| //===-- sanitizer_linux_libcdep.cpp ---------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is shared between AddressSanitizer and ThreadSanitizer |
| // run-time libraries and implements linux-specific functions from |
| // sanitizer_libc.h. |
| //===----------------------------------------------------------------------===// |
| |
| #include "sanitizer_platform.h" |
| |
| #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \ |
| SANITIZER_SOLARIS |
| |
| #include "sanitizer_allocator_internal.h" |
| #include "sanitizer_atomic.h" |
| #include "sanitizer_common.h" |
| #include "sanitizer_file.h" |
| #include "sanitizer_flags.h" |
| #include "sanitizer_freebsd.h" |
| #include "sanitizer_getauxval.h" |
| #include "sanitizer_glibc_version.h" |
| #include "sanitizer_linux.h" |
| #include "sanitizer_placement_new.h" |
| #include "sanitizer_procmaps.h" |
| |
| #if SANITIZER_NETBSD |
| #define _RTLD_SOURCE // for __lwp_gettcb_fast() / __lwp_getprivate_fast() |
| #endif |
| |
| #include <dlfcn.h> // for dlsym() |
| #include <link.h> |
| #include <pthread.h> |
| #include <signal.h> |
| #include <sys/mman.h> |
| #include <sys/resource.h> |
| #include <syslog.h> |
| |
| #if !defined(ElfW) |
| #define ElfW(type) Elf_##type |
| #endif |
| |
| #if SANITIZER_FREEBSD |
| #include <pthread_np.h> |
| #include <osreldate.h> |
| #include <sys/sysctl.h> |
| #define pthread_getattr_np pthread_attr_get_np |
| // The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before |
| // that, it was never implemented. So just define it to zero. |
| #undef MAP_NORESERVE |
| #define MAP_NORESERVE 0 |
| #endif |
| |
| #if SANITIZER_NETBSD |
| #include <sys/sysctl.h> |
| #include <sys/tls.h> |
| #include <lwp.h> |
| #endif |
| |
| #if SANITIZER_SOLARIS |
| #include <stdlib.h> |
| #include <thread.h> |
| #endif |
| |
| #if SANITIZER_ANDROID |
| #include <android/api-level.h> |
| #if !defined(CPU_COUNT) && !defined(__aarch64__) |
| #include <dirent.h> |
| #include <fcntl.h> |
| struct __sanitizer::linux_dirent { |
| long d_ino; |
| off_t d_off; |
| unsigned short d_reclen; |
| char d_name[]; |
| }; |
| #endif |
| #endif |
| |
| #if !SANITIZER_ANDROID |
| #include <elf.h> |
| #include <unistd.h> |
| #endif |
| |
| namespace __sanitizer { |
| |
| SANITIZER_WEAK_ATTRIBUTE int |
| real_sigaction(int signum, const void *act, void *oldact); |
| |
| int internal_sigaction(int signum, const void *act, void *oldact) { |
| #if !SANITIZER_GO |
| if (&real_sigaction) |
| return real_sigaction(signum, act, oldact); |
| #endif |
| return sigaction(signum, (const struct sigaction *)act, |
| (struct sigaction *)oldact); |
| } |
| |
| void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, |
| uptr *stack_bottom) { |
| CHECK(stack_top); |
| CHECK(stack_bottom); |
| if (at_initialization) { |
| // This is the main thread. Libpthread may not be initialized yet. |
| struct rlimit rl; |
| CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); |
| |
| // Find the mapping that contains a stack variable. |
| MemoryMappingLayout proc_maps(/*cache_enabled*/true); |
| if (proc_maps.Error()) { |
| *stack_top = *stack_bottom = 0; |
| return; |
| } |
| MemoryMappedSegment segment; |
| uptr prev_end = 0; |
| while (proc_maps.Next(&segment)) { |
| if ((uptr)&rl < segment.end) break; |
| prev_end = segment.end; |
| } |
| CHECK((uptr)&rl >= segment.start && (uptr)&rl < segment.end); |
| |
| // Get stacksize from rlimit, but clip it so that it does not overlap |
| // with other mappings. |
| uptr stacksize = rl.rlim_cur; |
| if (stacksize > segment.end - prev_end) stacksize = segment.end - prev_end; |
| // When running with unlimited stack size, we still want to set some limit. |
| // The unlimited stack size is caused by 'ulimit -s unlimited'. |
| // Also, for some reason, GNU make spawns subprocesses with unlimited stack. |
| if (stacksize > kMaxThreadStackSize) |
| stacksize = kMaxThreadStackSize; |
| *stack_top = segment.end; |
| *stack_bottom = segment.end - stacksize; |
| return; |
| } |
| uptr stacksize = 0; |
| void *stackaddr = nullptr; |
| #if SANITIZER_SOLARIS |
| stack_t ss; |
| CHECK_EQ(thr_stksegment(&ss), 0); |
| stacksize = ss.ss_size; |
| stackaddr = (char *)ss.ss_sp - stacksize; |
| #else // !SANITIZER_SOLARIS |
| pthread_attr_t attr; |
| pthread_attr_init(&attr); |
| CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); |
| my_pthread_attr_getstack(&attr, &stackaddr, &stacksize); |
| pthread_attr_destroy(&attr); |
| #endif // SANITIZER_SOLARIS |
| |
| *stack_top = (uptr)stackaddr + stacksize; |
| *stack_bottom = (uptr)stackaddr; |
| } |
| |
| #if !SANITIZER_GO |
| bool SetEnv(const char *name, const char *value) { |
| void *f = dlsym(RTLD_NEXT, "setenv"); |
| if (!f) |
| return false; |
| typedef int(*setenv_ft)(const char *name, const char *value, int overwrite); |
| setenv_ft setenv_f; |
| CHECK_EQ(sizeof(setenv_f), sizeof(f)); |
| internal_memcpy(&setenv_f, &f, sizeof(f)); |
| return setenv_f(name, value, 1) == 0; |
| } |
| #endif |
| |
| __attribute__((unused)) static bool GetLibcVersion(int *major, int *minor, |
| int *patch) { |
| #ifdef _CS_GNU_LIBC_VERSION |
| char buf[64]; |
| uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf)); |
| if (len >= sizeof(buf)) |
| return false; |
| buf[len] = 0; |
| static const char kGLibC[] = "glibc "; |
| if (internal_strncmp(buf, kGLibC, sizeof(kGLibC) - 1) != 0) |
| return false; |
| const char *p = buf + sizeof(kGLibC) - 1; |
| *major = internal_simple_strtoll(p, &p, 10); |
| *minor = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0; |
| *patch = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0; |
| return true; |
| #else |
| return false; |
| #endif |
| } |
| |
| // True if we can use dlpi_tls_data. glibc before 2.25 may leave NULL (BZ |
| // #19826) so dlpi_tls_data cannot be used. |
| // |
| // musl before 1.2.3 and FreeBSD as of 12.2 incorrectly set dlpi_tls_data to |
| // the TLS initialization image |
| // https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=254774 |
| __attribute__((unused)) static int g_use_dlpi_tls_data; |
| |
| #if SANITIZER_GLIBC && !SANITIZER_GO |
| __attribute__((unused)) static size_t g_tls_size; |
| void InitTlsSize() { |
| int major, minor, patch; |
| g_use_dlpi_tls_data = |
| GetLibcVersion(&major, &minor, &patch) && major == 2 && minor >= 25; |
| |
| #if defined(__aarch64__) || defined(__x86_64__) || defined(__powerpc64__) |
| void *get_tls_static_info = dlsym(RTLD_NEXT, "_dl_get_tls_static_info"); |
| size_t tls_align; |
| ((void (*)(size_t *, size_t *))get_tls_static_info)(&g_tls_size, &tls_align); |
| #endif |
| } |
| #else |
| void InitTlsSize() { } |
| #endif // SANITIZER_GLIBC && !SANITIZER_GO |
| |
| // On glibc x86_64, ThreadDescriptorSize() needs to be precise due to the usage |
| // of g_tls_size. On other targets, ThreadDescriptorSize() is only used by lsan |
| // to get the pointer to thread-specific data keys in the thread control block. |
| #if (SANITIZER_FREEBSD || SANITIZER_LINUX) && !SANITIZER_ANDROID |
| // sizeof(struct pthread) from glibc. |
| static atomic_uintptr_t thread_descriptor_size; |
| |
| uptr ThreadDescriptorSize() { |
| uptr val = atomic_load_relaxed(&thread_descriptor_size); |
| if (val) |
| return val; |
| #if defined(__x86_64__) || defined(__i386__) || defined(__arm__) |
| int major; |
| int minor; |
| int patch; |
| if (GetLibcVersion(&major, &minor, &patch) && major == 2) { |
| /* sizeof(struct pthread) values from various glibc versions. */ |
| if (SANITIZER_X32) |
| val = 1728; // Assume only one particular version for x32. |
| // For ARM sizeof(struct pthread) changed in Glibc 2.23. |
| else if (SANITIZER_ARM) |
| val = minor <= 22 ? 1120 : 1216; |
| else if (minor <= 3) |
| val = FIRST_32_SECOND_64(1104, 1696); |
| else if (minor == 4) |
| val = FIRST_32_SECOND_64(1120, 1728); |
| else if (minor == 5) |
| val = FIRST_32_SECOND_64(1136, 1728); |
| else if (minor <= 9) |
| val = FIRST_32_SECOND_64(1136, 1712); |
| else if (minor == 10) |
| val = FIRST_32_SECOND_64(1168, 1776); |
| else if (minor == 11 || (minor == 12 && patch == 1)) |
| val = FIRST_32_SECOND_64(1168, 2288); |
| else if (minor <= 14) |
| val = FIRST_32_SECOND_64(1168, 2304); |
| else if (minor < 32) // Unknown version |
| val = FIRST_32_SECOND_64(1216, 2304); |
| else // minor == 32 |
| val = FIRST_32_SECOND_64(1344, 2496); |
| } |
| #elif defined(__s390__) || defined(__sparc__) |
| // The size of a prefix of TCB including pthread::{specific_1stblock,specific} |
| // suffices. Just return offsetof(struct pthread, specific_used), which hasn't |
| // changed since 2007-05. Technically this applies to i386/x86_64 as well but |
| // we call _dl_get_tls_static_info and need the precise size of struct |
| // pthread. |
| return FIRST_32_SECOND_64(524, 1552); |
| #elif defined(__mips__) |
| // TODO(sagarthakur): add more values as per different glibc versions. |
| val = FIRST_32_SECOND_64(1152, 1776); |
| #elif SANITIZER_RISCV64 |
| int major; |
| int minor; |
| int patch; |
| if (GetLibcVersion(&major, &minor, &patch) && major == 2) { |
| // TODO: consider adding an optional runtime check for an unknown (untested) |
| // glibc version |
| if (minor <= 28) // WARNING: the highest tested version is 2.29 |
| val = 1772; // no guarantees for this one |
| else if (minor <= 31) |
| val = 1772; // tested against glibc 2.29, 2.31 |
| else |
| val = 1936; // tested against glibc 2.32 |
| } |
| |
| #elif defined(__aarch64__) |
| // The sizeof (struct pthread) is the same from GLIBC 2.17 to 2.22. |
| val = 1776; |
| #elif defined(__powerpc64__) |
| val = 1776; // from glibc.ppc64le 2.20-8.fc21 |
| #endif |
| if (val) |
| atomic_store_relaxed(&thread_descriptor_size, val); |
| return val; |
| } |
| |
| #if defined(__mips__) || defined(__powerpc64__) || SANITIZER_RISCV64 |
| // TlsPreTcbSize includes size of struct pthread_descr and size of tcb |
| // head structure. It lies before the static tls blocks. |
| static uptr TlsPreTcbSize() { |
| #if defined(__mips__) |
| const uptr kTcbHead = 16; // sizeof (tcbhead_t) |
| #elif defined(__powerpc64__) |
| const uptr kTcbHead = 88; // sizeof (tcbhead_t) |
| #elif SANITIZER_RISCV64 |
| const uptr kTcbHead = 16; // sizeof (tcbhead_t) |
| #endif |
| const uptr kTlsAlign = 16; |
| const uptr kTlsPreTcbSize = |
| RoundUpTo(ThreadDescriptorSize() + kTcbHead, kTlsAlign); |
| return kTlsPreTcbSize; |
| } |
| #endif |
| |
| #if !SANITIZER_GO |
| namespace { |
| struct TlsBlock { |
| uptr begin, end, align; |
| size_t tls_modid; |
| bool operator<(const TlsBlock &rhs) const { return begin < rhs.begin; } |
| }; |
| } // namespace |
| |
| #ifdef __s390__ |
| extern "C" uptr __tls_get_offset(void *arg); |
| |
| static uptr TlsGetOffset(uptr ti_module, uptr ti_offset) { |
| // The __tls_get_offset ABI requires %r12 to point to GOT and %r2 to be an |
| // offset of a struct tls_index inside GOT. We don't possess either of the |
| // two, so violate the letter of the "ELF Handling For Thread-Local |
| // Storage" document and assume that the implementation just dereferences |
| // %r2 + %r12. |
| uptr tls_index[2] = {ti_module, ti_offset}; |
| register uptr r2 asm("2") = 0; |
| register void *r12 asm("12") = tls_index; |
| asm("basr %%r14, %[__tls_get_offset]" |
| : "+r"(r2) |
| : [__tls_get_offset] "r"(__tls_get_offset), "r"(r12) |
| : "memory", "cc", "0", "1", "3", "4", "5", "14"); |
| return r2; |
| } |
| #else |
| extern "C" void *__tls_get_addr(size_t *); |
| #endif |
| |
| static int CollectStaticTlsBlocks(struct dl_phdr_info *info, size_t size, |
| void *data) { |
| if (!info->dlpi_tls_modid) |
| return 0; |
| uptr begin = (uptr)info->dlpi_tls_data; |
| if (!g_use_dlpi_tls_data) { |
| // Call __tls_get_addr as a fallback. This forces TLS allocation on glibc |
| // and FreeBSD. |
| #ifdef __s390__ |
| begin = (uptr)__builtin_thread_pointer() + |
| TlsGetOffset(info->dlpi_tls_modid, 0); |
| #else |
| size_t mod_and_off[2] = {info->dlpi_tls_modid, 0}; |
| begin = (uptr)__tls_get_addr(mod_and_off); |
| #endif |
| } |
| for (unsigned i = 0; i != info->dlpi_phnum; ++i) |
| if (info->dlpi_phdr[i].p_type == PT_TLS) { |
| static_cast<InternalMmapVector<TlsBlock> *>(data)->push_back( |
| TlsBlock{begin, begin + info->dlpi_phdr[i].p_memsz, |
| info->dlpi_phdr[i].p_align, info->dlpi_tls_modid}); |
| break; |
| } |
| return 0; |
| } |
| |
| __attribute__((unused)) static void GetStaticTlsBoundary(uptr *addr, uptr *size, |
| uptr *align) { |
| InternalMmapVector<TlsBlock> ranges; |
| dl_iterate_phdr(CollectStaticTlsBlocks, &ranges); |
| uptr len = ranges.size(); |
| Sort(ranges.begin(), len); |
| // Find the range with tls_modid=1. For glibc, because libc.so uses PT_TLS, |
| // this module is guaranteed to exist and is one of the initially loaded |
| // modules. |
| uptr one = 0; |
| while (one != len && ranges[one].tls_modid != 1) ++one; |
| if (one == len) { |
| // This may happen with musl if no module uses PT_TLS. |
| *addr = 0; |
| *size = 0; |
| *align = 1; |
| return; |
| } |
| // Find the maximum consecutive ranges. We consider two modules consecutive if |
| // the gap is smaller than the alignment. The dynamic loader places static TLS |
| // blocks this way not to waste space. |
| uptr l = one; |
| *align = ranges[l].align; |
| while (l != 0 && ranges[l].begin < ranges[l - 1].end + ranges[l - 1].align) |
| *align = Max(*align, ranges[--l].align); |
| uptr r = one + 1; |
| while (r != len && ranges[r].begin < ranges[r - 1].end + ranges[r - 1].align) |
| *align = Max(*align, ranges[r++].align); |
| *addr = ranges[l].begin; |
| *size = ranges[r - 1].end - ranges[l].begin; |
| } |
| #endif // !SANITIZER_GO |
| #endif // (x86_64 || i386 || mips || ...) && (SANITIZER_FREEBSD || |
| // SANITIZER_LINUX) && !SANITIZER_ANDROID |
| |
| #if SANITIZER_NETBSD |
| static struct tls_tcb * ThreadSelfTlsTcb() { |
| struct tls_tcb *tcb = nullptr; |
| #ifdef __HAVE___LWP_GETTCB_FAST |
| tcb = (struct tls_tcb *)__lwp_gettcb_fast(); |
| #elif defined(__HAVE___LWP_GETPRIVATE_FAST) |
| tcb = (struct tls_tcb *)__lwp_getprivate_fast(); |
| #endif |
| return tcb; |
| } |
| |
| uptr ThreadSelf() { |
| return (uptr)ThreadSelfTlsTcb()->tcb_pthread; |
| } |
| |
| int GetSizeFromHdr(struct dl_phdr_info *info, size_t size, void *data) { |
| const Elf_Phdr *hdr = info->dlpi_phdr; |
| const Elf_Phdr *last_hdr = hdr + info->dlpi_phnum; |
| |
| for (; hdr != last_hdr; ++hdr) { |
| if (hdr->p_type == PT_TLS && info->dlpi_tls_modid == 1) { |
| *(uptr*)data = hdr->p_memsz; |
| break; |
| } |
| } |
| return 0; |
| } |
| #endif // SANITIZER_NETBSD |
| |
| #if SANITIZER_ANDROID |
| // Bionic provides this API since S. |
| extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_get_static_tls_bounds(void **, |
| void **); |
| #endif |
| |
| #if !SANITIZER_GO |
| static void GetTls(uptr *addr, uptr *size) { |
| #if SANITIZER_ANDROID |
| if (&__libc_get_static_tls_bounds) { |
| void *start_addr; |
| void *end_addr; |
| __libc_get_static_tls_bounds(&start_addr, &end_addr); |
| *addr = reinterpret_cast<uptr>(start_addr); |
| *size = |
| reinterpret_cast<uptr>(end_addr) - reinterpret_cast<uptr>(start_addr); |
| } else { |
| *addr = 0; |
| *size = 0; |
| } |
| #elif SANITIZER_GLIBC && defined(__x86_64__) |
| // For aarch64 and x86-64, use an O(1) approach which requires relatively |
| // precise ThreadDescriptorSize. g_tls_size was initialized in InitTlsSize. |
| asm("mov %%fs:16,%0" : "=r"(*addr)); |
| *size = g_tls_size; |
| *addr -= *size; |
| *addr += ThreadDescriptorSize(); |
| #elif SANITIZER_GLIBC && defined(__aarch64__) |
| *addr = reinterpret_cast<uptr>(__builtin_thread_pointer()) - |
| ThreadDescriptorSize(); |
| *size = g_tls_size + ThreadDescriptorSize(); |
| #elif SANITIZER_GLIBC && defined(__powerpc64__) |
| // Workaround for glibc<2.25(?). 2.27 is known to not need this. |
| uptr tp; |
| asm("addi %0,13,-0x7000" : "=r"(tp)); |
| const uptr pre_tcb_size = TlsPreTcbSize(); |
| *addr = tp - pre_tcb_size; |
| *size = g_tls_size + pre_tcb_size; |
| #elif SANITIZER_FREEBSD || SANITIZER_LINUX |
| uptr align; |
| GetStaticTlsBoundary(addr, size, &align); |
| #if defined(__x86_64__) || defined(__i386__) || defined(__s390__) || \ |
| defined(__sparc__) |
| if (SANITIZER_GLIBC) { |
| #if defined(__x86_64__) || defined(__i386__) |
| align = Max<uptr>(align, 64); |
| #else |
| align = Max<uptr>(align, 16); |
| #endif |
| } |
| const uptr tp = RoundUpTo(*addr + *size, align); |
| |
| // lsan requires the range to additionally cover the static TLS surplus |
| // (elf/dl-tls.c defines 1664). Otherwise there may be false positives for |
| // allocations only referenced by tls in dynamically loaded modules. |
| if (SANITIZER_GLIBC) |
| *size += 1644; |
| else if (SANITIZER_FREEBSD) |
| *size += 128; // RTLD_STATIC_TLS_EXTRA |
| |
| // Extend the range to include the thread control block. On glibc, lsan needs |
| // the range to include pthread::{specific_1stblock,specific} so that |
| // allocations only referenced by pthread_setspecific can be scanned. This may |
| // underestimate by at most TLS_TCB_ALIGN-1 bytes but it should be fine |
| // because the number of bytes after pthread::specific is larger. |
| *addr = tp - RoundUpTo(*size, align); |
| *size = tp - *addr + ThreadDescriptorSize(); |
| #else |
| if (SANITIZER_GLIBC) |
| *size += 1664; |
| else if (SANITIZER_FREEBSD) |
| *size += 128; // RTLD_STATIC_TLS_EXTRA |
| #if defined(__mips__) || defined(__powerpc64__) || SANITIZER_RISCV64 |
| const uptr pre_tcb_size = TlsPreTcbSize(); |
| *addr -= pre_tcb_size; |
| *size += pre_tcb_size; |
| #else |
| // arm and aarch64 reserve two words at TP, so this underestimates the range. |
| // However, this is sufficient for the purpose of finding the pointers to |
| // thread-specific data keys. |
| const uptr tcb_size = ThreadDescriptorSize(); |
| *addr -= tcb_size; |
| *size += tcb_size; |
| #endif |
| #endif |
| #elif SANITIZER_NETBSD |
| struct tls_tcb * const tcb = ThreadSelfTlsTcb(); |
| *addr = 0; |
| *size = 0; |
| if (tcb != 0) { |
| // Find size (p_memsz) of dlpi_tls_modid 1 (TLS block of the main program). |
| // ld.elf_so hardcodes the index 1. |
| dl_iterate_phdr(GetSizeFromHdr, size); |
| |
| if (*size != 0) { |
| // The block has been found and tcb_dtv[1] contains the base address |
| *addr = (uptr)tcb->tcb_dtv[1]; |
| } |
| } |
| #elif SANITIZER_SOLARIS |
| // FIXME |
| *addr = 0; |
| *size = 0; |
| #else |
| #error "Unknown OS" |
| #endif |
| } |
| #endif |
| |
| #if !SANITIZER_GO |
| uptr GetTlsSize() { |
| #if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \ |
| SANITIZER_SOLARIS |
| uptr addr, size; |
| GetTls(&addr, &size); |
| return size; |
| #else |
| return 0; |
| #endif |
| } |
| #endif |
| |
| void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, |
| uptr *tls_addr, uptr *tls_size) { |
| #if SANITIZER_GO |
| // Stub implementation for Go. |
| *stk_addr = *stk_size = *tls_addr = *tls_size = 0; |
| #else |
| GetTls(tls_addr, tls_size); |
| |
| uptr stack_top, stack_bottom; |
| GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); |
| *stk_addr = stack_bottom; |
| *stk_size = stack_top - stack_bottom; |
| |
| if (!main) { |
| // If stack and tls intersect, make them non-intersecting. |
| if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { |
| if (*stk_addr + *stk_size < *tls_addr + *tls_size) |
| *tls_size = *stk_addr + *stk_size - *tls_addr; |
| *stk_size = *tls_addr - *stk_addr; |
| } |
| } |
| #endif |
| } |
| |
| #if !SANITIZER_FREEBSD |
| typedef ElfW(Phdr) Elf_Phdr; |
| #elif SANITIZER_WORDSIZE == 32 && __FreeBSD_version <= 902001 // v9.2 |
| #define Elf_Phdr XElf32_Phdr |
| #define dl_phdr_info xdl_phdr_info |
| #define dl_iterate_phdr(c, b) xdl_iterate_phdr((c), (b)) |
| #endif // !SANITIZER_FREEBSD |
| |
| struct DlIteratePhdrData { |
| InternalMmapVectorNoCtor<LoadedModule> *modules; |
| bool first; |
| }; |
| |
| static int AddModuleSegments(const char *module_name, dl_phdr_info *info, |
| InternalMmapVectorNoCtor<LoadedModule> *modules) { |
| if (module_name[0] == '\0') |
| return 0; |
| LoadedModule cur_module; |
| cur_module.set(module_name, info->dlpi_addr); |
| for (int i = 0; i < (int)info->dlpi_phnum; i++) { |
| const Elf_Phdr *phdr = &info->dlpi_phdr[i]; |
| if (phdr->p_type == PT_LOAD) { |
| uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; |
| uptr cur_end = cur_beg + phdr->p_memsz; |
| bool executable = phdr->p_flags & PF_X; |
| bool writable = phdr->p_flags & PF_W; |
| cur_module.addAddressRange(cur_beg, cur_end, executable, |
| writable); |
| } |
| } |
| modules->push_back(cur_module); |
| return 0; |
| } |
| |
| static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { |
| DlIteratePhdrData *data = (DlIteratePhdrData *)arg; |
| if (data->first) { |
| InternalMmapVector<char> module_name(kMaxPathLength); |
| data->first = false; |
| // First module is the binary itself. |
| ReadBinaryNameCached(module_name.data(), module_name.size()); |
| return AddModuleSegments(module_name.data(), info, data->modules); |
| } |
| |
| if (info->dlpi_name) { |
| InternalScopedString module_name; |
| module_name.append("%s", info->dlpi_name); |
| return AddModuleSegments(module_name.data(), info, data->modules); |
| } |
| |
| return 0; |
| } |
| |
| #if SANITIZER_ANDROID && __ANDROID_API__ < 21 |
| extern "C" __attribute__((weak)) int dl_iterate_phdr( |
| int (*)(struct dl_phdr_info *, size_t, void *), void *); |
| #endif |
| |
| static bool requiresProcmaps() { |
| #if SANITIZER_ANDROID && __ANDROID_API__ <= 22 |
| // Fall back to /proc/maps if dl_iterate_phdr is unavailable or broken. |
| // The runtime check allows the same library to work with |
| // both K and L (and future) Android releases. |
| return AndroidGetApiLevel() <= ANDROID_LOLLIPOP_MR1; |
| #else |
| return false; |
| #endif |
| } |
| |
| static void procmapsInit(InternalMmapVectorNoCtor<LoadedModule> *modules) { |
| MemoryMappingLayout memory_mapping(/*cache_enabled*/true); |
| memory_mapping.DumpListOfModules(modules); |
| } |
| |
| void ListOfModules::init() { |
| clearOrInit(); |
| if (requiresProcmaps()) { |
| procmapsInit(&modules_); |
| } else { |
| DlIteratePhdrData data = {&modules_, true}; |
| dl_iterate_phdr(dl_iterate_phdr_cb, &data); |
| } |
| } |
| |
| // When a custom loader is used, dl_iterate_phdr may not contain the full |
| // list of modules. Allow callers to fall back to using procmaps. |
| void ListOfModules::fallbackInit() { |
| if (!requiresProcmaps()) { |
| clearOrInit(); |
| procmapsInit(&modules_); |
| } else { |
| clear(); |
| } |
| } |
| |
| // getrusage does not give us the current RSS, only the max RSS. |
| // Still, this is better than nothing if /proc/self/statm is not available |
| // for some reason, e.g. due to a sandbox. |
| static uptr GetRSSFromGetrusage() { |
| struct rusage usage; |
| if (getrusage(RUSAGE_SELF, &usage)) // Failed, probably due to a sandbox. |
| return 0; |
| return usage.ru_maxrss << 10; // ru_maxrss is in Kb. |
| } |
| |
| uptr GetRSS() { |
| if (!common_flags()->can_use_proc_maps_statm) |
| return GetRSSFromGetrusage(); |
| fd_t fd = OpenFile("/proc/self/statm", RdOnly); |
| if (fd == kInvalidFd) |
| return GetRSSFromGetrusage(); |
| char buf[64]; |
| uptr len = internal_read(fd, buf, sizeof(buf) - 1); |
| internal_close(fd); |
| if ((sptr)len <= 0) |
| return 0; |
| buf[len] = 0; |
| // The format of the file is: |
| // 1084 89 69 11 0 79 0 |
| // We need the second number which is RSS in pages. |
| char *pos = buf; |
| // Skip the first number. |
| while (*pos >= '0' && *pos <= '9') |
| pos++; |
| // Skip whitespaces. |
| while (!(*pos >= '0' && *pos <= '9') && *pos != 0) |
| pos++; |
| // Read the number. |
| uptr rss = 0; |
| while (*pos >= '0' && *pos <= '9') |
| rss = rss * 10 + *pos++ - '0'; |
| return rss * GetPageSizeCached(); |
| } |
| |
| // sysconf(_SC_NPROCESSORS_{CONF,ONLN}) cannot be used on most platforms as |
| // they allocate memory. |
| u32 GetNumberOfCPUs() { |
| #if SANITIZER_FREEBSD || SANITIZER_NETBSD |
| u32 ncpu; |
| int req[2]; |
| uptr len = sizeof(ncpu); |
| req[0] = CTL_HW; |
| req[1] = HW_NCPU; |
| CHECK_EQ(internal_sysctl(req, 2, &ncpu, &len, NULL, 0), 0); |
| return ncpu; |
| #elif SANITIZER_ANDROID && !defined(CPU_COUNT) && !defined(__aarch64__) |
| // Fall back to /sys/devices/system/cpu on Android when cpu_set_t doesn't |
| // exist in sched.h. That is the case for toolchains generated with older |
| // NDKs. |
| // This code doesn't work on AArch64 because internal_getdents makes use of |
| // the 64bit getdents syscall, but cpu_set_t seems to always exist on AArch64. |
| uptr fd = internal_open("/sys/devices/system/cpu", O_RDONLY | O_DIRECTORY); |
| if (internal_iserror(fd)) |
| return 0; |
| InternalMmapVector<u8> buffer(4096); |
| uptr bytes_read = buffer.size(); |
| uptr n_cpus = 0; |
| u8 *d_type; |
| struct linux_dirent *entry = (struct linux_dirent *)&buffer[bytes_read]; |
| while (true) { |
| if ((u8 *)entry >= &buffer[bytes_read]) { |
| bytes_read = internal_getdents(fd, (struct linux_dirent *)buffer.data(), |
| buffer.size()); |
| if (internal_iserror(bytes_read) || !bytes_read) |
| break; |
| entry = (struct linux_dirent *)buffer.data(); |
| } |
| d_type = (u8 *)entry + entry->d_reclen - 1; |
| if (d_type >= &buffer[bytes_read] || |
| (u8 *)&entry->d_name[3] >= &buffer[bytes_read]) |
| break; |
| if (entry->d_ino != 0 && *d_type == DT_DIR) { |
| if (entry->d_name[0] == 'c' && entry->d_name[1] == 'p' && |
| entry->d_name[2] == 'u' && |
| entry->d_name[3] >= '0' && entry->d_name[3] <= '9') |
| n_cpus++; |
| } |
| entry = (struct linux_dirent *)(((u8 *)entry) + entry->d_reclen); |
| } |
| internal_close(fd); |
| return n_cpus; |
| #elif SANITIZER_SOLARIS |
| return sysconf(_SC_NPROCESSORS_ONLN); |
| #else |
| cpu_set_t CPUs; |
| CHECK_EQ(sched_getaffinity(0, sizeof(cpu_set_t), &CPUs), 0); |
| return CPU_COUNT(&CPUs); |
| #endif |
| } |
| |
| #if SANITIZER_LINUX |
| |
| #if SANITIZER_ANDROID |
| static atomic_uint8_t android_log_initialized; |
| |
| void AndroidLogInit() { |
| openlog(GetProcessName(), 0, LOG_USER); |
| atomic_store(&android_log_initialized, 1, memory_order_release); |
| } |
| |
| static bool ShouldLogAfterPrintf() { |
| return atomic_load(&android_log_initialized, memory_order_acquire); |
| } |
| |
| extern "C" SANITIZER_WEAK_ATTRIBUTE |
| int async_safe_write_log(int pri, const char* tag, const char* msg); |
| extern "C" SANITIZER_WEAK_ATTRIBUTE |
| int __android_log_write(int prio, const char* tag, const char* msg); |
| |
| // ANDROID_LOG_INFO is 4, but can't be resolved at runtime. |
| #define SANITIZER_ANDROID_LOG_INFO 4 |
| |
| // async_safe_write_log is a new public version of __libc_write_log that is |
| // used behind syslog. It is preferable to syslog as it will not do any dynamic |
| // memory allocation or formatting. |
| // If the function is not available, syslog is preferred for L+ (it was broken |
| // pre-L) as __android_log_write triggers a racey behavior with the strncpy |
| // interceptor. Fallback to __android_log_write pre-L. |
| void WriteOneLineToSyslog(const char *s) { |
| if (&async_safe_write_log) { |
| async_safe_write_log(SANITIZER_ANDROID_LOG_INFO, GetProcessName(), s); |
| } else if (AndroidGetApiLevel() > ANDROID_KITKAT) { |
| syslog(LOG_INFO, "%s", s); |
| } else { |
| CHECK(&__android_log_write); |
| __android_log_write(SANITIZER_ANDROID_LOG_INFO, nullptr, s); |
| } |
| } |
| |
| extern "C" SANITIZER_WEAK_ATTRIBUTE |
| void android_set_abort_message(const char *); |
| |
| void SetAbortMessage(const char *str) { |
| if (&android_set_abort_message) |
| android_set_abort_message(str); |
| } |
| #else |
| void AndroidLogInit() {} |
| |
| static bool ShouldLogAfterPrintf() { return true; } |
| |
| void WriteOneLineToSyslog(const char *s) { syslog(LOG_INFO, "%s", s); } |
| |
| void SetAbortMessage(const char *str) {} |
| #endif // SANITIZER_ANDROID |
| |
| void LogMessageOnPrintf(const char *str) { |
| if (common_flags()->log_to_syslog && ShouldLogAfterPrintf()) |
| WriteToSyslog(str); |
| } |
| |
| #endif // SANITIZER_LINUX |
| |
| #if SANITIZER_GLIBC && !SANITIZER_GO |
| // glibc crashes when using clock_gettime from a preinit_array function as the |
| // vDSO function pointers haven't been initialized yet. __progname is |
| // initialized after the vDSO function pointers, so if it exists, is not null |
| // and is not empty, we can use clock_gettime. |
| extern "C" SANITIZER_WEAK_ATTRIBUTE char *__progname; |
| inline bool CanUseVDSO() { return &__progname && __progname && *__progname; } |
| |
| // MonotonicNanoTime is a timing function that can leverage the vDSO by calling |
| // clock_gettime. real_clock_gettime only exists if clock_gettime is |
| // intercepted, so define it weakly and use it if available. |
| extern "C" SANITIZER_WEAK_ATTRIBUTE |
| int real_clock_gettime(u32 clk_id, void *tp); |
| u64 MonotonicNanoTime() { |
| timespec ts; |
| if (CanUseVDSO()) { |
| if (&real_clock_gettime) |
| real_clock_gettime(CLOCK_MONOTONIC, &ts); |
| else |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| } else { |
| internal_clock_gettime(CLOCK_MONOTONIC, &ts); |
| } |
| return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec; |
| } |
| #else |
| // Non-glibc & Go always use the regular function. |
| u64 MonotonicNanoTime() { |
| timespec ts; |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec; |
| } |
| #endif // SANITIZER_GLIBC && !SANITIZER_GO |
| |
| void ReExec() { |
| const char *pathname = "/proc/self/exe"; |
| |
| #if SANITIZER_NETBSD |
| static const int name[] = { |
| CTL_KERN, |
| KERN_PROC_ARGS, |
| -1, |
| KERN_PROC_PATHNAME, |
| }; |
| char path[400]; |
| uptr len; |
| |
| len = sizeof(path); |
| if (internal_sysctl(name, ARRAY_SIZE(name), path, &len, NULL, 0) != -1) |
| pathname = path; |
| #elif SANITIZER_SOLARIS |
| pathname = getexecname(); |
| CHECK_NE(pathname, NULL); |
| #elif SANITIZER_USE_GETAUXVAL |
| // Calling execve with /proc/self/exe sets that as $EXEC_ORIGIN. Binaries that |
| // rely on that will fail to load shared libraries. Query AT_EXECFN instead. |
| pathname = reinterpret_cast<const char *>(getauxval(AT_EXECFN)); |
| #endif |
| |
| uptr rv = internal_execve(pathname, GetArgv(), GetEnviron()); |
| int rverrno; |
| CHECK_EQ(internal_iserror(rv, &rverrno), true); |
| Printf("execve failed, errno %d\n", rverrno); |
| Die(); |
| } |
| |
| void UnmapFromTo(uptr from, uptr to) { |
| if (to == from) |
| return; |
| CHECK(to >= from); |
| uptr res = internal_munmap(reinterpret_cast<void *>(from), to - from); |
| if (UNLIKELY(internal_iserror(res))) { |
| Report("ERROR: %s failed to unmap 0x%zx (%zd) bytes at address %p\n", |
| SanitizerToolName, to - from, to - from, (void *)from); |
| CHECK("unable to unmap" && 0); |
| } |
| } |
| |
| uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale, |
| uptr min_shadow_base_alignment, |
| UNUSED uptr &high_mem_end) { |
| const uptr granularity = GetMmapGranularity(); |
| const uptr alignment = |
| Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment); |
| const uptr left_padding = |
| Max<uptr>(granularity, 1ULL << min_shadow_base_alignment); |
| |
| const uptr shadow_size = RoundUpTo(shadow_size_bytes, granularity); |
| const uptr map_size = shadow_size + left_padding + alignment; |
| |
| const uptr map_start = (uptr)MmapNoAccess(map_size); |
| CHECK_NE(map_start, ~(uptr)0); |
| |
| const uptr shadow_start = RoundUpTo(map_start + left_padding, alignment); |
| |
| UnmapFromTo(map_start, shadow_start - left_padding); |
| UnmapFromTo(shadow_start + shadow_size, map_start + map_size); |
| |
| return shadow_start; |
| } |
| |
| static uptr MmapSharedNoReserve(uptr addr, uptr size) { |
| return internal_mmap( |
| reinterpret_cast<void *>(addr), size, PROT_READ | PROT_WRITE, |
| MAP_FIXED | MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0); |
| } |
| |
| static uptr MremapCreateAlias(uptr base_addr, uptr alias_addr, |
| uptr alias_size) { |
| #if SANITIZER_LINUX |
| return internal_mremap(reinterpret_cast<void *>(base_addr), 0, alias_size, |
| MREMAP_MAYMOVE | MREMAP_FIXED, |
| reinterpret_cast<void *>(alias_addr)); |
| #else |
| CHECK(false && "mremap is not supported outside of Linux"); |
| return 0; |
| #endif |
| } |
| |
| static void CreateAliases(uptr start_addr, uptr alias_size, uptr num_aliases) { |
| uptr total_size = alias_size * num_aliases; |
| uptr mapped = MmapSharedNoReserve(start_addr, total_size); |
| CHECK_EQ(mapped, start_addr); |
| |
| for (uptr i = 1; i < num_aliases; ++i) { |
| uptr alias_addr = start_addr + i * alias_size; |
| CHECK_EQ(MremapCreateAlias(start_addr, alias_addr, alias_size), alias_addr); |
| } |
| } |
| |
| uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size, |
| uptr num_aliases, uptr ring_buffer_size) { |
| CHECK_EQ(alias_size & (alias_size - 1), 0); |
| CHECK_EQ(num_aliases & (num_aliases - 1), 0); |
| CHECK_EQ(ring_buffer_size & (ring_buffer_size - 1), 0); |
| |
| const uptr granularity = GetMmapGranularity(); |
| shadow_size = RoundUpTo(shadow_size, granularity); |
| CHECK_EQ(shadow_size & (shadow_size - 1), 0); |
| |
| const uptr alias_region_size = alias_size * num_aliases; |
| const uptr alignment = |
| 2 * Max(Max(shadow_size, alias_region_size), ring_buffer_size); |
| const uptr left_padding = ring_buffer_size; |
| |
| const uptr right_size = alignment; |
| const uptr map_size = left_padding + 2 * alignment; |
| |
| const uptr map_start = reinterpret_cast<uptr>(MmapNoAccess(map_size)); |
| CHECK_NE(map_start, static_cast<uptr>(-1)); |
| const uptr right_start = RoundUpTo(map_start + left_padding, alignment); |
| |
| UnmapFromTo(map_start, right_start - left_padding); |
| UnmapFromTo(right_start + right_size, map_start + map_size); |
| |
| CreateAliases(right_start + right_size / 2, alias_size, num_aliases); |
| |
| return right_start; |
| } |
| |
| void InitializePlatformCommonFlags(CommonFlags *cf) { |
| #if SANITIZER_ANDROID |
| if (&__libc_get_static_tls_bounds == nullptr) |
| cf->detect_leaks = false; |
| #endif |
| } |
| |
| } // namespace __sanitizer |
| |
| #endif |