInMemoryIfNotGlobalInit(rewriter, embox.getLoc(), dest); |
| rewriter.replaceOp(embox, result); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.emboxproc` operation. Creates a procedure box. |
| /// TODO: Part of supporting Fortran 2003 procedure pointers. |
| struct EmboxProcOpConversion : public FIROpConversion<fir::EmboxProcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::EmboxProcOp emboxproc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| emboxproc, "fir.emboxproc codegen is not implemented yet"); |
| } |
| }; |
| |
| |
| // Code shared between insert_value and extract_value Ops. |
| struct ValueOpCommon { |
| // Translate the arguments pertaining to any multidimensional array to |
| // row-major order for LLVM-IR. |
| static void toRowMajor(SmallVectorImpl<mlir::Attribute> &attrs, |
| mlir::Type ty) { |
| assert(ty && "type is null"); |
| const auto end = attrs.size(); |
| for (std::remove_const_t<decltype(end)> i = 0; i < end; ++i) { |
| if (auto seq = ty.dyn_cast<mlir::LLVM::LLVMArrayType>()) { |
| const auto dim = getDimension(seq); |
| if (dim > 1) { |
| auto ub = std::min(i + dim, end); |
| std::reverse(attrs.begin() + i, attrs.begin() + ub); |
| i += dim - 1; |
| } |
| ty = getArrayElementType(seq); |
| } else if (auto st = ty.dyn_cast<mlir::LLVM::LLVMStructType>()) { |
| ty = st.getBody()[attrs[i].cast<mlir::IntegerAttr>().getInt()]; |
| } else { |
| llvm_unreachable("index into invalid type"); |
| } |
| } |
| } |
| |
| static llvm::SmallVector<mlir::Attribute> |
| collectIndices(mlir::ConversionPatternRewriter &rewriter, |
| mlir::ArrayAttr arrAttr) { |
| llvm::SmallVector<mlir::Attribute> attrs; |
| for (auto i = arrAttr.begin(), e = arrAttr.end(); i != e; ++i) { |
| if (i->isa<mlir::IntegerAttr>()) { |
| attrs.push_back(*i); |
| } else { |
| auto fieldName = i->cast<mlir::StringAttr>().getValue(); |
| ++i; |
| auto ty = i->cast<mlir::TypeAttr>().getValue(); |
| auto index = ty.cast<fir::RecordType>().getFieldIndex(fieldName); |
| attrs.push_back(mlir::IntegerAttr::get(rewriter.getI32Type(), index)); |
| } |
| } |
| return attrs; |
| } |
| |
| private: |
| static unsigned getDimension(mlir::LLVM::LLVMArrayType ty) { |
| unsigned result = 1; |
| for (auto eleTy = ty.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>(); |
| eleTy; |
| eleTy = eleTy.getElementType().dyn_cast<mlir::LLVM::LLVMArrayType>()) |
| ++result; |
| return result; |
| } |
| |
| static mlir::Type getArrayElementType(mlir::LLVM::LLVMArrayType ty) { |
| auto eleTy = ty.getElementType(); |
| while (auto arrTy = eleTy.dyn_cast<mlir::LLVM::LLVMArrayType>()) |
| eleTy = arrTy.getElementType(); |
| return eleTy; |
| } |
| }; |
| |
| /// Extract a subobject value from an ssa-value of aggregate type |
| struct ExtractValueOpConversion |
| : public FIROpAndTypeConversion<fir::ExtractValueOp>, |
| public ValueOpCommon { |
| using FIROpAndTypeConversion::FIROpAndTypeConversion; |
| |
| mlir::LogicalResult |
| doRewrite(fir::ExtractValueOp extractVal, mlir::Type ty, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto attrs = collectIndices(rewriter, extractVal.coor()); |
| toRowMajor(attrs, adaptor.getOperands()[0].getType()); |
| auto position = mlir::ArrayAttr::get(extractVal.getContext(), attrs); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ExtractValueOp>( |
| extractVal, ty, adaptor.getOperands()[0], position); |
| return success(); |
| } |
| }; |
| |
| /// InsertValue is the generalized instruction for the composition of new |
| /// aggregate type values. |
| struct InsertValueOpConversion |
| : public FIROpAndTypeConversion<fir::InsertValueOp>, |
| public ValueOpCommon { |
| using FIROpAndTypeConversion::FIROpAndTypeConversion; |
| |
| mlir::LogicalResult |
| doRewrite(fir::InsertValueOp insertVal, mlir::Type ty, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto attrs = collectIndices(rewriter, insertVal.coor()); |
| toRowMajor(attrs, adaptor.getOperands()[0].getType()); |
| auto position = mlir::ArrayAttr::get(insertVal.getContext(), attrs); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>( |
| insertVal, ty, adaptor.getOperands()[0], adaptor.getOperands()[1], |
| position); |
| return success(); |
| } |
| }; |
| |
| /// InsertOnRange inserts a value into a sequence over a range of offsets. |
| struct InsertOnRangeOpConversion |
| : public FIROpAndTypeConversion<fir::InsertOnRangeOp> { |
| using FIROpAndTypeConversion::FIROpAndTypeConversion; |
| |
| // Increments an array of subscripts in a row major fasion. |
| void incrementSubscripts(const SmallVector<uint64_t> &dims, |
| SmallVector<uint64_t> &subscripts) const { |
| for (size_t i = dims.size(); i > 0; --i) { |
| if (++subscripts[i - 1] < dims[i - 1]) { |
| return; |
| } |
| subscripts[i - 1] = 0; |
| } |
| } |
| |
| mlir::LogicalResult |
| doRewrite(fir::InsertOnRangeOp range, mlir::Type ty, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| |
| llvm::SmallVector<uint64_t> dims; |
| auto type = adaptor.getOperands()[0].getType(); |
| |
| // Iteratively extract the array dimensions from the type. |
| while (auto t = type.dyn_cast<mlir::LLVM::LLVMArrayType>()) { |
| dims.push_back(t.getNumElements()); |
| type = t.getElementType(); |
| } |
| |
| SmallVector<uint64_t> lBounds; |
| SmallVector<uint64_t> uBounds; |
| |
| // Unzip the upper and lower bound and convert to a row major format. |
| mlir::DenseIntElementsAttr coor = range.coor(); |
| auto reversedCoor = llvm::reverse(coor.getValues<int64_t>()); |
| for (auto i = reversedCoor.begin(), e = reversedCoor.end(); i != e; ++i) { |
| uBounds.push_back(*i++); |
| lBounds.push_back(*i); |
| } |
| |
| auto &subscripts = lBounds; |
| auto loc = range.getLoc(); |
| mlir::Value lastOp = adaptor.getOperands()[0]; |
| mlir::Value insertVal = adaptor.getOperands()[1]; |
| |
| auto i64Ty = rewriter.getI64Type(); |
| while (subscripts != uBounds) { |
| // Convert uint64_t's to Attribute's. |
| SmallVector<mlir::Attribute> subscriptAttrs; |
| for (const auto &subscript : subscripts) |
| subscriptAttrs.push_back(IntegerAttr::get(i64Ty, subscript)); |
| lastOp = rewriter.create<mlir::LLVM::InsertValueOp>( |
| loc, ty, lastOp, insertVal, |
| ArrayAttr::get(range.getContext(), subscriptAttrs)); |
| |
| incrementSubscripts(dims, subscripts); |
| } |
| |
| // Convert uint64_t's to Attribute's. |
| SmallVector<mlir::Attribute> subscriptAttrs; |
| for (const auto &subscript : subscripts) |
| subscriptAttrs.push_back( |
| IntegerAttr::get(rewriter.getI64Type(), subscript)); |
| mlir::ArrayRef<mlir::Attribute> arrayRef(subscriptAttrs); |
| |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>( |
| range, ty, lastOp, insertVal, |
| ArrayAttr::get(range.getContext(), arrayRef)); |
| |
| return success(); |
| } |
| }; |
| |
| // |
| // Primitive operations on Complex types |
| // |
| |
| /// Generate inline code for complex addition/subtraction |
| template <typename LLVMOP, typename OPTY> |
| mlir::LLVM::InsertValueOp complexSum(OPTY sumop, mlir::ValueRange opnds, |
| mlir::ConversionPatternRewriter &rewriter, |
| fir::LLVMTypeConverter &lowering) { |
| mlir::Value a = opnds[0]; |
| mlir::Value b = opnds[1]; |
| auto loc = sumop.getLoc(); |
| auto ctx = sumop.getContext(); |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); |
| mlir::Type eleTy = lowering.convertType(getComplexEleTy(sumop.getType())); |
| mlir::Type ty = lowering.convertType(sumop.getType()); |
| auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0); |
| auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1); |
| auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0); |
| auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1); |
| auto rx = rewriter.create<LLVMOP>(loc, eleTy, x0, x1); |
| auto ry = rewriter.create<LLVMOP>(loc, eleTy, y0, y1); |
| auto r0 = rewriter.create<mlir::LLVM::UndefOp>(loc, ty); |
| auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r0, rx, c0); |
| return rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ry, c1); |
| } |
| |
| struct AddcOpConversion : public FIROpConversion<fir::AddcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::AddcOp addc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // given: (x + iy) + (x' + iy') |
| // result: (x + x') + i(y + y') |
| auto r = complexSum<mlir::LLVM::FAddOp>(addc, adaptor.getOperands(), |
| rewriter, lowerTy()); |
| rewriter.replaceOp(addc, r.getResult()); |
| return success(); |
| } |
| }; |
| |
| struct SubcOpConversion : public FIROpConversion<fir::SubcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::SubcOp subc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // given: (x + iy) - (x' + iy') |
| // result: (x - x') + i(y - y') |
| auto r = complexSum<mlir::LLVM::FSubOp>(subc, adaptor.getOperands(), |
| rewriter, lowerTy()); |
| rewriter.replaceOp(subc, r.getResult()); |
| return success(); |
| } |
| }; |
| |
| /// Inlined complex multiply |
| struct MulcOpConversion : public FIROpConversion<fir::MulcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::MulcOp mulc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // TODO: Can we use a call to __muldc3 ? |
| // given: (x + iy) * (x' + iy') |
| // result: (xx'-yy')+i(xy'+yx') |
| mlir::Value a = adaptor.getOperands()[0]; |
| mlir::Value b = adaptor.getOperands()[1]; |
| auto loc = mulc.getLoc(); |
| auto *ctx = mulc.getContext(); |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); |
| mlir::Type eleTy = convertType(getComplexEleTy(mulc.getType())); |
| mlir::Type ty = convertType(mulc.getType()); |
| auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0); |
| auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1); |
| auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0); |
| auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1); |
| auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1); |
| auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1); |
| auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1); |
| auto ri = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xy, yx); |
| auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1); |
| auto rr = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, xx, yy); |
| auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty); |
| auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0); |
| auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1); |
| rewriter.replaceOp(mulc, r0.getResult()); |
| return success(); |
| } |
| }; |
| |
| /// Inlined complex division |
| struct DivcOpConversion : public FIROpConversion<fir::DivcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::DivcOp divc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // TODO: Can we use a call to __divdc3 instead? |
| // Just generate inline code for now. |
| // given: (x + iy) / (x' + iy') |
| // result: ((xx'+yy')/d) + i((yx'-xy')/d) where d = x'x' + y'y' |
| mlir::Value a = adaptor.getOperands()[0]; |
| mlir::Value b = adaptor.getOperands()[1]; |
| auto loc = divc.getLoc(); |
| auto *ctx = divc.getContext(); |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); |
| mlir::Type eleTy = convertType(getComplexEleTy(divc.getType())); |
| mlir::Type ty = convertType(divc.getType()); |
| auto x0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c0); |
| auto y0 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, a, c1); |
| auto x1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c0); |
| auto y1 = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, b, c1); |
| auto xx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, x1); |
| auto x1x1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x1, x1); |
| auto yx = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, x1); |
| auto xy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, x0, y1); |
| auto yy = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y0, y1); |
| auto y1y1 = rewriter.create<mlir::LLVM::FMulOp>(loc, eleTy, y1, y1); |
| auto d = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, x1x1, y1y1); |
| auto rrn = rewriter.create<mlir::LLVM::FAddOp>(loc, eleTy, xx, yy); |
| auto rin = rewriter.create<mlir::LLVM::FSubOp>(loc, eleTy, yx, xy); |
| auto rr = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rrn, d); |
| auto ri = rewriter.create<mlir::LLVM::FDivOp>(loc, eleTy, rin, d); |
| auto ra = rewriter.create<mlir::LLVM::UndefOp>(loc, ty); |
| auto r1 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, ra, rr, c0); |
| auto r0 = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, r1, ri, c1); |
| rewriter.replaceOp(divc, r0.getResult()); |
| return success(); |
| } |
| }; |
| |
| /// Inlined complex negation |
| struct NegcOpConversion : public FIROpConversion<fir::NegcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::NegcOp neg, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| // given: -(x + iy) |
| // result: -x - iy |
| auto *ctxt = neg.getContext(); |
| auto eleTy = convertType(getComplexEleTy(neg.getType())); |
| auto ty = convertType(neg.getType()); |
| auto loc = neg.getLoc(); |
| mlir::Value o0 = adaptor.getOperands()[0]; |
| auto c0 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(0)); |
| auto c1 = mlir::ArrayAttr::get(ctxt, rewriter.getI32IntegerAttr(1)); |
| auto rp = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c0); |
| auto ip = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, eleTy, o0, c1); |
| auto nrp = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, rp); |
| auto nip = rewriter.create<mlir::LLVM::FNegOp>(loc, eleTy, ip); |
| auto r = rewriter.create<mlir::LLVM::InsertValueOp>(loc, ty, o0, nrp, c0); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>(neg, ty, r, nip, c1); |
| return success(); |
| } |
| }; |
| |
| /// Conversion pattern for operation that must be dead. The information in these |
| /// operations is used by other operation. At this point they should not have |
| /// anymore uses. |
| /// These operations are normally dead after the pre-codegen pass. |
| template <typename FromOp> |
| struct MustBeDeadConversion : public FIROpConversion<FromOp> { |
| explicit MustBeDeadConversion(fir::LLVMTypeConverter &lowering) |
| : FIROpConversion<FromOp>(lowering) {} |
| using OpAdaptor = typename FromOp::Adaptor; |
| |
| mlir::LogicalResult |
| matchAndRewrite(FromOp op, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const final { |
| if (!op->getUses().empty()) |
| return rewriter.notifyMatchFailure(op, "op must be dead"); |
| rewriter.eraseOp(op); |
| return success(); |
| } |
| }; |
| |
| struct ShapeOpConversion : public MustBeDeadConversion<fir::ShapeOp> { |
| using MustBeDeadConversion::MustBeDeadConversion; |
| }; |
| |
| struct ShapeShiftOpConversion : public MustBeDeadConversion<fir::ShapeShiftOp> { |
| using MustBeDeadConversion::MustBeDeadConversion; |
| }; |
| |
| struct ShiftOpConversion : public MustBeDeadConversion<fir::ShiftOp> { |
| using MustBeDeadConversion::MustBeDeadConversion; |
| }; |
| |
| struct SliceOpConversion : public MustBeDeadConversion<fir::SliceOp> { |
| using MustBeDeadConversion::MustBeDeadConversion; |
| }; |
| |
| /// `fir.is_present` --> |
| /// ``` |
| /// %0 = llvm.mlir.constant(0 : i64) |
| /// %1 = llvm.ptrtoint %0 |
| /// %2 = llvm.icmp "ne" %1, %0 : i64 |
| /// ``` |
| struct IsPresentOpConversion : public FIROpConversion<fir::IsPresentOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::IsPresentOp isPresent, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Type idxTy = lowerTy().indexType(); |
| mlir::Location loc = isPresent.getLoc(); |
| auto ptr = adaptor.getOperands()[0]; |
| |
| if (isPresent.val().getType().isa<fir::BoxCharType>()) { |
| auto structTy = ptr.getType().cast<mlir::LLVM::LLVMStructType>(); |
| assert(!structTy.isOpaque() && !structTy.getBody().empty()); |
| |
| mlir::Type ty = structTy.getBody()[0]; |
| mlir::MLIRContext *ctx = isPresent.getContext(); |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| ptr = rewriter.create<mlir::LLVM::ExtractValueOp>(loc, ty, ptr, c0); |
| } |
| mlir::LLVM::ConstantOp c0 = |
| genConstantIndex(isPresent.getLoc(), idxTy, rewriter, 0); |
| auto addr = rewriter.create<mlir::LLVM::PtrToIntOp>(loc, idxTy, ptr); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::ICmpOp>( |
| isPresent, mlir::LLVM::ICmpPredicate::ne, addr, c0); |
| |
| return success(); |
| } |
| }; |
| |
| /// Convert `!fir.emboxchar<!fir.char<KIND, ?>, #n>` into a sequence of |
| /// instructions that generate `!llvm.struct<(ptr<ik>, i64)>`. The 1st element |
| /// in this struct is a pointer. Its type is determined from `KIND`. The 2nd |
| /// element is the length of the character buffer (`#n`). |
| struct EmboxCharOpConversion : public FIROpConversion<fir::EmboxCharOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::EmboxCharOp emboxChar, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::ValueRange operands = adaptor.getOperands(); |
| MLIRContext *ctx = emboxChar.getContext(); |
| |
| mlir::Value charBuffer = operands[0]; |
| mlir::Value charBufferLen = operands[1]; |
| |
| mlir::Location loc = emboxChar.getLoc(); |
| mlir::Type llvmStructTy = convertType(emboxChar.getType()); |
| auto llvmStruct = rewriter.create<mlir::LLVM::UndefOp>(loc, llvmStructTy); |
| |
| mlir::Type lenTy = |
| llvmStructTy.cast<mlir::LLVM::LLVMStructType>().getBody()[1]; |
| mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, charBufferLen); |
| |
| auto c0 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(0)); |
| auto c1 = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(1)); |
| auto insertBufferOp = rewriter.create<mlir::LLVM::InsertValueOp>( |
| loc, llvmStructTy, llvmStruct, charBuffer, c0); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::InsertValueOp>( |
| emboxChar, llvmStructTy, insertBufferOp, lenAfterCast, c1); |
| |
| return success(); |
| } |
| }; |
| |
| /// Construct an `llvm.extractvalue` instruction. It will return value at |
| /// element \p x from \p tuple. |
| mlir::LLVM::ExtractValueOp |
| genExtractValueWithIndex(mlir::Location loc, mlir::Value tuple, mlir::Type ty, |
| mlir::ConversionPatternRewriter &rewriter, |
| mlir::MLIRContext *ctx, int x) { |
| auto cx = mlir::ArrayAttr::get(ctx, rewriter.getI32IntegerAttr(x)); |
| auto xty = ty.cast<mlir::LLVM::LLVMStructType>().getBody()[x]; |
| return rewriter.create<mlir::LLVM::ExtractValueOp>(loc, xty, tuple, cx); |
| } |
| |
| /// Convert `!fir.boxchar_len` to `!llvm.extractvalue` for the 2nd part of the |
| /// boxchar. |
| struct BoxCharLenOpConversion : public FIROpConversion<fir::BoxCharLenOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::BoxCharLenOp boxCharLen, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| mlir::Value boxChar = adaptor.getOperands()[0]; |
| mlir::Location loc = boxChar.getLoc(); |
| mlir::MLIRContext *ctx = boxChar.getContext(); |
| mlir::Type returnValTy = boxCharLen.getResult().getType(); |
| |
| constexpr int boxcharLenIdx = 1; |
| mlir::LLVM::ExtractValueOp len = genExtractValueWithIndex( |
| loc, boxChar, boxChar.getType(), rewriter, ctx, boxcharLenIdx); |
| mlir::Value lenAfterCast = integerCast(loc, rewriter, returnValTy, len); |
| rewriter.replaceOp(boxCharLen, lenAfterCast); |
| |
| return success(); |
| } |
| }; |
| |
| /// Convert `fir.unboxchar` into two `llvm.extractvalue` instructions. One for |
| /// the character buffer and one for the buffer length. |
| struct UnboxCharOpConversion : public FIROpConversion<fir::UnboxCharOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::UnboxCharOp unboxchar, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| MLIRContext *ctx = unboxchar.getContext(); |
| |
| mlir::Type lenTy = convertType(unboxchar.getType(1)); |
| mlir::Value tuple = adaptor.getOperands()[0]; |
| mlir::Type tupleTy = tuple.getType(); |
| |
| mlir::Location loc = unboxchar.getLoc(); |
| mlir::Value ptrToBuffer = |
| genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 0); |
| |
| mlir::LLVM::ExtractValueOp len = |
| genExtractValueWithIndex(loc, tuple, tupleTy, rewriter, ctx, 1); |
| mlir::Value lenAfterCast = integerCast(loc, rewriter, lenTy, len); |
| |
| rewriter.replaceOp(unboxchar, |
| ArrayRef<mlir::Value>{ptrToBuffer, lenAfterCast}); |
| return success(); |
| } |
| }; |
| |
| /// Lower `fir.unboxproc` operation. Unbox a procedure box value, yielding its |
| /// components. |
| /// TODO: Part of supporting Fortran 2003 procedure pointers. |
| struct UnboxProcOpConversion : public FIROpConversion<fir::UnboxProcOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| mlir::LogicalResult |
| matchAndRewrite(fir::UnboxProcOp unboxproc, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| return rewriter.notifyMatchFailure( |
| unboxproc, "fir.unboxproc codegen is not implemented yet"); |
| } |
| }; |
| |
| /// Convert `fir.field_index`. The conversion depends on whether the size of |
| /// the record is static or dynamic. |
| struct FieldIndexOpConversion : public FIROpConversion<fir::FieldIndexOp> { |
| using FIROpConversion::FIROpConversion; |
| |
| // NB: most field references should be resolved by this point |
| mlir::LogicalResult |
| matchAndRewrite(fir::FieldIndexOp field, OpAdaptor adaptor, |
| mlir::ConversionPatternRewriter &rewriter) const override { |
| auto recTy = field.on_type().cast<fir::RecordType>(); |
| unsigned index = recTy.getFieldIndex(field.field_id()); |
| |
| if (!fir::hasDynamicSize(recTy)) { |
| // Derived type has compile-time constant layout. Return index of the |
| // component type in the parent type (to be used in GEP). |
| rewriter.replaceOp(field, mlir::ValueRange{genConstantOffset( |
| field.getLoc(), rewriter, index)}); |
| return success(); |
| } |
| |
| // Derived type has compile-time constant layout. Call the compiler |
| // generated function to determine the byte offset of the field at runtime. |
| // This returns a non-constant. |
| FlatSymbolRefAttr symAttr = mlir::SymbolRefAttr::get( |
| field.getContext(), getOffsetMethodName(recTy, field.field_id())); |
| NamedAttribute callAttr = rewriter.getNamedAttr("callee", symAttr); |
| NamedAttribute fieldAttr = rewriter.getNamedAttr( |
| "field", mlir::IntegerAttr::get(lowerTy().indexType(), index)); |
| rewriter.replaceOpWithNewOp<mlir::LLVM::CallOp>( |
| field, lowerTy().offsetType(), adaptor.getOperands(), |
| llvm::ArrayRef<mlir::NamedAttribute>{callAttr, fieldAttr}); |
| return success(); |
| } |
| |
| // Re-Construct the name of the compiler generated method that calculates the |
| // offset |
| inline static std::string getOffsetMethodName(fir::RecordType recTy, |
| llvm::StringRef field) { |
| return recTy.getName().str() + "P." + field.str() + ".offset"; |
| } |
| }; |
| |
| } // namespace |
| |
| namespace { |
| /// Convert FIR dialect to LLVM dialect |
| /// |
| /// This pass lowers all FIR dialect operations to LLVM IR dialect. An |
| /// MLIR pass is used to lower residual Std dialect to LLVM IR dialect. |
| /// |
| /// This pass is not complete yet. We are upstreaming it in small patches. |
| class FIRToLLVMLowering : public fir::FIRToLLVMLoweringBase<FIRToLLVMLowering> { |
| public: |
| mlir::ModuleOp getModule() { return getOperation(); } |
| |
| void runOnOperation() override final { |
| auto mod = getModule(); |
| if (!forcedTargetTriple.empty()) { |
| fir::setTargetTriple(mod, forcedTargetTriple); |
| } |
| |
| auto *context = getModule().getContext(); |
| fir::LLVMTypeConverter typeConverter{getModule()}; |
| mlir::OwningRewritePatternList pattern(context); |
| pattern.insert< |
| AbsentOpConversion, AddcOpConversion, AddrOfOpConversion, |
| AllocaOpConversion, BoxAddrOpConversion, BoxCharLenOpConversion, |
| BoxDimsOpConversion, BoxEleSizeOpConversion, BoxIsAllocOpConversion, |
| BoxIsArrayOpConversion, BoxIsPtrOpConversion, BoxProcHostOpConversion, |
| BoxRankOpConversion, BoxTypeDescOpConversion, CallOpConversion, |
| CmpcOpConversion, ConstcOpConversion, ConvertOpConversion, |
| DispatchOpConversion, DispatchTableOpConversion, DTEntryOpConversion, |
| DivcOpConversion, EmboxOpConversion, EmboxCharOpConversion, |
| EmboxProcOpConversion, ExtractValueOpConversion, FieldIndexOpConversion, |
| FirEndOpConversion, HasValueOpConversion, GenTypeDescOpConversion, |
| GlobalLenOpConversion, GlobalOpConversion, InsertOnRangeOpConversion, |
| InsertValueOpConversion, IsPresentOpConversion, |
| LenParamIndexOpConversion, LoadOpConversion, NegcOpConversion, |
| NoReassocOpConversion, MulcOpConversion, SelectCaseOpConversion, |
| SelectOpConversion, SelectRankOpConversion, SelectTypeOpConversion, |
| ShapeOpConversion, ShapeShiftOpConversion, ShiftOpConversion, |
| SliceOpConversion, StoreOpConversion, StringLitOpConversion, |
| SubcOpConversion, UnboxCharOpConversion, UnboxProcOpConversion, |
| UndefOpConversion, UnreachableOpConversion, ZeroOpConversion>( |
| typeConverter); |
| mlir::populateStdToLLVMConversionPatterns(typeConverter, pattern); |
| mlir::arith::populateArithmeticToLLVMConversionPatterns(typeConverter, |
| pattern); |
| mlir::ConversionTarget target{*context}; |
| target.addLegalDialect<mlir::LLVM::LLVMDialect>(); |
| |
| // required NOPs for applying a full conversion |
| target.addLegalOp<mlir::ModuleOp>(); |
| |
| // apply the patterns |
| if (mlir::failed(mlir::applyFullConversion(getModule(), target, |
| std::move(pattern)))) { |
| signalPassFailure(); |
| } |
| } |
| }; |
| } // namespace |
| |
| std::unique_ptr<mlir::Pass> fir::createFIRToLLVMPass() { |
| return std::make_unique<FIRToLLVMLowering>(); |
| } |