| //===---- lib/fp_mul_impl.inc - floating point multiplication -----*- C -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements soft-float multiplication with the IEEE-754 default |
| // rounding (to nearest, ties to even). |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "fp_lib.h" |
| |
| static __inline fp_t __mulXf3__(fp_t a, fp_t b) { |
| const unsigned int aExponent = toRep(a) >> significandBits & maxExponent; |
| const unsigned int bExponent = toRep(b) >> significandBits & maxExponent; |
| const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit; |
| |
| rep_t aSignificand = toRep(a) & significandMask; |
| rep_t bSignificand = toRep(b) & significandMask; |
| int scale = 0; |
| |
| // Detect if a or b is zero, denormal, infinity, or NaN. |
| if (aExponent - 1U >= maxExponent - 1U || |
| bExponent - 1U >= maxExponent - 1U) { |
| |
| const rep_t aAbs = toRep(a) & absMask; |
| const rep_t bAbs = toRep(b) & absMask; |
| |
| // NaN * anything = qNaN |
| if (aAbs > infRep) |
| return fromRep(toRep(a) | quietBit); |
| // anything * NaN = qNaN |
| if (bAbs > infRep) |
| return fromRep(toRep(b) | quietBit); |
| |
| if (aAbs == infRep) { |
| // infinity * non-zero = +/- infinity |
| if (bAbs) |
| return fromRep(aAbs | productSign); |
| // infinity * zero = NaN |
| else |
| return fromRep(qnanRep); |
| } |
| |
| if (bAbs == infRep) { |
| // non-zero * infinity = +/- infinity |
| if (aAbs) |
| return fromRep(bAbs | productSign); |
| // zero * infinity = NaN |
| else |
| return fromRep(qnanRep); |
| } |
| |
| // zero * anything = +/- zero |
| if (!aAbs) |
| return fromRep(productSign); |
| // anything * zero = +/- zero |
| if (!bAbs) |
| return fromRep(productSign); |
| |
| // One or both of a or b is denormal. The other (if applicable) is a |
| // normal number. Renormalize one or both of a and b, and set scale to |
| // include the necessary exponent adjustment. |
| if (aAbs < implicitBit) |
| scale += normalize(&aSignificand); |
| if (bAbs < implicitBit) |
| scale += normalize(&bSignificand); |
| } |
| |
| // Set the implicit significand bit. If we fell through from the |
| // denormal path it was already set by normalize( ), but setting it twice |
| // won't hurt anything. |
| aSignificand |= implicitBit; |
| bSignificand |= implicitBit; |
| |
| // Perform a basic multiplication on the significands. One of them must be |
| // shifted beforehand to be aligned with the exponent. |
| rep_t productHi, productLo; |
| wideMultiply(aSignificand, bSignificand << exponentBits, &productHi, |
| &productLo); |
| |
| int productExponent = aExponent + bExponent - exponentBias + scale; |
| |
| // Normalize the significand and adjust the exponent if needed. |
| if (productHi & implicitBit) |
| productExponent++; |
| else |
| wideLeftShift(&productHi, &productLo, 1); |
| |
| // If we have overflowed the type, return +/- infinity. |
| if (productExponent >= maxExponent) |
| return fromRep(infRep | productSign); |
| |
| if (productExponent <= 0) { |
| // The result is denormal before rounding. |
| // |
| // If the result is so small that it just underflows to zero, return |
| // zero with the appropriate sign. Mathematically, there is no need to |
| // handle this case separately, but we make it a special case to |
| // simplify the shift logic. |
| const unsigned int shift = REP_C(1) - (unsigned int)productExponent; |
| if (shift >= typeWidth) |
| return fromRep(productSign); |
| |
| // Otherwise, shift the significand of the result so that the round |
| // bit is the high bit of productLo. |
| wideRightShiftWithSticky(&productHi, &productLo, shift); |
| } else { |
| // The result is normal before rounding. Insert the exponent. |
| productHi &= significandMask; |
| productHi |= (rep_t)productExponent << significandBits; |
| } |
| |
| // Insert the sign of the result. |
| productHi |= productSign; |
| |
| // Perform the final rounding. The final result may overflow to infinity, |
| // or underflow to zero, but those are the correct results in those cases. |
| // We use the default IEEE-754 round-to-nearest, ties-to-even rounding mode. |
| if (productLo > signBit) |
| productHi++; |
| if (productLo == signBit) |
| productHi += productHi & 1; |
| return fromRep(productHi); |
| } |