blob: 8d792011a6c8afc3664bf065f6e50727ffe4ef6b [file] [log] [blame]
//===-- runtime/assign.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Runtime/assign.h"
#include "derived.h"
#include "stat.h"
#include "terminator.h"
#include "type-info.h"
#include "flang/Runtime/descriptor.h"
namespace Fortran::runtime {
static void DoScalarDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special) {
bool toIsDesc{special.IsArgDescriptor(0)};
bool fromIsDesc{special.IsArgDescriptor(1)};
if (toIsDesc) {
if (fromIsDesc) {
auto *p{
special.GetProc<void (*)(const Descriptor &, const Descriptor &)>()};
p(to, from);
} else {
auto *p{special.GetProc<void (*)(const Descriptor &, void *)>()};
p(to, from.raw().base_addr);
}
} else {
if (fromIsDesc) {
auto *p{special.GetProc<void (*)(void *, const Descriptor &)>()};
p(to.raw().base_addr, from);
} else {
auto *p{special.GetProc<void (*)(void *, void *)>()};
p(to.raw().base_addr, from.raw().base_addr);
}
}
}
static void DoElementalDefinedAssignment(const Descriptor &to,
const Descriptor &from, const typeInfo::SpecialBinding &special,
std::size_t toElements, SubscriptValue toAt[], SubscriptValue fromAt[]) {
StaticDescriptor<maxRank, true, 8 /*?*/> statDesc[2];
Descriptor &toElementDesc{statDesc[0].descriptor()};
Descriptor &fromElementDesc{statDesc[1].descriptor()};
toElementDesc = to;
toElementDesc.raw().attribute = CFI_attribute_pointer;
toElementDesc.raw().rank = 0;
fromElementDesc = from;
fromElementDesc.raw().attribute = CFI_attribute_pointer;
fromElementDesc.raw().rank = 0;
for (std::size_t j{0}; j < toElements;
++j, to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
toElementDesc.set_base_addr(to.Element<char>(toAt));
fromElementDesc.set_base_addr(from.Element<char>(fromAt));
DoScalarDefinedAssignment(toElementDesc, fromElementDesc, special);
}
}
void Assign(Descriptor &to, const Descriptor &from, Terminator &terminator) {
DescriptorAddendum *toAddendum{to.Addendum()};
const typeInfo::DerivedType *toDerived{
toAddendum ? toAddendum->derivedType() : nullptr};
const DescriptorAddendum *fromAddendum{from.Addendum()};
const typeInfo::DerivedType *fromDerived{
fromAddendum ? fromAddendum->derivedType() : nullptr};
bool wasJustAllocated{false};
if (to.IsAllocatable()) {
std::size_t lenParms{fromDerived ? fromDerived->LenParameters() : 0};
if (to.IsAllocated()) {
// Top-level assignments to allocatable variables (*not* components)
// may first deallocate existing content if there's about to be a
// change in type or shape; see F'2018 10.2.1.3(3).
bool deallocate{false};
if (to.type() != from.type()) {
deallocate = true;
} else if (toDerived != fromDerived) {
deallocate = true;
} else {
if (toAddendum) {
// Distinct LEN parameters? Deallocate
for (std::size_t j{0}; j < lenParms; ++j) {
if (toAddendum->LenParameterValue(j) !=
fromAddendum->LenParameterValue(j)) {
deallocate = true;
break;
}
}
}
if (from.rank() > 0) {
// Distinct shape? Deallocate
int rank{to.rank()};
for (int j{0}; j < rank; ++j) {
if (to.GetDimension(j).Extent() != from.GetDimension(j).Extent()) {
deallocate = true;
break;
}
}
}
}
if (deallocate) {
to.Destroy(true /*finalize*/);
}
} else if (to.rank() != from.rank()) {
terminator.Crash("Assign: mismatched ranks (%d != %d) in assignment to "
"unallocated allocatable",
to.rank(), from.rank());
}
if (!to.IsAllocated()) {
to.raw().type = from.raw().type;
to.raw().elem_len = from.ElementBytes();
if (toAddendum) {
toDerived = fromDerived;
toAddendum->set_derivedType(toDerived);
for (std::size_t j{0}; j < lenParms; ++j) {
toAddendum->SetLenParameterValue(
j, fromAddendum->LenParameterValue(j));
}
}
// subtle: leave bounds in place when "from" is scalar (10.2.1.3(3))
int rank{from.rank()};
auto stride{static_cast<SubscriptValue>(to.ElementBytes())};
for (int j{0}; j < rank; ++j) {
auto &toDim{to.GetDimension(j)};
const auto &fromDim{from.GetDimension(j)};
toDim.SetBounds(fromDim.LowerBound(), fromDim.UpperBound());
toDim.SetByteStride(stride);
stride *= toDim.Extent();
}
ReturnError(terminator, to.Allocate());
if (fromDerived && !fromDerived->noInitializationNeeded()) {
ReturnError(terminator, Initialize(to, *toDerived, terminator));
}
wasJustAllocated = true;
}
}
SubscriptValue toAt[maxRank];
to.GetLowerBounds(toAt);
// Scalar expansion of the RHS is implied by using the same empty
// subscript values on each (seemingly) elemental reference into
// "from".
SubscriptValue fromAt[maxRank];
from.GetLowerBounds(fromAt);
std::size_t toElements{to.Elements()};
if (from.rank() > 0 && toElements != from.Elements()) {
terminator.Crash("Assign: mismatching element counts in array assignment "
"(to %zd, from %zd)",
toElements, from.Elements());
}
if (to.type() != from.type()) {
terminator.Crash("Assign: mismatching types (to code %d != from code %d)",
to.type().raw(), from.type().raw());
}
std::size_t elementBytes{to.ElementBytes()};
if (elementBytes != from.ElementBytes()) {
terminator.Crash(
"Assign: mismatching element sizes (to %zd bytes != from %zd bytes)",
elementBytes, from.ElementBytes());
}
if (toDerived) { // Derived type assignment
// Check for defined assignment type-bound procedures (10.2.1.4-5)
if (to.rank() == 0) {
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ScalarAssignment)}) {
return DoScalarDefinedAssignment(to, from, *special);
}
}
if (const auto *special{toDerived->FindSpecialBinding(
typeInfo::SpecialBinding::Which::ElementalAssignment)}) {
return DoElementalDefinedAssignment(
to, from, *special, toElements, toAt, fromAt);
}
// Derived type intrinsic assignment, which is componentwise and elementwise
// for all components, including parent components (10.2.1.2-3).
// The target is first finalized if still necessary (7.5.6.3(1))
if (!wasJustAllocated && !toDerived->noFinalizationNeeded()) {
Finalize(to, *toDerived);
}
// Copy the data components (incl. the parent) first.
const Descriptor &componentDesc{toDerived->component()};
std::size_t numComponents{componentDesc.Elements()};
for (std::size_t k{0}; k < numComponents; ++k) {
const auto &comp{
*componentDesc.ZeroBasedIndexedElement<typeInfo::Component>(
k)}; // TODO: exploit contiguity here
switch (comp.genre()) {
case typeInfo::Component::Genre::Data:
if (comp.category() == TypeCategory::Derived) {
StaticDescriptor<maxRank, true, 10 /*?*/> statDesc[2];
Descriptor &toCompDesc{statDesc[0].descriptor()};
Descriptor &fromCompDesc{statDesc[1].descriptor()};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
comp.CreatePointerDescriptor(toCompDesc, to, terminator, toAt);
comp.CreatePointerDescriptor(
fromCompDesc, from, terminator, fromAt);
Assign(toCompDesc, fromCompDesc, terminator);
}
} else { // Component has intrinsic type; simply copy raw bytes
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
}
break;
case typeInfo::Component::Genre::Pointer: {
std::size_t componentByteSize{comp.SizeInBytes(to)};
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + comp.offset(),
from.Element<const char>(fromAt) + comp.offset(),
componentByteSize);
}
} break;
case typeInfo::Component::Genre::Allocatable:
case typeInfo::Component::Genre::Automatic:
for (std::size_t j{0}; j < toElements; ++j,
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
auto *toDesc{reinterpret_cast<Descriptor *>(
to.Element<char>(toAt) + comp.offset())};
const auto *fromDesc{reinterpret_cast<const Descriptor *>(
from.Element<char>(fromAt) + comp.offset())};
if (toDesc->IsAllocatable()) {
if (toDesc->IsAllocated()) {
// Allocatable components of the LHS are unconditionally
// deallocated before assignment (F'2018 10.2.1.3(13)(1)),
// unlike a "top-level" assignment to a variable, where
// deallocation is optional.
// TODO: Consider skipping this step and deferring the
// deallocation to the recursive activation of Assign(),
// which might be able to avoid deallocation/reallocation
// when the existing allocation can be reoccupied.
toDesc->Destroy(false /*already finalized*/);
}
if (!fromDesc->IsAllocated()) {
continue; // F'2018 10.2.1.3(13)(2)
}
}
Assign(*toDesc, *fromDesc, terminator);
}
break;
}
}
// Copy procedure pointer components
const Descriptor &procPtrDesc{toDerived->procPtr()};
std::size_t numProcPtrs{procPtrDesc.Elements()};
for (std::size_t k{0}; k < numProcPtrs; ++k) {
const auto &procPtr{
*procPtrDesc.ZeroBasedIndexedElement<typeInfo::ProcPtrComponent>(k)};
for (std::size_t j{0}; j < toElements; ++j, to.IncrementSubscripts(toAt),
from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt) + procPtr.offset,
from.Element<const char>(fromAt) + procPtr.offset,
sizeof(typeInfo::ProcedurePointer));
}
}
} else { // intrinsic type, intrinsic assignment
if (to.rank() == from.rank() && to.IsContiguous() && from.IsContiguous()) {
// Everything is contiguous; do a single big copy
std::memmove(
to.raw().base_addr, from.raw().base_addr, toElements * elementBytes);
} else { // elemental copies
for (std::size_t n{toElements}; n-- > 0;
to.IncrementSubscripts(toAt), from.IncrementSubscripts(fromAt)) {
std::memmove(to.Element<char>(toAt), from.Element<const char>(fromAt),
elementBytes);
}
}
}
}
extern "C" {
void RTNAME(Assign)(Descriptor &to, const Descriptor &from,
const char *sourceFile, int sourceLine) {
Terminator terminator{sourceFile, sourceLine};
Assign(to, from, terminator);
}
} // extern "C"
} // namespace Fortran::runtime