| //===-- dfsan_allocator.cpp -------------------------- --------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of DataflowSanitizer. |
| // |
| // DataflowSanitizer allocator. |
| //===----------------------------------------------------------------------===// |
| |
| #include "dfsan_allocator.h" |
| |
| #include "dfsan.h" |
| #include "dfsan_flags.h" |
| #include "dfsan_thread.h" |
| #include "sanitizer_common/sanitizer_allocator.h" |
| #include "sanitizer_common/sanitizer_allocator_checks.h" |
| #include "sanitizer_common/sanitizer_allocator_interface.h" |
| #include "sanitizer_common/sanitizer_allocator_report.h" |
| #include "sanitizer_common/sanitizer_errno.h" |
| |
| namespace __dfsan { |
| |
| struct Metadata { |
| uptr requested_size; |
| }; |
| |
| struct DFsanMapUnmapCallback { |
| void OnMap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); } |
| void OnUnmap(uptr p, uptr size) const { dfsan_set_label(0, (void *)p, size); } |
| }; |
| |
| static const uptr kAllocatorSpace = 0x700000000000ULL; |
| static const uptr kMaxAllowedMallocSize = 8UL << 30; |
| |
| struct AP64 { // Allocator64 parameters. Deliberately using a short name. |
| static const uptr kSpaceBeg = kAllocatorSpace; |
| static const uptr kSpaceSize = 0x40000000000; // 4T. |
| static const uptr kMetadataSize = sizeof(Metadata); |
| typedef DefaultSizeClassMap SizeClassMap; |
| typedef DFsanMapUnmapCallback MapUnmapCallback; |
| static const uptr kFlags = 0; |
| using AddressSpaceView = LocalAddressSpaceView; |
| }; |
| |
| typedef SizeClassAllocator64<AP64> PrimaryAllocator; |
| |
| typedef CombinedAllocator<PrimaryAllocator> Allocator; |
| typedef Allocator::AllocatorCache AllocatorCache; |
| |
| static Allocator allocator; |
| static AllocatorCache fallback_allocator_cache; |
| static StaticSpinMutex fallback_mutex; |
| |
| static uptr max_malloc_size; |
| |
| void dfsan_allocator_init() { |
| SetAllocatorMayReturnNull(common_flags()->allocator_may_return_null); |
| allocator.Init(common_flags()->allocator_release_to_os_interval_ms); |
| if (common_flags()->max_allocation_size_mb) |
| max_malloc_size = Min(common_flags()->max_allocation_size_mb << 20, |
| kMaxAllowedMallocSize); |
| else |
| max_malloc_size = kMaxAllowedMallocSize; |
| } |
| |
| AllocatorCache *GetAllocatorCache(DFsanThreadLocalMallocStorage *ms) { |
| CHECK(ms); |
| CHECK_LE(sizeof(AllocatorCache), sizeof(ms->allocator_cache)); |
| return reinterpret_cast<AllocatorCache *>(ms->allocator_cache); |
| } |
| |
| void DFsanThreadLocalMallocStorage::CommitBack() { |
| allocator.SwallowCache(GetAllocatorCache(this)); |
| } |
| |
| static void *DFsanAllocate(uptr size, uptr alignment, bool zeroise) { |
| if (size > max_malloc_size) { |
| if (AllocatorMayReturnNull()) { |
| Report("WARNING: DataflowSanitizer failed to allocate 0x%zx bytes\n", |
| size); |
| return nullptr; |
| } |
| BufferedStackTrace stack; |
| ReportAllocationSizeTooBig(size, max_malloc_size, &stack); |
| } |
| DFsanThread *t = GetCurrentThread(); |
| void *allocated; |
| if (t) { |
| AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); |
| allocated = allocator.Allocate(cache, size, alignment); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *cache = &fallback_allocator_cache; |
| allocated = allocator.Allocate(cache, size, alignment); |
| } |
| if (UNLIKELY(!allocated)) { |
| SetAllocatorOutOfMemory(); |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportOutOfMemory(size, &stack); |
| } |
| Metadata *meta = |
| reinterpret_cast<Metadata *>(allocator.GetMetaData(allocated)); |
| meta->requested_size = size; |
| if (zeroise) { |
| internal_memset(allocated, 0, size); |
| dfsan_set_label(0, allocated, size); |
| } else if (flags().zero_in_malloc) { |
| dfsan_set_label(0, allocated, size); |
| } |
| return allocated; |
| } |
| |
| void dfsan_deallocate(void *p) { |
| CHECK(p); |
| Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(p)); |
| uptr size = meta->requested_size; |
| meta->requested_size = 0; |
| if (flags().zero_in_free) |
| dfsan_set_label(0, p, size); |
| DFsanThread *t = GetCurrentThread(); |
| if (t) { |
| AllocatorCache *cache = GetAllocatorCache(&t->malloc_storage()); |
| allocator.Deallocate(cache, p); |
| } else { |
| SpinMutexLock l(&fallback_mutex); |
| AllocatorCache *cache = &fallback_allocator_cache; |
| allocator.Deallocate(cache, p); |
| } |
| } |
| |
| void *DFsanReallocate(void *old_p, uptr new_size, uptr alignment) { |
| Metadata *meta = reinterpret_cast<Metadata *>(allocator.GetMetaData(old_p)); |
| uptr old_size = meta->requested_size; |
| uptr actually_allocated_size = allocator.GetActuallyAllocatedSize(old_p); |
| if (new_size <= actually_allocated_size) { |
| // We are not reallocating here. |
| meta->requested_size = new_size; |
| if (new_size > old_size && flags().zero_in_malloc) |
| dfsan_set_label(0, (char *)old_p + old_size, new_size - old_size); |
| return old_p; |
| } |
| uptr memcpy_size = Min(new_size, old_size); |
| void *new_p = DFsanAllocate(new_size, alignment, false /*zeroise*/); |
| if (new_p) { |
| dfsan_copy_memory(new_p, old_p, memcpy_size); |
| dfsan_deallocate(old_p); |
| } |
| return new_p; |
| } |
| |
| void *DFsanCalloc(uptr nmemb, uptr size) { |
| if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportCallocOverflow(nmemb, size, &stack); |
| } |
| return DFsanAllocate(nmemb * size, sizeof(u64), true /*zeroise*/); |
| } |
| |
| static uptr AllocationSize(const void *p) { |
| if (!p) |
| return 0; |
| const void *beg = allocator.GetBlockBegin(p); |
| if (beg != p) |
| return 0; |
| Metadata *b = (Metadata *)allocator.GetMetaData(p); |
| return b->requested_size; |
| } |
| |
| void *dfsan_malloc(uptr size) { |
| return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/)); |
| } |
| |
| void *dfsan_calloc(uptr nmemb, uptr size) { |
| return SetErrnoOnNull(DFsanCalloc(nmemb, size)); |
| } |
| |
| void *dfsan_realloc(void *ptr, uptr size) { |
| if (!ptr) |
| return SetErrnoOnNull(DFsanAllocate(size, sizeof(u64), false /*zeroise*/)); |
| if (size == 0) { |
| dfsan_deallocate(ptr); |
| return nullptr; |
| } |
| return SetErrnoOnNull(DFsanReallocate(ptr, size, sizeof(u64))); |
| } |
| |
| void *dfsan_reallocarray(void *ptr, uptr nmemb, uptr size) { |
| if (UNLIKELY(CheckForCallocOverflow(size, nmemb))) { |
| errno = errno_ENOMEM; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportReallocArrayOverflow(nmemb, size, &stack); |
| } |
| return dfsan_realloc(ptr, nmemb * size); |
| } |
| |
| void *dfsan_valloc(uptr size) { |
| return SetErrnoOnNull( |
| DFsanAllocate(size, GetPageSizeCached(), false /*zeroise*/)); |
| } |
| |
| void *dfsan_pvalloc(uptr size) { |
| uptr PageSize = GetPageSizeCached(); |
| if (UNLIKELY(CheckForPvallocOverflow(size, PageSize))) { |
| errno = errno_ENOMEM; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportPvallocOverflow(size, &stack); |
| } |
| // pvalloc(0) should allocate one page. |
| size = size ? RoundUpTo(size, PageSize) : PageSize; |
| return SetErrnoOnNull(DFsanAllocate(size, PageSize, false /*zeroise*/)); |
| } |
| |
| void *dfsan_aligned_alloc(uptr alignment, uptr size) { |
| if (UNLIKELY(!CheckAlignedAllocAlignmentAndSize(alignment, size))) { |
| errno = errno_EINVAL; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportInvalidAlignedAllocAlignment(size, alignment, &stack); |
| } |
| return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/)); |
| } |
| |
| void *dfsan_memalign(uptr alignment, uptr size) { |
| if (UNLIKELY(!IsPowerOfTwo(alignment))) { |
| errno = errno_EINVAL; |
| if (AllocatorMayReturnNull()) |
| return nullptr; |
| BufferedStackTrace stack; |
| ReportInvalidAllocationAlignment(alignment, &stack); |
| } |
| return SetErrnoOnNull(DFsanAllocate(size, alignment, false /*zeroise*/)); |
| } |
| |
| int dfsan_posix_memalign(void **memptr, uptr alignment, uptr size) { |
| if (UNLIKELY(!CheckPosixMemalignAlignment(alignment))) { |
| if (AllocatorMayReturnNull()) |
| return errno_EINVAL; |
| BufferedStackTrace stack; |
| ReportInvalidPosixMemalignAlignment(alignment, &stack); |
| } |
| void *ptr = DFsanAllocate(size, alignment, false /*zeroise*/); |
| if (UNLIKELY(!ptr)) |
| // OOM error is already taken care of by DFsanAllocate. |
| return errno_ENOMEM; |
| CHECK(IsAligned((uptr)ptr, alignment)); |
| *memptr = ptr; |
| return 0; |
| } |
| |
| } // namespace __dfsan |
| |
| using namespace __dfsan; |
| |
| uptr __sanitizer_get_current_allocated_bytes() { |
| uptr stats[AllocatorStatCount]; |
| allocator.GetStats(stats); |
| return stats[AllocatorStatAllocated]; |
| } |
| |
| uptr __sanitizer_get_heap_size() { |
| uptr stats[AllocatorStatCount]; |
| allocator.GetStats(stats); |
| return stats[AllocatorStatMapped]; |
| } |
| |
| uptr __sanitizer_get_free_bytes() { return 1; } |
| |
| uptr __sanitizer_get_unmapped_bytes() { return 1; } |
| |
| uptr __sanitizer_get_estimated_allocated_size(uptr size) { return size; } |
| |
| int __sanitizer_get_ownership(const void *p) { return AllocationSize(p) != 0; } |
| |
| uptr __sanitizer_get_allocated_size(const void *p) { return AllocationSize(p); } |