blob: 8f7cee2382b4f75ba1132a99a9180be853334c31 [file] [log] [blame]
/*
* kmp_settings.cpp -- Initialize environment variables
*/
//===----------------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "kmp.h"
#include "kmp_affinity.h"
#include "kmp_atomic.h"
#if KMP_USE_HIER_SCHED
#include "kmp_dispatch_hier.h"
#endif
#include "kmp_environment.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_itt.h"
#include "kmp_lock.h"
#include "kmp_settings.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
#include <ctype.h> // toupper()
#if OMPD_SUPPORT
#include "ompd-specific.h"
#endif
static int __kmp_env_toPrint(char const *name, int flag);
bool __kmp_env_format = 0; // 0 - old format; 1 - new format
// -----------------------------------------------------------------------------
// Helper string functions. Subject to move to kmp_str.
#ifdef USE_LOAD_BALANCE
static double __kmp_convert_to_double(char const *s) {
double result;
if (KMP_SSCANF(s, "%lf", &result) < 1) {
result = 0.0;
}
return result;
}
#endif
#ifdef KMP_DEBUG
static unsigned int __kmp_readstr_with_sentinel(char *dest, char const *src,
size_t len, char sentinel) {
unsigned int i;
for (i = 0; i < len; i++) {
if ((*src == '\0') || (*src == sentinel)) {
break;
}
*(dest++) = *(src++);
}
*dest = '\0';
return i;
}
#endif
static int __kmp_match_with_sentinel(char const *a, char const *b, size_t len,
char sentinel) {
size_t l = 0;
if (a == NULL)
a = "";
if (b == NULL)
b = "";
while (*a && *b && *b != sentinel) {
char ca = *a, cb = *b;
if (ca >= 'a' && ca <= 'z')
ca -= 'a' - 'A';
if (cb >= 'a' && cb <= 'z')
cb -= 'a' - 'A';
if (ca != cb)
return FALSE;
++l;
++a;
++b;
}
return l >= len;
}
// Expected usage:
// token is the token to check for.
// buf is the string being parsed.
// *end returns the char after the end of the token.
// it is not modified unless a match occurs.
//
// Example 1:
//
// if (__kmp_match_str("token", buf, *end) {
// <do something>
// buf = end;
// }
//
// Example 2:
//
// if (__kmp_match_str("token", buf, *end) {
// char *save = **end;
// **end = sentinel;
// <use any of the __kmp*_with_sentinel() functions>
// **end = save;
// buf = end;
// }
static int __kmp_match_str(char const *token, char const *buf,
const char **end) {
KMP_ASSERT(token != NULL);
KMP_ASSERT(buf != NULL);
KMP_ASSERT(end != NULL);
while (*token && *buf) {
char ct = *token, cb = *buf;
if (ct >= 'a' && ct <= 'z')
ct -= 'a' - 'A';
if (cb >= 'a' && cb <= 'z')
cb -= 'a' - 'A';
if (ct != cb)
return FALSE;
++token;
++buf;
}
if (*token) {
return FALSE;
}
*end = buf;
return TRUE;
}
#if KMP_OS_DARWIN
static size_t __kmp_round4k(size_t size) {
size_t _4k = 4 * 1024;
if (size & (_4k - 1)) {
size &= ~(_4k - 1);
if (size <= KMP_SIZE_T_MAX - _4k) {
size += _4k; // Round up if there is no overflow.
}
}
return size;
} // __kmp_round4k
#endif
/* Here, multipliers are like __kmp_convert_to_seconds, but floating-point
values are allowed, and the return value is in milliseconds. The default
multiplier is milliseconds. Returns INT_MAX only if the value specified
matches "infinit*". Returns -1 if specified string is invalid. */
int __kmp_convert_to_milliseconds(char const *data) {
int ret, nvalues, factor;
char mult, extra;
double value;
if (data == NULL)
return (-1);
if (__kmp_str_match("infinit", -1, data))
return (INT_MAX);
value = (double)0.0;
mult = '\0';
#if KMP_OS_WINDOWS && KMP_MSVC_COMPAT
// On Windows, each %c parameter needs additional size parameter for sscanf_s
nvalues = KMP_SSCANF(data, "%lf%c%c", &value, &mult, 1, &extra, 1);
#else
nvalues = KMP_SSCANF(data, "%lf%c%c", &value, &mult, &extra);
#endif
if (nvalues < 1)
return (-1);
if (nvalues == 1)
mult = '\0';
if (nvalues == 3)
return (-1);
if (value < 0)
return (-1);
switch (mult) {
case '\0':
/* default is milliseconds */
factor = 1;
break;
case 's':
case 'S':
factor = 1000;
break;
case 'm':
case 'M':
factor = 1000 * 60;
break;
case 'h':
case 'H':
factor = 1000 * 60 * 60;
break;
case 'd':
case 'D':
factor = 1000 * 24 * 60 * 60;
break;
default:
return (-1);
}
if (value >= ((INT_MAX - 1) / factor))
ret = INT_MAX - 1; /* Don't allow infinite value here */
else
ret = (int)(value * (double)factor); /* truncate to int */
return ret;
}
static int __kmp_strcasecmp_with_sentinel(char const *a, char const *b,
char sentinel) {
if (a == NULL)
a = "";
if (b == NULL)
b = "";
while (*a && *b && *b != sentinel) {
char ca = *a, cb = *b;
if (ca >= 'a' && ca <= 'z')
ca -= 'a' - 'A';
if (cb >= 'a' && cb <= 'z')
cb -= 'a' - 'A';
if (ca != cb)
return (int)(unsigned char)*a - (int)(unsigned char)*b;
++a;
++b;
}
return *a ? (*b && *b != sentinel)
? (int)(unsigned char)*a - (int)(unsigned char)*b
: 1
: (*b && *b != sentinel) ? -1
: 0;
}
// =============================================================================
// Table structures and helper functions.
typedef struct __kmp_setting kmp_setting_t;
typedef struct __kmp_stg_ss_data kmp_stg_ss_data_t;
typedef struct __kmp_stg_wp_data kmp_stg_wp_data_t;
typedef struct __kmp_stg_fr_data kmp_stg_fr_data_t;
typedef void (*kmp_stg_parse_func_t)(char const *name, char const *value,
void *data);
typedef void (*kmp_stg_print_func_t)(kmp_str_buf_t *buffer, char const *name,
void *data);
struct __kmp_setting {
char const *name; // Name of setting (environment variable).
kmp_stg_parse_func_t parse; // Parser function.
kmp_stg_print_func_t print; // Print function.
void *data; // Data passed to parser and printer.
int set; // Variable set during this "session"
// (__kmp_env_initialize() or kmp_set_defaults() call).
int defined; // Variable set in any "session".
}; // struct __kmp_setting
struct __kmp_stg_ss_data {
size_t factor; // Default factor: 1 for KMP_STACKSIZE, 1024 for others.
kmp_setting_t **rivals; // Array of pointers to rivals (including itself).
}; // struct __kmp_stg_ss_data
struct __kmp_stg_wp_data {
int omp; // 0 -- KMP_LIBRARY, 1 -- OMP_WAIT_POLICY.
kmp_setting_t **rivals; // Array of pointers to rivals (including itself).
}; // struct __kmp_stg_wp_data
struct __kmp_stg_fr_data {
int force; // 0 -- KMP_DETERMINISTIC_REDUCTION, 1 -- KMP_FORCE_REDUCTION.
kmp_setting_t **rivals; // Array of pointers to rivals (including itself).
}; // struct __kmp_stg_fr_data
static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found.
char const *name, // Name of variable.
char const *value, // Value of the variable.
kmp_setting_t **rivals // List of rival settings (must include current one).
);
// -----------------------------------------------------------------------------
// Helper parse functions.
static void __kmp_stg_parse_bool(char const *name, char const *value,
int *out) {
if (__kmp_str_match_true(value)) {
*out = TRUE;
} else if (__kmp_str_match_false(value)) {
*out = FALSE;
} else {
__kmp_msg(kmp_ms_warning, KMP_MSG(BadBoolValue, name, value),
KMP_HNT(ValidBoolValues), __kmp_msg_null);
}
} // __kmp_stg_parse_bool
// placed here in order to use __kmp_round4k static function
void __kmp_check_stksize(size_t *val) {
// if system stack size is too big then limit the size for worker threads
if (*val > KMP_DEFAULT_STKSIZE * 16) // just a heuristics...
*val = KMP_DEFAULT_STKSIZE * 16;
if (*val < __kmp_sys_min_stksize)
*val = __kmp_sys_min_stksize;
if (*val > KMP_MAX_STKSIZE)
*val = KMP_MAX_STKSIZE; // dead code currently, but may work in future
#if KMP_OS_DARWIN
*val = __kmp_round4k(*val);
#endif // KMP_OS_DARWIN
}
static void __kmp_stg_parse_size(char const *name, char const *value,
size_t size_min, size_t size_max,
int *is_specified, size_t *out,
size_t factor) {
char const *msg = NULL;
#if KMP_OS_DARWIN
size_min = __kmp_round4k(size_min);
size_max = __kmp_round4k(size_max);
#endif // KMP_OS_DARWIN
if (value) {
if (is_specified != NULL) {
*is_specified = 1;
}
__kmp_str_to_size(value, out, factor, &msg);
if (msg == NULL) {
if (*out > size_max) {
*out = size_max;
msg = KMP_I18N_STR(ValueTooLarge);
} else if (*out < size_min) {
*out = size_min;
msg = KMP_I18N_STR(ValueTooSmall);
} else {
#if KMP_OS_DARWIN
size_t round4k = __kmp_round4k(*out);
if (*out != round4k) {
*out = round4k;
msg = KMP_I18N_STR(NotMultiple4K);
}
#endif
}
} else {
// If integer overflow occurred, * out == KMP_SIZE_T_MAX. Cut it to
// size_max silently.
if (*out < size_min) {
*out = size_max;
} else if (*out > size_max) {
*out = size_max;
}
}
if (msg != NULL) {
// Message is not empty. Print warning.
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
__kmp_str_buf_print_size(&buf, *out);
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
KMP_INFORM(Using_str_Value, name, buf.str);
__kmp_str_buf_free(&buf);
}
}
} // __kmp_stg_parse_size
static void __kmp_stg_parse_str(char const *name, char const *value,
char **out) {
__kmp_str_free(out);
*out = __kmp_str_format("%s", value);
} // __kmp_stg_parse_str
static void __kmp_stg_parse_int(
char const
*name, // I: Name of environment variable (used in warning messages).
char const *value, // I: Value of environment variable to parse.
int min, // I: Minimum allowed value.
int max, // I: Maximum allowed value.
int *out // O: Output (parsed) value.
) {
char const *msg = NULL;
kmp_uint64 uint = *out;
__kmp_str_to_uint(value, &uint, &msg);
if (msg == NULL) {
if (uint < (unsigned int)min) {
msg = KMP_I18N_STR(ValueTooSmall);
uint = min;
} else if (uint > (unsigned int)max) {
msg = KMP_I18N_STR(ValueTooLarge);
uint = max;
}
} else {
// If overflow occurred msg contains error message and uint is very big. Cut
// tmp it to INT_MAX.
if (uint < (unsigned int)min) {
uint = min;
} else if (uint > (unsigned int)max) {
uint = max;
}
}
if (msg != NULL) {
// Message is not empty. Print warning.
kmp_str_buf_t buf;
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
__kmp_str_buf_init(&buf);
__kmp_str_buf_print(&buf, "%" KMP_UINT64_SPEC "", uint);
KMP_INFORM(Using_uint64_Value, name, buf.str);
__kmp_str_buf_free(&buf);
}
__kmp_type_convert(uint, out);
} // __kmp_stg_parse_int
#if KMP_DEBUG_ADAPTIVE_LOCKS
static void __kmp_stg_parse_file(char const *name, char const *value,
const char *suffix, char **out) {
char buffer[256];
char *t;
int hasSuffix;
__kmp_str_free(out);
t = (char *)strrchr(value, '.');
hasSuffix = t && __kmp_str_eqf(t, suffix);
t = __kmp_str_format("%s%s", value, hasSuffix ? "" : suffix);
__kmp_expand_file_name(buffer, sizeof(buffer), t);
__kmp_str_free(&t);
*out = __kmp_str_format("%s", buffer);
} // __kmp_stg_parse_file
#endif
#ifdef KMP_DEBUG
static char *par_range_to_print = NULL;
static void __kmp_stg_parse_par_range(char const *name, char const *value,
int *out_range, char *out_routine,
char *out_file, int *out_lb,
int *out_ub) {
const char *par_range_value;
size_t len = KMP_STRLEN(value) + 1;
par_range_to_print = (char *)KMP_INTERNAL_MALLOC(len + 1);
KMP_STRNCPY_S(par_range_to_print, len + 1, value, len + 1);
__kmp_par_range = +1;
__kmp_par_range_lb = 0;
__kmp_par_range_ub = INT_MAX;
for (;;) {
unsigned int len;
if (!value || *value == '\0') {
break;
}
if (!__kmp_strcasecmp_with_sentinel("routine", value, '=')) {
par_range_value = strchr(value, '=') + 1;
if (!par_range_value)
goto par_range_error;
value = par_range_value;
len = __kmp_readstr_with_sentinel(out_routine, value,
KMP_PAR_RANGE_ROUTINE_LEN - 1, ',');
if (len == 0) {
goto par_range_error;
}
value = strchr(value, ',');
if (value != NULL) {
value++;
}
continue;
}
if (!__kmp_strcasecmp_with_sentinel("filename", value, '=')) {
par_range_value = strchr(value, '=') + 1;
if (!par_range_value)
goto par_range_error;
value = par_range_value;
len = __kmp_readstr_with_sentinel(out_file, value,
KMP_PAR_RANGE_FILENAME_LEN - 1, ',');
if (len == 0) {
goto par_range_error;
}
value = strchr(value, ',');
if (value != NULL) {
value++;
}
continue;
}
if ((!__kmp_strcasecmp_with_sentinel("range", value, '=')) ||
(!__kmp_strcasecmp_with_sentinel("incl_range", value, '='))) {
par_range_value = strchr(value, '=') + 1;
if (!par_range_value)
goto par_range_error;
value = par_range_value;
if (KMP_SSCANF(value, "%d:%d", out_lb, out_ub) != 2) {
goto par_range_error;
}
*out_range = +1;
value = strchr(value, ',');
if (value != NULL) {
value++;
}
continue;
}
if (!__kmp_strcasecmp_with_sentinel("excl_range", value, '=')) {
par_range_value = strchr(value, '=') + 1;
if (!par_range_value)
goto par_range_error;
value = par_range_value;
if (KMP_SSCANF(value, "%d:%d", out_lb, out_ub) != 2) {
goto par_range_error;
}
*out_range = -1;
value = strchr(value, ',');
if (value != NULL) {
value++;
}
continue;
}
par_range_error:
KMP_WARNING(ParRangeSyntax, name);
__kmp_par_range = 0;
break;
}
} // __kmp_stg_parse_par_range
#endif
int __kmp_initial_threads_capacity(int req_nproc) {
int nth = 32;
/* MIN( MAX( 32, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ),
* __kmp_max_nth) */
if (nth < (4 * req_nproc))
nth = (4 * req_nproc);
if (nth < (4 * __kmp_xproc))
nth = (4 * __kmp_xproc);
// If hidden helper task is enabled, we initialize the thread capacity with
// extra __kmp_hidden_helper_threads_num.
if (__kmp_enable_hidden_helper) {
nth += __kmp_hidden_helper_threads_num;
}
if (nth > __kmp_max_nth)
nth = __kmp_max_nth;
return nth;
}
int __kmp_default_tp_capacity(int req_nproc, int max_nth,
int all_threads_specified) {
int nth = 128;
if (all_threads_specified)
return max_nth;
/* MIN( MAX (128, 4 * $OMP_NUM_THREADS, 4 * omp_get_num_procs() ),
* __kmp_max_nth ) */
if (nth < (4 * req_nproc))
nth = (4 * req_nproc);
if (nth < (4 * __kmp_xproc))
nth = (4 * __kmp_xproc);
if (nth > __kmp_max_nth)
nth = __kmp_max_nth;
return nth;
}
// -----------------------------------------------------------------------------
// Helper print functions.
static void __kmp_stg_print_bool(kmp_str_buf_t *buffer, char const *name,
int value) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_BOOL;
} else {
__kmp_str_buf_print(buffer, " %s=%s\n", name, value ? "true" : "false");
}
} // __kmp_stg_print_bool
static void __kmp_stg_print_int(kmp_str_buf_t *buffer, char const *name,
int value) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_INT;
} else {
__kmp_str_buf_print(buffer, " %s=%d\n", name, value);
}
} // __kmp_stg_print_int
static void __kmp_stg_print_uint64(kmp_str_buf_t *buffer, char const *name,
kmp_uint64 value) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_UINT64;
} else {
__kmp_str_buf_print(buffer, " %s=%" KMP_UINT64_SPEC "\n", name, value);
}
} // __kmp_stg_print_uint64
static void __kmp_stg_print_str(kmp_str_buf_t *buffer, char const *name,
char const *value) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_STR;
} else {
__kmp_str_buf_print(buffer, " %s=%s\n", name, value);
}
} // __kmp_stg_print_str
static void __kmp_stg_print_size(kmp_str_buf_t *buffer, char const *name,
size_t value) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
__kmp_str_buf_print_size(buffer, value);
__kmp_str_buf_print(buffer, "'\n");
} else {
__kmp_str_buf_print(buffer, " %s=", name);
__kmp_str_buf_print_size(buffer, value);
__kmp_str_buf_print(buffer, "\n");
return;
}
} // __kmp_stg_print_size
// =============================================================================
// Parse and print functions.
// -----------------------------------------------------------------------------
// KMP_DEVICE_THREAD_LIMIT, KMP_ALL_THREADS
static void __kmp_stg_parse_device_thread_limit(char const *name,
char const *value, void *data) {
kmp_setting_t **rivals = (kmp_setting_t **)data;
int rc;
if (strcmp(name, "KMP_ALL_THREADS") == 0) {
KMP_INFORM(EnvVarDeprecated, name, "KMP_DEVICE_THREAD_LIMIT");
}
rc = __kmp_stg_check_rivals(name, value, rivals);
if (rc) {
return;
}
if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) {
__kmp_max_nth = __kmp_xproc;
__kmp_allThreadsSpecified = 1;
} else {
__kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_max_nth);
__kmp_allThreadsSpecified = 0;
}
K_DIAG(1, ("__kmp_max_nth == %d\n", __kmp_max_nth));
} // __kmp_stg_parse_device_thread_limit
static void __kmp_stg_print_device_thread_limit(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_max_nth);
} // __kmp_stg_print_device_thread_limit
// -----------------------------------------------------------------------------
// OMP_THREAD_LIMIT
static void __kmp_stg_parse_thread_limit(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_cg_max_nth);
K_DIAG(1, ("__kmp_cg_max_nth == %d\n", __kmp_cg_max_nth));
} // __kmp_stg_parse_thread_limit
static void __kmp_stg_print_thread_limit(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_cg_max_nth);
} // __kmp_stg_print_thread_limit
// -----------------------------------------------------------------------------
// OMP_NUM_TEAMS
static void __kmp_stg_parse_nteams(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_nteams);
K_DIAG(1, ("__kmp_nteams == %d\n", __kmp_nteams));
} // __kmp_stg_parse_nteams
static void __kmp_stg_print_nteams(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_nteams);
} // __kmp_stg_print_nteams
// -----------------------------------------------------------------------------
// OMP_TEAMS_THREAD_LIMIT
static void __kmp_stg_parse_teams_th_limit(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth,
&__kmp_teams_thread_limit);
K_DIAG(1, ("__kmp_teams_thread_limit == %d\n", __kmp_teams_thread_limit));
} // __kmp_stg_parse_teams_th_limit
static void __kmp_stg_print_teams_th_limit(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_teams_thread_limit);
} // __kmp_stg_print_teams_th_limit
// -----------------------------------------------------------------------------
// KMP_TEAMS_THREAD_LIMIT
static void __kmp_stg_parse_teams_thread_limit(char const *name,
char const *value, void *data) {
__kmp_stg_parse_int(name, value, 1, __kmp_sys_max_nth, &__kmp_teams_max_nth);
} // __kmp_stg_teams_thread_limit
static void __kmp_stg_print_teams_thread_limit(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_teams_max_nth);
} // __kmp_stg_print_teams_thread_limit
// -----------------------------------------------------------------------------
// KMP_USE_YIELD
static void __kmp_stg_parse_use_yield(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, 2, &__kmp_use_yield);
__kmp_use_yield_exp_set = 1;
} // __kmp_stg_parse_use_yield
static void __kmp_stg_print_use_yield(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_use_yield);
} // __kmp_stg_print_use_yield
// -----------------------------------------------------------------------------
// KMP_BLOCKTIME
static void __kmp_stg_parse_blocktime(char const *name, char const *value,
void *data) {
__kmp_dflt_blocktime = __kmp_convert_to_milliseconds(value);
if (__kmp_dflt_blocktime < 0) {
__kmp_dflt_blocktime = KMP_DEFAULT_BLOCKTIME;
__kmp_msg(kmp_ms_warning, KMP_MSG(InvalidValue, name, value),
__kmp_msg_null);
KMP_INFORM(Using_int_Value, name, __kmp_dflt_blocktime);
__kmp_env_blocktime = FALSE; // Revert to default as if var not set.
} else {
if (__kmp_dflt_blocktime < KMP_MIN_BLOCKTIME) {
__kmp_dflt_blocktime = KMP_MIN_BLOCKTIME;
__kmp_msg(kmp_ms_warning, KMP_MSG(SmallValue, name, value),
__kmp_msg_null);
KMP_INFORM(MinValueUsing, name, __kmp_dflt_blocktime);
} else if (__kmp_dflt_blocktime > KMP_MAX_BLOCKTIME) {
__kmp_dflt_blocktime = KMP_MAX_BLOCKTIME;
__kmp_msg(kmp_ms_warning, KMP_MSG(LargeValue, name, value),
__kmp_msg_null);
KMP_INFORM(MaxValueUsing, name, __kmp_dflt_blocktime);
}
__kmp_env_blocktime = TRUE; // KMP_BLOCKTIME was specified.
}
#if KMP_USE_MONITOR
// calculate number of monitor thread wakeup intervals corresponding to
// blocktime.
__kmp_monitor_wakeups =
KMP_WAKEUPS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
__kmp_bt_intervals =
KMP_INTERVALS_FROM_BLOCKTIME(__kmp_dflt_blocktime, __kmp_monitor_wakeups);
#endif
K_DIAG(1, ("__kmp_env_blocktime == %d\n", __kmp_env_blocktime));
if (__kmp_env_blocktime) {
K_DIAG(1, ("__kmp_dflt_blocktime == %d\n", __kmp_dflt_blocktime));
}
} // __kmp_stg_parse_blocktime
static void __kmp_stg_print_blocktime(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_dflt_blocktime);
} // __kmp_stg_print_blocktime
// -----------------------------------------------------------------------------
// KMP_DUPLICATE_LIB_OK
static void __kmp_stg_parse_duplicate_lib_ok(char const *name,
char const *value, void *data) {
/* actually this variable is not supported, put here for compatibility with
earlier builds and for static/dynamic combination */
__kmp_stg_parse_bool(name, value, &__kmp_duplicate_library_ok);
} // __kmp_stg_parse_duplicate_lib_ok
static void __kmp_stg_print_duplicate_lib_ok(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_duplicate_library_ok);
} // __kmp_stg_print_duplicate_lib_ok
// -----------------------------------------------------------------------------
// KMP_INHERIT_FP_CONTROL
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
static void __kmp_stg_parse_inherit_fp_control(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_inherit_fp_control);
} // __kmp_stg_parse_inherit_fp_control
static void __kmp_stg_print_inherit_fp_control(kmp_str_buf_t *buffer,
char const *name, void *data) {
#if KMP_DEBUG
__kmp_stg_print_bool(buffer, name, __kmp_inherit_fp_control);
#endif /* KMP_DEBUG */
} // __kmp_stg_print_inherit_fp_control
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
// Used for OMP_WAIT_POLICY
static char const *blocktime_str = NULL;
// -----------------------------------------------------------------------------
// KMP_LIBRARY, OMP_WAIT_POLICY
static void __kmp_stg_parse_wait_policy(char const *name, char const *value,
void *data) {
kmp_stg_wp_data_t *wait = (kmp_stg_wp_data_t *)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, wait->rivals);
if (rc) {
return;
}
if (wait->omp) {
if (__kmp_str_match("ACTIVE", 1, value)) {
__kmp_library = library_turnaround;
if (blocktime_str == NULL) {
// KMP_BLOCKTIME not specified, so set default to "infinite".
__kmp_dflt_blocktime = KMP_MAX_BLOCKTIME;
}
} else if (__kmp_str_match("PASSIVE", 1, value)) {
__kmp_library = library_throughput;
if (blocktime_str == NULL) {
// KMP_BLOCKTIME not specified, so set default to 0.
__kmp_dflt_blocktime = 0;
}
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
} else {
if (__kmp_str_match("serial", 1, value)) { /* S */
__kmp_library = library_serial;
} else if (__kmp_str_match("throughput", 2, value)) { /* TH */
__kmp_library = library_throughput;
if (blocktime_str == NULL) {
// KMP_BLOCKTIME not specified, so set default to 0.
__kmp_dflt_blocktime = 0;
}
} else if (__kmp_str_match("turnaround", 2, value)) { /* TU */
__kmp_library = library_turnaround;
} else if (__kmp_str_match("dedicated", 1, value)) { /* D */
__kmp_library = library_turnaround;
} else if (__kmp_str_match("multiuser", 1, value)) { /* M */
__kmp_library = library_throughput;
if (blocktime_str == NULL) {
// KMP_BLOCKTIME not specified, so set default to 0.
__kmp_dflt_blocktime = 0;
}
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
}
} // __kmp_stg_parse_wait_policy
static void __kmp_stg_print_wait_policy(kmp_str_buf_t *buffer, char const *name,
void *data) {
kmp_stg_wp_data_t *wait = (kmp_stg_wp_data_t *)data;
char const *value = NULL;
if (wait->omp) {
switch (__kmp_library) {
case library_turnaround: {
value = "ACTIVE";
} break;
case library_throughput: {
value = "PASSIVE";
} break;
}
} else {
switch (__kmp_library) {
case library_serial: {
value = "serial";
} break;
case library_turnaround: {
value = "turnaround";
} break;
case library_throughput: {
value = "throughput";
} break;
}
}
if (value != NULL) {
__kmp_stg_print_str(buffer, name, value);
}
} // __kmp_stg_print_wait_policy
#if KMP_USE_MONITOR
// -----------------------------------------------------------------------------
// KMP_MONITOR_STACKSIZE
static void __kmp_stg_parse_monitor_stacksize(char const *name,
char const *value, void *data) {
__kmp_stg_parse_size(name, value, __kmp_sys_min_stksize, KMP_MAX_STKSIZE,
NULL, &__kmp_monitor_stksize, 1);
} // __kmp_stg_parse_monitor_stacksize
static void __kmp_stg_print_monitor_stacksize(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
if (__kmp_monitor_stksize > 0)
KMP_STR_BUF_PRINT_NAME_EX(name);
else
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
if (__kmp_monitor_stksize > 0) {
__kmp_str_buf_print_size(buffer, __kmp_monitor_stksize);
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
if (__kmp_env_format && __kmp_monitor_stksize) {
__kmp_str_buf_print(buffer, "'\n");
}
} // __kmp_stg_print_monitor_stacksize
#endif // KMP_USE_MONITOR
// -----------------------------------------------------------------------------
// KMP_SETTINGS
static void __kmp_stg_parse_settings(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_settings);
} // __kmp_stg_parse_settings
static void __kmp_stg_print_settings(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_settings);
} // __kmp_stg_print_settings
// -----------------------------------------------------------------------------
// KMP_STACKPAD
static void __kmp_stg_parse_stackpad(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, // Env var name
value, // Env var value
KMP_MIN_STKPADDING, // Min value
KMP_MAX_STKPADDING, // Max value
&__kmp_stkpadding // Var to initialize
);
} // __kmp_stg_parse_stackpad
static void __kmp_stg_print_stackpad(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_stkpadding);
} // __kmp_stg_print_stackpad
// -----------------------------------------------------------------------------
// KMP_STACKOFFSET
static void __kmp_stg_parse_stackoffset(char const *name, char const *value,
void *data) {
__kmp_stg_parse_size(name, // Env var name
value, // Env var value
KMP_MIN_STKOFFSET, // Min value
KMP_MAX_STKOFFSET, // Max value
NULL, //
&__kmp_stkoffset, // Var to initialize
1);
} // __kmp_stg_parse_stackoffset
static void __kmp_stg_print_stackoffset(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_size(buffer, name, __kmp_stkoffset);
} // __kmp_stg_print_stackoffset
// -----------------------------------------------------------------------------
// KMP_STACKSIZE, OMP_STACKSIZE, GOMP_STACKSIZE
static void __kmp_stg_parse_stacksize(char const *name, char const *value,
void *data) {
kmp_stg_ss_data_t *stacksize = (kmp_stg_ss_data_t *)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, stacksize->rivals);
if (rc) {
return;
}
__kmp_stg_parse_size(name, // Env var name
value, // Env var value
__kmp_sys_min_stksize, // Min value
KMP_MAX_STKSIZE, // Max value
&__kmp_env_stksize, //
&__kmp_stksize, // Var to initialize
stacksize->factor);
} // __kmp_stg_parse_stacksize
// This function is called for printing both KMP_STACKSIZE (factor is 1) and
// OMP_STACKSIZE (factor is 1024). Currently it is not possible to print
// OMP_STACKSIZE value in bytes. We can consider adding this possibility by a
// customer request in future.
static void __kmp_stg_print_stacksize(kmp_str_buf_t *buffer, char const *name,
void *data) {
kmp_stg_ss_data_t *stacksize = (kmp_stg_ss_data_t *)data;
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
__kmp_str_buf_print_size(buffer, (__kmp_stksize % 1024)
? __kmp_stksize / stacksize->factor
: __kmp_stksize);
__kmp_str_buf_print(buffer, "'\n");
} else {
__kmp_str_buf_print(buffer, " %s=", name);
__kmp_str_buf_print_size(buffer, (__kmp_stksize % 1024)
? __kmp_stksize / stacksize->factor
: __kmp_stksize);
__kmp_str_buf_print(buffer, "\n");
}
} // __kmp_stg_print_stacksize
// -----------------------------------------------------------------------------
// KMP_VERSION
static void __kmp_stg_parse_version(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_version);
} // __kmp_stg_parse_version
static void __kmp_stg_print_version(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_version);
} // __kmp_stg_print_version
// -----------------------------------------------------------------------------
// KMP_WARNINGS
static void __kmp_stg_parse_warnings(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_generate_warnings);
if (__kmp_generate_warnings != kmp_warnings_off) {
// AC: only 0/1 values documented, so reset to explicit to distinguish from
// default setting
__kmp_generate_warnings = kmp_warnings_explicit;
}
} // __kmp_stg_parse_warnings
static void __kmp_stg_print_warnings(kmp_str_buf_t *buffer, char const *name,
void *data) {
// AC: TODO: change to print_int? (needs documentation change)
__kmp_stg_print_bool(buffer, name, __kmp_generate_warnings);
} // __kmp_stg_print_warnings
// -----------------------------------------------------------------------------
// KMP_NESTING_MODE
static void __kmp_stg_parse_nesting_mode(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_nesting_mode);
#if KMP_AFFINITY_SUPPORTED && KMP_USE_HWLOC
if (__kmp_nesting_mode > 0)
__kmp_affinity_top_method = affinity_top_method_hwloc;
#endif
} // __kmp_stg_parse_nesting_mode
static void __kmp_stg_print_nesting_mode(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, "=%d\n", __kmp_nesting_mode);
} // __kmp_stg_print_nesting_mode
// -----------------------------------------------------------------------------
// OMP_NESTED, OMP_NUM_THREADS
static void __kmp_stg_parse_nested(char const *name, char const *value,
void *data) {
int nested;
KMP_INFORM(EnvVarDeprecated, name, "OMP_MAX_ACTIVE_LEVELS");
__kmp_stg_parse_bool(name, value, &nested);
if (nested) {
if (!__kmp_dflt_max_active_levels_set)
__kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
} else { // nesting explicitly turned off
__kmp_dflt_max_active_levels = 1;
__kmp_dflt_max_active_levels_set = true;
}
} // __kmp_stg_parse_nested
static void __kmp_stg_print_nested(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, ": deprecated; max-active-levels-var=%d\n",
__kmp_dflt_max_active_levels);
} // __kmp_stg_print_nested
static void __kmp_parse_nested_num_threads(const char *var, const char *env,
kmp_nested_nthreads_t *nth_array) {
const char *next = env;
const char *scan = next;
int total = 0; // Count elements that were set. It'll be used as an array size
int prev_comma = FALSE; // For correct processing sequential commas
// Count the number of values in the env. var string
for (;;) {
SKIP_WS(next);
if (*next == '\0') {
break;
}
// Next character is not an integer or not a comma => end of list
if (((*next < '0') || (*next > '9')) && (*next != ',')) {
KMP_WARNING(NthSyntaxError, var, env);
return;
}
// The next character is ','
if (*next == ',') {
// ',' is the first character
if (total == 0 || prev_comma) {
total++;
}
prev_comma = TRUE;
next++; // skip ','
SKIP_WS(next);
}
// Next character is a digit
if (*next >= '0' && *next <= '9') {
prev_comma = FALSE;
SKIP_DIGITS(next);
total++;
const char *tmp = next;
SKIP_WS(tmp);
if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) {
KMP_WARNING(NthSpacesNotAllowed, var, env);
return;
}
}
}
if (!__kmp_dflt_max_active_levels_set && total > 1)
__kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
KMP_DEBUG_ASSERT(total > 0);
if (total <= 0) {
KMP_WARNING(NthSyntaxError, var, env);
return;
}
// Check if the nested nthreads array exists
if (!nth_array->nth) {
// Allocate an array of double size
nth_array->nth = (int *)KMP_INTERNAL_MALLOC(sizeof(int) * total * 2);
if (nth_array->nth == NULL) {
KMP_FATAL(MemoryAllocFailed);
}
nth_array->size = total * 2;
} else {
if (nth_array->size < total) {
// Increase the array size
do {
nth_array->size *= 2;
} while (nth_array->size < total);
nth_array->nth = (int *)KMP_INTERNAL_REALLOC(
nth_array->nth, sizeof(int) * nth_array->size);
if (nth_array->nth == NULL) {
KMP_FATAL(MemoryAllocFailed);
}
}
}
nth_array->used = total;
int i = 0;
prev_comma = FALSE;
total = 0;
// Save values in the array
for (;;) {
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
// The next character is ','
if (*scan == ',') {
// ',' in the beginning of the list
if (total == 0) {
// The value is supposed to be equal to __kmp_avail_proc but it is
// unknown at the moment.
// So let's put a placeholder (#threads = 0) to correct it later.
nth_array->nth[i++] = 0;
total++;
} else if (prev_comma) {
// Num threads is inherited from the previous level
nth_array->nth[i] = nth_array->nth[i - 1];
i++;
total++;
}
prev_comma = TRUE;
scan++; // skip ','
SKIP_WS(scan);
}
// Next character is a digit
if (*scan >= '0' && *scan <= '9') {
int num;
const char *buf = scan;
char const *msg = NULL;
prev_comma = FALSE;
SKIP_DIGITS(scan);
total++;
num = __kmp_str_to_int(buf, *scan);
if (num < KMP_MIN_NTH) {
msg = KMP_I18N_STR(ValueTooSmall);
num = KMP_MIN_NTH;
} else if (num > __kmp_sys_max_nth) {
msg = KMP_I18N_STR(ValueTooLarge);
num = __kmp_sys_max_nth;
}
if (msg != NULL) {
// Message is not empty. Print warning.
KMP_WARNING(ParseSizeIntWarn, var, env, msg);
KMP_INFORM(Using_int_Value, var, num);
}
nth_array->nth[i++] = num;
}
}
}
static void __kmp_stg_parse_num_threads(char const *name, char const *value,
void *data) {
// TODO: Remove this option. OMP_NUM_THREADS is a list of positive integers!
if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) {
// The array of 1 element
__kmp_nested_nth.nth = (int *)KMP_INTERNAL_MALLOC(sizeof(int));
__kmp_nested_nth.size = __kmp_nested_nth.used = 1;
__kmp_nested_nth.nth[0] = __kmp_dflt_team_nth = __kmp_dflt_team_nth_ub =
__kmp_xproc;
} else {
__kmp_parse_nested_num_threads(name, value, &__kmp_nested_nth);
if (__kmp_nested_nth.nth) {
__kmp_dflt_team_nth = __kmp_nested_nth.nth[0];
if (__kmp_dflt_team_nth_ub < __kmp_dflt_team_nth) {
__kmp_dflt_team_nth_ub = __kmp_dflt_team_nth;
}
}
}
K_DIAG(1, ("__kmp_dflt_team_nth == %d\n", __kmp_dflt_team_nth));
} // __kmp_stg_parse_num_threads
static void __kmp_stg_parse_num_hidden_helper_threads(char const *name,
char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, 16, &__kmp_hidden_helper_threads_num);
// If the number of hidden helper threads is zero, we disable hidden helper
// task
if (__kmp_hidden_helper_threads_num == 0) {
__kmp_enable_hidden_helper = FALSE;
}
} // __kmp_stg_parse_num_hidden_helper_threads
static void __kmp_stg_print_num_hidden_helper_threads(kmp_str_buf_t *buffer,
char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_hidden_helper_threads_num);
} // __kmp_stg_print_num_hidden_helper_threads
static void __kmp_stg_parse_use_hidden_helper(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_enable_hidden_helper);
#if !KMP_OS_LINUX
__kmp_enable_hidden_helper = FALSE;
K_DIAG(1,
("__kmp_stg_parse_use_hidden_helper: Disable hidden helper task on "
"non-Linux platform although it is enabled by user explicitly.\n"));
#endif
} // __kmp_stg_parse_use_hidden_helper
static void __kmp_stg_print_use_hidden_helper(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_enable_hidden_helper);
} // __kmp_stg_print_use_hidden_helper
static void __kmp_stg_print_num_threads(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
if (__kmp_nested_nth.used) {
kmp_str_buf_t buf;
__kmp_str_buf_init(&buf);
for (int i = 0; i < __kmp_nested_nth.used; i++) {
__kmp_str_buf_print(&buf, "%d", __kmp_nested_nth.nth[i]);
if (i < __kmp_nested_nth.used - 1) {
__kmp_str_buf_print(&buf, ",");
}
}
__kmp_str_buf_print(buffer, "='%s'\n", buf.str);
__kmp_str_buf_free(&buf);
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} // __kmp_stg_print_num_threads
// -----------------------------------------------------------------------------
// OpenMP 3.0: KMP_TASKING, OMP_MAX_ACTIVE_LEVELS,
static void __kmp_stg_parse_tasking(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, (int)tskm_max,
(int *)&__kmp_tasking_mode);
} // __kmp_stg_parse_tasking
static void __kmp_stg_print_tasking(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_tasking_mode);
} // __kmp_stg_print_tasking
static void __kmp_stg_parse_task_stealing(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, 1,
(int *)&__kmp_task_stealing_constraint);
} // __kmp_stg_parse_task_stealing
static void __kmp_stg_print_task_stealing(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_task_stealing_constraint);
} // __kmp_stg_print_task_stealing
static void __kmp_stg_parse_max_active_levels(char const *name,
char const *value, void *data) {
kmp_uint64 tmp_dflt = 0;
char const *msg = NULL;
if (!__kmp_dflt_max_active_levels_set) {
// Don't overwrite __kmp_dflt_max_active_levels if we get an invalid setting
__kmp_str_to_uint(value, &tmp_dflt, &msg);
if (msg != NULL) { // invalid setting; print warning and ignore
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
} else if (tmp_dflt > KMP_MAX_ACTIVE_LEVELS_LIMIT) {
// invalid setting; print warning and ignore
msg = KMP_I18N_STR(ValueTooLarge);
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
} else { // valid setting
__kmp_type_convert(tmp_dflt, &(__kmp_dflt_max_active_levels));
__kmp_dflt_max_active_levels_set = true;
}
}
} // __kmp_stg_parse_max_active_levels
static void __kmp_stg_print_max_active_levels(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_dflt_max_active_levels);
} // __kmp_stg_print_max_active_levels
// -----------------------------------------------------------------------------
// OpenMP 4.0: OMP_DEFAULT_DEVICE
static void __kmp_stg_parse_default_device(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, KMP_MAX_DEFAULT_DEVICE_LIMIT,
&__kmp_default_device);
} // __kmp_stg_parse_default_device
static void __kmp_stg_print_default_device(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_default_device);
} // __kmp_stg_print_default_device
// -----------------------------------------------------------------------------
// OpenMP 5.0: OMP_TARGET_OFFLOAD
static void __kmp_stg_parse_target_offload(char const *name, char const *value,
void *data) {
const char *next = value;
const char *scan = next;
__kmp_target_offload = tgt_default;
SKIP_WS(next);
if (*next == '\0')
return;
scan = next;
if (!__kmp_strcasecmp_with_sentinel("mandatory", scan, 0)) {
__kmp_target_offload = tgt_mandatory;
} else if (!__kmp_strcasecmp_with_sentinel("disabled", scan, 0)) {
__kmp_target_offload = tgt_disabled;
} else if (!__kmp_strcasecmp_with_sentinel("default", scan, 0)) {
__kmp_target_offload = tgt_default;
} else {
KMP_WARNING(SyntaxErrorUsing, name, "DEFAULT");
}
} // __kmp_stg_parse_target_offload
static void __kmp_stg_print_target_offload(kmp_str_buf_t *buffer,
char const *name, void *data) {
const char *value = NULL;
if (__kmp_target_offload == tgt_default)
value = "DEFAULT";
else if (__kmp_target_offload == tgt_mandatory)
value = "MANDATORY";
else if (__kmp_target_offload == tgt_disabled)
value = "DISABLED";
KMP_DEBUG_ASSERT(value);
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, "=%s\n", value);
} // __kmp_stg_print_target_offload
// -----------------------------------------------------------------------------
// OpenMP 4.5: OMP_MAX_TASK_PRIORITY
static void __kmp_stg_parse_max_task_priority(char const *name,
char const *value, void *data) {
__kmp_stg_parse_int(name, value, 0, KMP_MAX_TASK_PRIORITY_LIMIT,
&__kmp_max_task_priority);
} // __kmp_stg_parse_max_task_priority
static void __kmp_stg_print_max_task_priority(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_max_task_priority);
} // __kmp_stg_print_max_task_priority
// KMP_TASKLOOP_MIN_TASKS
// taskloop threshold to switch from recursive to linear tasks creation
static void __kmp_stg_parse_taskloop_min_tasks(char const *name,
char const *value, void *data) {
int tmp;
__kmp_stg_parse_int(name, value, 0, INT_MAX, &tmp);
__kmp_taskloop_min_tasks = tmp;
} // __kmp_stg_parse_taskloop_min_tasks
static void __kmp_stg_print_taskloop_min_tasks(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_uint64(buffer, name, __kmp_taskloop_min_tasks);
} // __kmp_stg_print_taskloop_min_tasks
// -----------------------------------------------------------------------------
// KMP_DISP_NUM_BUFFERS
static void __kmp_stg_parse_disp_buffers(char const *name, char const *value,
void *data) {
if (TCR_4(__kmp_init_serial)) {
KMP_WARNING(EnvSerialWarn, name);
return;
} // read value before serial initialization only
__kmp_stg_parse_int(name, value, KMP_MIN_DISP_NUM_BUFF, KMP_MAX_DISP_NUM_BUFF,
&__kmp_dispatch_num_buffers);
} // __kmp_stg_parse_disp_buffers
static void __kmp_stg_print_disp_buffers(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_dispatch_num_buffers);
} // __kmp_stg_print_disp_buffers
#if KMP_NESTED_HOT_TEAMS
// -----------------------------------------------------------------------------
// KMP_HOT_TEAMS_MAX_LEVEL, KMP_HOT_TEAMS_MODE
static void __kmp_stg_parse_hot_teams_level(char const *name, char const *value,
void *data) {
if (TCR_4(__kmp_init_parallel)) {
KMP_WARNING(EnvParallelWarn, name);
return;
} // read value before first parallel only
__kmp_stg_parse_int(name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT,
&__kmp_hot_teams_max_level);
} // __kmp_stg_parse_hot_teams_level
static void __kmp_stg_print_hot_teams_level(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_hot_teams_max_level);
} // __kmp_stg_print_hot_teams_level
static void __kmp_stg_parse_hot_teams_mode(char const *name, char const *value,
void *data) {
if (TCR_4(__kmp_init_parallel)) {
KMP_WARNING(EnvParallelWarn, name);
return;
} // read value before first parallel only
__kmp_stg_parse_int(name, value, 0, KMP_MAX_ACTIVE_LEVELS_LIMIT,
&__kmp_hot_teams_mode);
} // __kmp_stg_parse_hot_teams_mode
static void __kmp_stg_print_hot_teams_mode(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_hot_teams_mode);
} // __kmp_stg_print_hot_teams_mode
#endif // KMP_NESTED_HOT_TEAMS
// -----------------------------------------------------------------------------
// KMP_HANDLE_SIGNALS
#if KMP_HANDLE_SIGNALS
static void __kmp_stg_parse_handle_signals(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_handle_signals);
} // __kmp_stg_parse_handle_signals
static void __kmp_stg_print_handle_signals(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_handle_signals);
} // __kmp_stg_print_handle_signals
#endif // KMP_HANDLE_SIGNALS
// -----------------------------------------------------------------------------
// KMP_X_DEBUG, KMP_DEBUG, KMP_DEBUG_BUF_*, KMP_DIAG
#ifdef KMP_DEBUG
#define KMP_STG_X_DEBUG(x) \
static void __kmp_stg_parse_##x##_debug(char const *name, char const *value, \
void *data) { \
__kmp_stg_parse_int(name, value, 0, INT_MAX, &kmp_##x##_debug); \
} /* __kmp_stg_parse_x_debug */ \
static void __kmp_stg_print_##x##_debug(kmp_str_buf_t *buffer, \
char const *name, void *data) { \
__kmp_stg_print_int(buffer, name, kmp_##x##_debug); \
} /* __kmp_stg_print_x_debug */
KMP_STG_X_DEBUG(a)
KMP_STG_X_DEBUG(b)
KMP_STG_X_DEBUG(c)
KMP_STG_X_DEBUG(d)
KMP_STG_X_DEBUG(e)
KMP_STG_X_DEBUG(f)
#undef KMP_STG_X_DEBUG
static void __kmp_stg_parse_debug(char const *name, char const *value,
void *data) {
int debug = 0;
__kmp_stg_parse_int(name, value, 0, INT_MAX, &debug);
if (kmp_a_debug < debug) {
kmp_a_debug = debug;
}
if (kmp_b_debug < debug) {
kmp_b_debug = debug;
}
if (kmp_c_debug < debug) {
kmp_c_debug = debug;
}
if (kmp_d_debug < debug) {
kmp_d_debug = debug;
}
if (kmp_e_debug < debug) {
kmp_e_debug = debug;
}
if (kmp_f_debug < debug) {
kmp_f_debug = debug;
}
} // __kmp_stg_parse_debug
static void __kmp_stg_parse_debug_buf(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_debug_buf);
// !!! TODO: Move buffer initialization of of this file! It may works
// incorrectly if KMP_DEBUG_BUF is parsed before KMP_DEBUG_BUF_LINES or
// KMP_DEBUG_BUF_CHARS.
if (__kmp_debug_buf) {
int i;
int elements = __kmp_debug_buf_lines * __kmp_debug_buf_chars;
/* allocate and initialize all entries in debug buffer to empty */
__kmp_debug_buffer = (char *)__kmp_page_allocate(elements * sizeof(char));
for (i = 0; i < elements; i += __kmp_debug_buf_chars)
__kmp_debug_buffer[i] = '\0';
__kmp_debug_count = 0;
}
K_DIAG(1, ("__kmp_debug_buf = %d\n", __kmp_debug_buf));
} // __kmp_stg_parse_debug_buf
static void __kmp_stg_print_debug_buf(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_debug_buf);
} // __kmp_stg_print_debug_buf
static void __kmp_stg_parse_debug_buf_atomic(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_debug_buf_atomic);
} // __kmp_stg_parse_debug_buf_atomic
static void __kmp_stg_print_debug_buf_atomic(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_debug_buf_atomic);
} // __kmp_stg_print_debug_buf_atomic
static void __kmp_stg_parse_debug_buf_chars(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, KMP_DEBUG_BUF_CHARS_MIN, INT_MAX,
&__kmp_debug_buf_chars);
} // __kmp_stg_debug_parse_buf_chars
static void __kmp_stg_print_debug_buf_chars(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_debug_buf_chars);
} // __kmp_stg_print_debug_buf_chars
static void __kmp_stg_parse_debug_buf_lines(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, KMP_DEBUG_BUF_LINES_MIN, INT_MAX,
&__kmp_debug_buf_lines);
} // __kmp_stg_parse_debug_buf_lines
static void __kmp_stg_print_debug_buf_lines(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_debug_buf_lines);
} // __kmp_stg_print_debug_buf_lines
static void __kmp_stg_parse_diag(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, INT_MAX, &kmp_diag);
} // __kmp_stg_parse_diag
static void __kmp_stg_print_diag(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, kmp_diag);
} // __kmp_stg_print_diag
#endif // KMP_DEBUG
// -----------------------------------------------------------------------------
// KMP_ALIGN_ALLOC
static void __kmp_stg_parse_align_alloc(char const *name, char const *value,
void *data) {
__kmp_stg_parse_size(name, value, CACHE_LINE, INT_MAX, NULL,
&__kmp_align_alloc, 1);
} // __kmp_stg_parse_align_alloc
static void __kmp_stg_print_align_alloc(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_size(buffer, name, __kmp_align_alloc);
} // __kmp_stg_print_align_alloc
// -----------------------------------------------------------------------------
// KMP_PLAIN_BARRIER, KMP_FORKJOIN_BARRIER, KMP_REDUCTION_BARRIER
// TODO: Remove __kmp_barrier_branch_bit_env_name varibale, remove loops from
// parse and print functions, pass required info through data argument.
static void __kmp_stg_parse_barrier_branch_bit(char const *name,
char const *value, void *data) {
const char *var;
/* ---------- Barrier branch bit control ------------ */
for (int i = bs_plain_barrier; i < bs_last_barrier; i++) {
var = __kmp_barrier_branch_bit_env_name[i];
if ((strcmp(var, name) == 0) && (value != 0)) {
char *comma;
comma = CCAST(char *, strchr(value, ','));
__kmp_barrier_gather_branch_bits[i] =
(kmp_uint32)__kmp_str_to_int(value, ',');
/* is there a specified release parameter? */
if (comma == NULL) {
__kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
} else {
__kmp_barrier_release_branch_bits[i] =
(kmp_uint32)__kmp_str_to_int(comma + 1, 0);
if (__kmp_barrier_release_branch_bits[i] > KMP_MAX_BRANCH_BITS) {
__kmp_msg(kmp_ms_warning,
KMP_MSG(BarrReleaseValueInvalid, name, comma + 1),
__kmp_msg_null);
__kmp_barrier_release_branch_bits[i] = __kmp_barrier_release_bb_dflt;
}
}
if (__kmp_barrier_gather_branch_bits[i] > KMP_MAX_BRANCH_BITS) {
KMP_WARNING(BarrGatherValueInvalid, name, value);
KMP_INFORM(Using_uint_Value, name, __kmp_barrier_gather_bb_dflt);
__kmp_barrier_gather_branch_bits[i] = __kmp_barrier_gather_bb_dflt;
}
}
K_DIAG(1, ("%s == %d,%d\n", __kmp_barrier_branch_bit_env_name[i],
__kmp_barrier_gather_branch_bits[i],
__kmp_barrier_release_branch_bits[i]))
}
} // __kmp_stg_parse_barrier_branch_bit
static void __kmp_stg_print_barrier_branch_bit(kmp_str_buf_t *buffer,
char const *name, void *data) {
const char *var;
for (int i = bs_plain_barrier; i < bs_last_barrier; i++) {
var = __kmp_barrier_branch_bit_env_name[i];
if (strcmp(var, name) == 0) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(__kmp_barrier_branch_bit_env_name[i]);
} else {
__kmp_str_buf_print(buffer, " %s='",
__kmp_barrier_branch_bit_env_name[i]);
}
__kmp_str_buf_print(buffer, "%d,%d'\n",
__kmp_barrier_gather_branch_bits[i],
__kmp_barrier_release_branch_bits[i]);
}
}
} // __kmp_stg_print_barrier_branch_bit
// ----------------------------------------------------------------------------
// KMP_PLAIN_BARRIER_PATTERN, KMP_FORKJOIN_BARRIER_PATTERN,
// KMP_REDUCTION_BARRIER_PATTERN
// TODO: Remove __kmp_barrier_pattern_name variable, remove loops from parse and
// print functions, pass required data to functions through data argument.
static void __kmp_stg_parse_barrier_pattern(char const *name, char const *value,
void *data) {
const char *var;
/* ---------- Barrier method control ------------ */
static int dist_req = 0, non_dist_req = 0;
static bool warn = 1;
for (int i = bs_plain_barrier; i < bs_last_barrier; i++) {
var = __kmp_barrier_pattern_env_name[i];
if ((strcmp(var, name) == 0) && (value != 0)) {
int j;
char *comma = CCAST(char *, strchr(value, ','));
/* handle first parameter: gather pattern */
for (j = bp_linear_bar; j < bp_last_bar; j++) {
if (__kmp_match_with_sentinel(__kmp_barrier_pattern_name[j], value, 1,
',')) {
if (j == bp_dist_bar) {
dist_req++;
} else {
non_dist_req++;
}
__kmp_barrier_gather_pattern[i] = (kmp_bar_pat_e)j;
break;
}
}
if (j == bp_last_bar) {
KMP_WARNING(BarrGatherValueInvalid, name, value);
KMP_INFORM(Using_str_Value, name,
__kmp_barrier_pattern_name[bp_linear_bar]);
}
/* handle second parameter: release pattern */
if (comma != NULL) {
for (j = bp_linear_bar; j < bp_last_bar; j++) {
if (__kmp_str_match(__kmp_barrier_pattern_name[j], 1, comma + 1)) {
if (j == bp_dist_bar) {
dist_req++;
} else {
non_dist_req++;
}
__kmp_barrier_release_pattern[i] = (kmp_bar_pat_e)j;
break;
}
}
if (j == bp_last_bar) {
__kmp_msg(kmp_ms_warning,
KMP_MSG(BarrReleaseValueInvalid, name, comma + 1),
__kmp_msg_null);
KMP_INFORM(Using_str_Value, name,
__kmp_barrier_pattern_name[bp_linear_bar]);
}
}
}
}
if (dist_req != 0) {
// set all barriers to dist
if ((non_dist_req != 0) && warn) {
KMP_INFORM(BarrierPatternOverride, name,
__kmp_barrier_pattern_name[bp_dist_bar]);
warn = 0;
}
for (int i = bs_plain_barrier; i < bs_last_barrier; i++) {
if (__kmp_barrier_release_pattern[i] != bp_dist_bar)
__kmp_barrier_release_pattern[i] = bp_dist_bar;
if (__kmp_barrier_gather_pattern[i] != bp_dist_bar)
__kmp_barrier_gather_pattern[i] = bp_dist_bar;
}
}
} // __kmp_stg_parse_barrier_pattern
static void __kmp_stg_print_barrier_pattern(kmp_str_buf_t *buffer,
char const *name, void *data) {
const char *var;
for (int i = bs_plain_barrier; i < bs_last_barrier; i++) {
var = __kmp_barrier_pattern_env_name[i];
if (strcmp(var, name) == 0) {
int j = __kmp_barrier_gather_pattern[i];
int k = __kmp_barrier_release_pattern[i];
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(__kmp_barrier_pattern_env_name[i]);
} else {
__kmp_str_buf_print(buffer, " %s='",
__kmp_barrier_pattern_env_name[i]);
}
KMP_DEBUG_ASSERT(j < bp_last_bar && k < bp_last_bar);
__kmp_str_buf_print(buffer, "%s,%s'\n", __kmp_barrier_pattern_name[j],
__kmp_barrier_pattern_name[k]);
}
}
} // __kmp_stg_print_barrier_pattern
// -----------------------------------------------------------------------------
// KMP_ABORT_DELAY
static void __kmp_stg_parse_abort_delay(char const *name, char const *value,
void *data) {
// Units of KMP_DELAY_ABORT are seconds, units of __kmp_abort_delay is
// milliseconds.
int delay = __kmp_abort_delay / 1000;
__kmp_stg_parse_int(name, value, 0, INT_MAX / 1000, &delay);
__kmp_abort_delay = delay * 1000;
} // __kmp_stg_parse_abort_delay
static void __kmp_stg_print_abort_delay(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_abort_delay);
} // __kmp_stg_print_abort_delay
// -----------------------------------------------------------------------------
// KMP_CPUINFO_FILE
static void __kmp_stg_parse_cpuinfo_file(char const *name, char const *value,
void *data) {
#if KMP_AFFINITY_SUPPORTED
__kmp_stg_parse_str(name, value, &__kmp_cpuinfo_file);
K_DIAG(1, ("__kmp_cpuinfo_file == %s\n", __kmp_cpuinfo_file));
#endif
} //__kmp_stg_parse_cpuinfo_file
static void __kmp_stg_print_cpuinfo_file(kmp_str_buf_t *buffer,
char const *name, void *data) {
#if KMP_AFFINITY_SUPPORTED
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
if (__kmp_cpuinfo_file) {
__kmp_str_buf_print(buffer, "='%s'\n", __kmp_cpuinfo_file);
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
#endif
} //__kmp_stg_print_cpuinfo_file
// -----------------------------------------------------------------------------
// KMP_FORCE_REDUCTION, KMP_DETERMINISTIC_REDUCTION
static void __kmp_stg_parse_force_reduction(char const *name, char const *value,
void *data) {
kmp_stg_fr_data_t *reduction = (kmp_stg_fr_data_t *)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, reduction->rivals);
if (rc) {
return;
}
if (reduction->force) {
if (value != 0) {
if (__kmp_str_match("critical", 0, value))
__kmp_force_reduction_method = critical_reduce_block;
else if (__kmp_str_match("atomic", 0, value))
__kmp_force_reduction_method = atomic_reduce_block;
else if (__kmp_str_match("tree", 0, value))
__kmp_force_reduction_method = tree_reduce_block;
else {
KMP_FATAL(UnknownForceReduction, name, value);
}
}
} else {
__kmp_stg_parse_bool(name, value, &__kmp_determ_red);
if (__kmp_determ_red) {
__kmp_force_reduction_method = tree_reduce_block;
} else {
__kmp_force_reduction_method = reduction_method_not_defined;
}
}
K_DIAG(1, ("__kmp_force_reduction_method == %d\n",
__kmp_force_reduction_method));
} // __kmp_stg_parse_force_reduction
static void __kmp_stg_print_force_reduction(kmp_str_buf_t *buffer,
char const *name, void *data) {
kmp_stg_fr_data_t *reduction = (kmp_stg_fr_data_t *)data;
if (reduction->force) {
if (__kmp_force_reduction_method == critical_reduce_block) {
__kmp_stg_print_str(buffer, name, "critical");
} else if (__kmp_force_reduction_method == atomic_reduce_block) {
__kmp_stg_print_str(buffer, name, "atomic");
} else if (__kmp_force_reduction_method == tree_reduce_block) {
__kmp_stg_print_str(buffer, name, "tree");
} else {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} else {
__kmp_stg_print_bool(buffer, name, __kmp_determ_red);
}
} // __kmp_stg_print_force_reduction
// -----------------------------------------------------------------------------
// KMP_STORAGE_MAP
static void __kmp_stg_parse_storage_map(char const *name, char const *value,
void *data) {
if (__kmp_str_match("verbose", 1, value)) {
__kmp_storage_map = TRUE;
__kmp_storage_map_verbose = TRUE;
__kmp_storage_map_verbose_specified = TRUE;
} else {
__kmp_storage_map_verbose = FALSE;
__kmp_stg_parse_bool(name, value, &__kmp_storage_map); // !!!
}
} // __kmp_stg_parse_storage_map
static void __kmp_stg_print_storage_map(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_storage_map_verbose || __kmp_storage_map_verbose_specified) {
__kmp_stg_print_str(buffer, name, "verbose");
} else {
__kmp_stg_print_bool(buffer, name, __kmp_storage_map);
}
} // __kmp_stg_print_storage_map
// -----------------------------------------------------------------------------
// KMP_ALL_THREADPRIVATE
static void __kmp_stg_parse_all_threadprivate(char const *name,
char const *value, void *data) {
__kmp_stg_parse_int(name, value,
__kmp_allThreadsSpecified ? __kmp_max_nth : 1,
__kmp_max_nth, &__kmp_tp_capacity);
} // __kmp_stg_parse_all_threadprivate
static void __kmp_stg_print_all_threadprivate(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_tp_capacity);
}
// -----------------------------------------------------------------------------
// KMP_FOREIGN_THREADS_THREADPRIVATE
static void __kmp_stg_parse_foreign_threads_threadprivate(char const *name,
char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_foreign_tp);
} // __kmp_stg_parse_foreign_threads_threadprivate
static void __kmp_stg_print_foreign_threads_threadprivate(kmp_str_buf_t *buffer,
char const *name,
void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_foreign_tp);
} // __kmp_stg_print_foreign_threads_threadprivate
// -----------------------------------------------------------------------------
// KMP_AFFINITY, GOMP_CPU_AFFINITY, KMP_TOPOLOGY_METHOD
#if KMP_AFFINITY_SUPPORTED
// Parse the proc id list. Return TRUE if successful, FALSE otherwise.
static int __kmp_parse_affinity_proc_id_list(const char *var, const char *env,
const char **nextEnv,
char **proclist) {
const char *scan = env;
const char *next = scan;
int empty = TRUE;
*proclist = NULL;
for (;;) {
int start, end, stride;
SKIP_WS(scan);
next = scan;
if (*next == '\0') {
break;
}
if (*next == '{') {
int num;
next++; // skip '{'
SKIP_WS(next);
scan = next;
// Read the first integer in the set.
if ((*next < '0') || (*next > '9')) {
KMP_WARNING(AffSyntaxError, var);
return FALSE;
}
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT(num >= 0);
for (;;) {
// Check for end of set.
SKIP_WS(next);
if (*next == '}') {
next++; // skip '}'
break;
}
// Skip optional comma.
if (*next == ',') {
next++;
}
SKIP_WS(next);
// Read the next integer in the set.
scan = next;
if ((*next < '0') || (*next > '9')) {
KMP_WARNING(AffSyntaxError, var);
return FALSE;
}
SKIP_DIGITS(next);
num = __kmp_str_to_int(scan, *next);
KMP_ASSERT(num >= 0);
}
empty = FALSE;
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// Next character is not an integer => end of list
if ((*next < '0') || (*next > '9')) {
if (empty) {
KMP_WARNING(AffSyntaxError, var);
return FALSE;
}
break;
}
// Read the first integer.
SKIP_DIGITS(next);
start = __kmp_str_to_int(scan, *next);
KMP_ASSERT(start >= 0);
SKIP_WS(next);
// If this isn't a range, then go on.
if (*next != '-') {
empty = FALSE;
// Skip optional comma.
if (*next == ',') {
next++;
}
scan = next;
continue;
}
// This is a range. Skip over the '-' and read in the 2nd int.
next++; // skip '-'
SKIP_WS(next);
scan = next;
if ((*next < '0') || (*next > '9')) {
KMP_WARNING(AffSyntaxError, var);
return FALSE;
}
SKIP_DIGITS(next);
end = __kmp_str_to_int(scan, *next);
KMP_ASSERT(end >= 0);
// Check for a stride parameter
stride = 1;
SKIP_WS(next);
if (*next == ':') {
// A stride is specified. Skip over the ':" and read the 3rd int.
int sign = +1;
next++; // skip ':'
SKIP_WS(next);
scan = next;
if (*next == '-') {
sign = -1;
next++;
SKIP_WS(next);
scan = next;
}
if ((*next < '0') || (*next > '9')) {
KMP_WARNING(AffSyntaxError, var);
return FALSE;
}
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_ASSERT(stride >= 0);
stride *= sign;
}
// Do some range checks.
if (stride == 0) {
KMP_WARNING(AffZeroStride, var);
return FALSE;
}
if (stride > 0) {
if (start > end) {
KMP_WARNING(AffStartGreaterEnd, var, start, end);
return FALSE;
}
} else {
if (start < end) {
KMP_WARNING(AffStrideLessZero, var, start, end);
return FALSE;
}
}
if ((end - start) / stride > 65536) {
KMP_WARNING(AffRangeTooBig, var, end, start, stride);
return FALSE;
}
empty = FALSE;
// Skip optional comma.
SKIP_WS(next);
if (*next == ',') {
next++;
}
scan = next;
}
*nextEnv = next;
{
ptrdiff_t len = next - env;
char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char));
KMP_MEMCPY_S(retlist, (len + 1) * sizeof(char), env, len * sizeof(char));
retlist[len] = '\0';
*proclist = retlist;
}
return TRUE;
}
// If KMP_AFFINITY is specified without a type, then
// __kmp_affinity_notype should point to its setting.
static kmp_setting_t *__kmp_affinity_notype = NULL;
static void __kmp_parse_affinity_env(char const *name, char const *value,
enum affinity_type *out_type,
char **out_proclist, int *out_verbose,
int *out_warn, int *out_respect,
kmp_hw_t *out_gran, int *out_gran_levels,
int *out_dups, int *out_compact,
int *out_offset) {
char *buffer = NULL; // Copy of env var value.
char *buf = NULL; // Buffer for strtok_r() function.
char *next = NULL; // end of token / start of next.
const char *start; // start of current token (for err msgs)
int count = 0; // Counter of parsed integer numbers.
int number[2]; // Parsed numbers.
// Guards.
int type = 0;
int proclist = 0;
int verbose = 0;
int warnings = 0;
int respect = 0;
int gran = 0;
int dups = 0;
bool set = false;
KMP_ASSERT(value != NULL);
if (TCR_4(__kmp_init_middle)) {
KMP_WARNING(EnvMiddleWarn, name);
__kmp_env_toPrint(name, 0);
return;
}
__kmp_env_toPrint(name, 1);
buffer =
__kmp_str_format("%s", value); // Copy env var to keep original intact.
buf = buffer;
SKIP_WS(buf);
// Helper macros.
// If we see a parse error, emit a warning and scan to the next ",".
//
// FIXME - there's got to be a better way to print an error
// message, hopefully without overwriting peices of buf.
#define EMIT_WARN(skip, errlist) \
{ \
char ch; \
if (skip) { \
SKIP_TO(next, ','); \
} \
ch = *next; \
*next = '\0'; \
KMP_WARNING errlist; \
*next = ch; \
if (skip) { \
if (ch == ',') \
next++; \
} \
buf = next; \
}
#define _set_param(_guard, _var, _val) \
{ \
if (_guard == 0) { \
_var = _val; \
} else { \
EMIT_WARN(FALSE, (AffParamDefined, name, start)); \
} \
++_guard; \
}
#define set_type(val) _set_param(type, *out_type, val)
#define set_verbose(val) _set_param(verbose, *out_verbose, val)
#define set_warnings(val) _set_param(warnings, *out_warn, val)
#define set_respect(val) _set_param(respect, *out_respect, val)
#define set_dups(val) _set_param(dups, *out_dups, val)
#define set_proclist(val) _set_param(proclist, *out_proclist, val)
#define set_gran(val, levels) \
{ \
if (gran == 0) { \
*out_gran = val; \
*out_gran_levels = levels; \
} else { \
EMIT_WARN(FALSE, (AffParamDefined, name, start)); \
} \
++gran; \
}
KMP_DEBUG_ASSERT((__kmp_nested_proc_bind.bind_types != NULL) &&
(__kmp_nested_proc_bind.used > 0));
while (*buf != '\0') {
start = next = buf;
if (__kmp_match_str("none", buf, CCAST(const char **, &next))) {
set_type(affinity_none);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
buf = next;
} else if (__kmp_match_str("scatter", buf, CCAST(const char **, &next))) {
set_type(affinity_scatter);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("compact", buf, CCAST(const char **, &next))) {
set_type(affinity_compact);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("logical", buf, CCAST(const char **, &next))) {
set_type(affinity_logical);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("physical", buf, CCAST(const char **, &next))) {
set_type(affinity_physical);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("explicit", buf, CCAST(const char **, &next))) {
set_type(affinity_explicit);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("balanced", buf, CCAST(const char **, &next))) {
set_type(affinity_balanced);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
buf = next;
} else if (__kmp_match_str("disabled", buf, CCAST(const char **, &next))) {
set_type(affinity_disabled);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
buf = next;
} else if (__kmp_match_str("verbose", buf, CCAST(const char **, &next))) {
set_verbose(TRUE);
buf = next;
} else if (__kmp_match_str("noverbose", buf, CCAST(const char **, &next))) {
set_verbose(FALSE);
buf = next;
} else if (__kmp_match_str("warnings", buf, CCAST(const char **, &next))) {
set_warnings(TRUE);
buf = next;
} else if (__kmp_match_str("nowarnings", buf,
CCAST(const char **, &next))) {
set_warnings(FALSE);
buf = next;
} else if (__kmp_match_str("respect", buf, CCAST(const char **, &next))) {
set_respect(TRUE);
buf = next;
} else if (__kmp_match_str("norespect", buf, CCAST(const char **, &next))) {
set_respect(FALSE);
buf = next;
} else if (__kmp_match_str("duplicates", buf,
CCAST(const char **, &next)) ||
__kmp_match_str("dups", buf, CCAST(const char **, &next))) {
set_dups(TRUE);
buf = next;
} else if (__kmp_match_str("noduplicates", buf,
CCAST(const char **, &next)) ||
__kmp_match_str("nodups", buf, CCAST(const char **, &next))) {
set_dups(FALSE);
buf = next;
} else if (__kmp_match_str("granularity", buf,
CCAST(const char **, &next)) ||
__kmp_match_str("gran", buf, CCAST(const char **, &next))) {
SKIP_WS(next);
if (*next != '=') {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
next++; // skip '='
SKIP_WS(next);
buf = next;
// Try any hardware topology type for granularity
KMP_FOREACH_HW_TYPE(type) {
const char *name = __kmp_hw_get_keyword(type);
if (__kmp_match_str(name, buf, CCAST(const char **, &next))) {
set_gran(type, -1);
buf = next;
set = true;
break;
}
}
if (!set) {
// Support older names for different granularity layers
if (__kmp_match_str("fine", buf, CCAST(const char **, &next))) {
set_gran(KMP_HW_THREAD, -1);
buf = next;
set = true;
} else if (__kmp_match_str("package", buf,
CCAST(const char **, &next))) {
set_gran(KMP_HW_SOCKET, -1);
buf = next;
set = true;
} else if (__kmp_match_str("node", buf, CCAST(const char **, &next))) {
set_gran(KMP_HW_NUMA, -1);
buf = next;
set = true;
#if KMP_GROUP_AFFINITY
} else if (__kmp_match_str("group", buf, CCAST(const char **, &next))) {
set_gran(KMP_HW_PROC_GROUP, -1);
buf = next;
set = true;
#endif /* KMP_GROUP AFFINITY */
} else if ((*buf >= '0') && (*buf <= '9')) {
int n;
next = buf;
SKIP_DIGITS(next);
n = __kmp_str_to_int(buf, *next);
KMP_ASSERT(n >= 0);
buf = next;
set_gran(KMP_HW_UNKNOWN, n);
set = true;
} else {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
}
} else if (__kmp_match_str("proclist", buf, CCAST(const char **, &next))) {
char *temp_proclist;
SKIP_WS(next);
if (*next != '=') {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
next++; // skip '='
SKIP_WS(next);
if (*next != '[') {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
next++; // skip '['
buf = next;
if (!__kmp_parse_affinity_proc_id_list(
name, buf, CCAST(const char **, &next), &temp_proclist)) {
// warning already emitted.
SKIP_TO(next, ']');
if (*next == ']')
next++;
SKIP_TO(next, ',');
if (*next == ',')
next++;
buf = next;
continue;
}
if (*next != ']') {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
next++; // skip ']'
set_proclist(temp_proclist);
} else if ((*buf >= '0') && (*buf <= '9')) {
// Parse integer numbers -- permute and offset.
int n;
next = buf;
SKIP_DIGITS(next);
n = __kmp_str_to_int(buf, *next);
KMP_ASSERT(n >= 0);
buf = next;
if (count < 2) {
number[count] = n;
} else {
KMP_WARNING(AffManyParams, name, start);
}
++count;
} else {
EMIT_WARN(TRUE, (AffInvalidParam, name, start));
continue;
}
SKIP_WS(next);
if (*next == ',') {
next++;
SKIP_WS(next);
} else if (*next != '\0') {
const char *temp = next;
EMIT_WARN(TRUE, (ParseExtraCharsWarn, name, temp));
continue;
}
buf = next;
} // while
#undef EMIT_WARN
#undef _set_param
#undef set_type
#undef set_verbose
#undef set_warnings
#undef set_respect
#undef set_granularity
__kmp_str_free(&buffer);
if (proclist) {
if (!type) {
KMP_WARNING(AffProcListNoType, name);
*out_type = affinity_explicit;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
} else if (*out_type != affinity_explicit) {
KMP_WARNING(AffProcListNotExplicit, name);
KMP_ASSERT(*out_proclist != NULL);
KMP_INTERNAL_FREE(*out_proclist);
*out_proclist = NULL;
}
}
switch (*out_type) {
case affinity_logical:
case affinity_physical: {
if (count > 0) {
*out_offset = number[0];
}
if (count > 1) {
KMP_WARNING(AffManyParamsForLogic, name, number[1]);
}
} break;
case affinity_balanced: {
if (count > 0) {
*out_compact = number[0];
}
if (count > 1) {
*out_offset = number[1];
}
if (__kmp_affinity_gran == KMP_HW_UNKNOWN) {
#if KMP_MIC_SUPPORTED
if (__kmp_mic_type != non_mic) {
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffGranUsing, "KMP_AFFINITY", "fine");
}
__kmp_affinity_gran = KMP_HW_THREAD;
} else
#endif
{
if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
KMP_WARNING(AffGranUsing, "KMP_AFFINITY", "core");
}
__kmp_affinity_gran = KMP_HW_CORE;
}
}
} break;
case affinity_scatter:
case affinity_compact: {
if (count > 0) {
*out_compact = number[0];
}
if (count > 1) {
*out_offset = number[1];
}
} break;
case affinity_explicit: {
if (*out_proclist == NULL) {
KMP_WARNING(AffNoProcList, name);
__kmp_affinity_type = affinity_none;
}
if (count > 0) {
KMP_WARNING(AffNoParam, name, "explicit");
}
} break;
case affinity_none: {
if (count > 0) {
KMP_WARNING(AffNoParam, name, "none");
}
} break;
case affinity_disabled: {
if (count > 0) {
KMP_WARNING(AffNoParam, name, "disabled");
}
} break;
case affinity_default: {
if (count > 0) {
KMP_WARNING(AffNoParam, name, "default");
}
} break;
default: {
KMP_ASSERT(0);
}
}
} // __kmp_parse_affinity_env
static void __kmp_stg_parse_affinity(char const *name, char const *value,
void *data) {
kmp_setting_t **rivals = (kmp_setting_t **)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, rivals);
if (rc) {
return;
}
__kmp_parse_affinity_env(name, value, &__kmp_affinity_type,
&__kmp_affinity_proclist, &__kmp_affinity_verbose,
&__kmp_affinity_warnings,
&__kmp_affinity_respect_mask, &__kmp_affinity_gran,
&__kmp_affinity_gran_levels, &__kmp_affinity_dups,
&__kmp_affinity_compact, &__kmp_affinity_offset);
} // __kmp_stg_parse_affinity
static void __kmp_stg_print_affinity(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
if (__kmp_affinity_verbose) {
__kmp_str_buf_print(buffer, "%s,", "verbose");
} else {
__kmp_str_buf_print(buffer, "%s,", "noverbose");
}
if (__kmp_affinity_warnings) {
__kmp_str_buf_print(buffer, "%s,", "warnings");
} else {
__kmp_str_buf_print(buffer, "%s,", "nowarnings");
}
if (KMP_AFFINITY_CAPABLE()) {
if (__kmp_affinity_respect_mask) {
__kmp_str_buf_print(buffer, "%s,", "respect");
} else {
__kmp_str_buf_print(buffer, "%s,", "norespect");
}
__kmp_str_buf_print(buffer, "granularity=%s,",
__kmp_hw_get_keyword(__kmp_affinity_gran, false));
}
if (!KMP_AFFINITY_CAPABLE()) {
__kmp_str_buf_print(buffer, "%s", "disabled");
} else
switch (__kmp_affinity_type) {
case affinity_none:
__kmp_str_buf_print(buffer, "%s", "none");
break;
case affinity_physical:
__kmp_str_buf_print(buffer, "%s,%d", "physical", __kmp_affinity_offset);
break;
case affinity_logical:
__kmp_str_buf_print(buffer, "%s,%d", "logical", __kmp_affinity_offset);
break;
case affinity_compact:
__kmp_str_buf_print(buffer, "%s,%d,%d", "compact", __kmp_affinity_compact,
__kmp_affinity_offset);
break;
case affinity_scatter:
__kmp_str_buf_print(buffer, "%s,%d,%d", "scatter", __kmp_affinity_compact,
__kmp_affinity_offset);
break;
case affinity_explicit:
__kmp_str_buf_print(buffer, "%s=[%s],%s", "proclist",
__kmp_affinity_proclist, "explicit");
break;
case affinity_balanced:
__kmp_str_buf_print(buffer, "%s,%d,%d", "balanced",
__kmp_affinity_compact, __kmp_affinity_offset);
break;
case affinity_disabled:
__kmp_str_buf_print(buffer, "%s", "disabled");
break;
case affinity_default:
__kmp_str_buf_print(buffer, "%s", "default");
break;
default:
__kmp_str_buf_print(buffer, "%s", "<unknown>");
break;
}
__kmp_str_buf_print(buffer, "'\n");
} //__kmp_stg_print_affinity
#ifdef KMP_GOMP_COMPAT
static void __kmp_stg_parse_gomp_cpu_affinity(char const *name,
char const *value, void *data) {
const char *next = NULL;
char *temp_proclist;
kmp_setting_t **rivals = (kmp_setting_t **)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, rivals);
if (rc) {
return;
}
if (TCR_4(__kmp_init_middle)) {
KMP_WARNING(EnvMiddleWarn, name);
__kmp_env_toPrint(name, 0);
return;
}
__kmp_env_toPrint(name, 1);
if (__kmp_parse_affinity_proc_id_list(name, value, &next, &temp_proclist)) {
SKIP_WS(next);
if (*next == '\0') {
// GOMP_CPU_AFFINITY => granularity=fine,explicit,proclist=...
__kmp_affinity_proclist = temp_proclist;
__kmp_affinity_type = affinity_explicit;
__kmp_affinity_gran = KMP_HW_THREAD;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
} else {
KMP_WARNING(AffSyntaxError, name);
if (temp_proclist != NULL) {
KMP_INTERNAL_FREE((void *)temp_proclist);
}
}
} else {
// Warning already emitted
__kmp_affinity_type = affinity_none;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
}
} // __kmp_stg_parse_gomp_cpu_affinity
#endif /* KMP_GOMP_COMPAT */
/*-----------------------------------------------------------------------------
The OMP_PLACES proc id list parser. Here is the grammar:
place_list := place
place_list := place , place_list
place := num
place := place : num
place := place : num : signed
place := { subplacelist }
place := ! place // (lowest priority)
subplace_list := subplace
subplace_list := subplace , subplace_list
subplace := num
subplace := num : num
subplace := num : num : signed
signed := num
signed := + signed
signed := - signed
-----------------------------------------------------------------------------*/
// Warning to issue for syntax error during parsing of OMP_PLACES
static inline void __kmp_omp_places_syntax_warn(const char *var) {
KMP_WARNING(SyntaxErrorUsing, var, "\"cores\"");
}
static int __kmp_parse_subplace_list(const char *var, const char **scan) {
const char *next;
for (;;) {
int start, count, stride;
//
// Read in the starting proc id
//
SKIP_WS(*scan);
if ((**scan < '0') || (**scan > '9')) {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
next = *scan;
SKIP_DIGITS(next);
start = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(start >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}') {
break;
}
if (**scan == ',') {
(*scan)++; // skip ','
continue;
}
if (**scan != ':') {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
(*scan)++; // skip ':'
// Read count parameter
SKIP_WS(*scan);
if ((**scan < '0') || (**scan > '9')) {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
next = *scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(count >= 0);
*scan = next;
// valid follow sets are ',' ':' and '}'
SKIP_WS(*scan);
if (**scan == '}') {
break;
}
if (**scan == ',') {
(*scan)++; // skip ','
continue;
}
if (**scan != ':') {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
(*scan)++; // skip ':'
// Read stride parameter
int sign = +1;
for (;;) {
SKIP_WS(*scan);
if (**scan == '+') {
(*scan)++; // skip '+'
continue;
}
if (**scan == '-') {
sign *= -1;
(*scan)++; // skip '-'
continue;
}
break;
}
SKIP_WS(*scan);
if ((**scan < '0') || (**scan > '9')) {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
next = *scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(stride >= 0);
*scan = next;
stride *= sign;
// valid follow sets are ',' and '}'
SKIP_WS(*scan);
if (**scan == '}') {
break;
}
if (**scan == ',') {
(*scan)++; // skip ','
continue;
}
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
return TRUE;
}
static int __kmp_parse_place(const char *var, const char **scan) {
const char *next;
// valid follow sets are '{' '!' and num
SKIP_WS(*scan);
if (**scan == '{') {
(*scan)++; // skip '{'
if (!__kmp_parse_subplace_list(var, scan)) {
return FALSE;
}
if (**scan != '}') {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
(*scan)++; // skip '}'
} else if (**scan == '!') {
(*scan)++; // skip '!'
return __kmp_parse_place(var, scan); //'!' has lower precedence than ':'
} else if ((**scan >= '0') && (**scan <= '9')) {
next = *scan;
SKIP_DIGITS(next);
int proc = __kmp_str_to_int(*scan, *next);
KMP_ASSERT(proc >= 0);
*scan = next;
} else {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
return TRUE;
}
static int __kmp_parse_place_list(const char *var, const char *env,
char **place_list) {
const char *scan = env;
const char *next = scan;
for (;;) {
int count, stride;
if (!__kmp_parse_place(var, &scan)) {
return FALSE;
}
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
if (*scan == ',') {
scan++; // skip ','
continue;
}
if (*scan != ':') {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
scan++; // skip ':'
// Read count parameter
SKIP_WS(scan);
if ((*scan < '0') || (*scan > '9')) {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
next = scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(scan, *next);
KMP_ASSERT(count >= 0);
scan = next;
// valid follow sets are ',' ':' and EOL
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
if (*scan == ',') {
scan++; // skip ','
continue;
}
if (*scan != ':') {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
scan++; // skip ':'
// Read stride parameter
int sign = +1;
for (;;) {
SKIP_WS(scan);
if (*scan == '+') {
scan++; // skip '+'
continue;
}
if (*scan == '-') {
sign *= -1;
scan++; // skip '-'
continue;
}
break;
}
SKIP_WS(scan);
if ((*scan < '0') || (*scan > '9')) {
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
next = scan;
SKIP_DIGITS(next);
stride = __kmp_str_to_int(scan, *next);
KMP_ASSERT(stride >= 0);
scan = next;
stride *= sign;
// valid follow sets are ',' and EOL
SKIP_WS(scan);
if (*scan == '\0') {
break;
}
if (*scan == ',') {
scan++; // skip ','
continue;
}
__kmp_omp_places_syntax_warn(var);
return FALSE;
}
{
ptrdiff_t len = scan - env;
char *retlist = (char *)__kmp_allocate((len + 1) * sizeof(char));
KMP_MEMCPY_S(retlist, (len + 1) * sizeof(char), env, len * sizeof(char));
retlist[len] = '\0';
*place_list = retlist;
}
return TRUE;
}
static void __kmp_stg_parse_places(char const *name, char const *value,
void *data) {
struct kmp_place_t {
const char *name;
kmp_hw_t type;
};
int count;
bool set = false;
const char *scan = value;
const char *next = scan;
const char *kind = "\"threads\"";
kmp_place_t std_places[] = {{"threads", KMP_HW_THREAD},
{"cores", KMP_HW_CORE},
{"numa_domains", KMP_HW_NUMA},
{"ll_caches", KMP_HW_LLC},
{"sockets", KMP_HW_SOCKET}};
kmp_setting_t **rivals = (kmp_setting_t **)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, rivals);
if (rc) {
return;
}
// Standard choices
for (size_t i = 0; i < sizeof(std_places) / sizeof(std_places[0]); ++i) {
const kmp_place_t &place = std_places[i];
if (__kmp_match_str(place.name, scan, &next)) {
scan = next;
__kmp_affinity_type = affinity_compact;
__kmp_affinity_gran = place.type;
__kmp_affinity_dups = FALSE;
set = true;
break;
}
}
// Implementation choices for OMP_PLACES based on internal types
if (!set) {
KMP_FOREACH_HW_TYPE(type) {
const char *name = __kmp_hw_get_keyword(type, true);
if (__kmp_match_str("unknowns", scan, &next))
continue;
if (__kmp_match_str(name, scan, &next)) {
scan = next;
__kmp_affinity_type = affinity_compact;
__kmp_affinity_gran = type;
__kmp_affinity_dups = FALSE;
set = true;
break;
}
}
}
if (!set) {
if (__kmp_affinity_proclist != NULL) {
KMP_INTERNAL_FREE((void *)__kmp_affinity_proclist);
__kmp_affinity_proclist = NULL;
}
if (__kmp_parse_place_list(name, value, &__kmp_affinity_proclist)) {
__kmp_affinity_type = affinity_explicit;
__kmp_affinity_gran = KMP_HW_THREAD;
__kmp_affinity_dups = FALSE;
} else {
// Syntax error fallback
__kmp_affinity_type = affinity_compact;
__kmp_affinity_gran = KMP_HW_CORE;
__kmp_affinity_dups = FALSE;
}
if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) {
__kmp_nested_proc_bind.bind_types[0] = proc_bind_true;
}
return;
}
if (__kmp_affinity_gran != KMP_HW_UNKNOWN) {
kind = __kmp_hw_get_keyword(__kmp_affinity_gran);
}
if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) {
__kmp_nested_proc_bind.bind_types[0] = proc_bind_true;
}
SKIP_WS(scan);
if (*scan == '\0') {
return;
}
// Parse option count parameter in parentheses
if (*scan != '(') {
KMP_WARNING(SyntaxErrorUsing, name, kind);
return;
}
scan++; // skip '('
SKIP_WS(scan);
next = scan;
SKIP_DIGITS(next);
count = __kmp_str_to_int(scan, *next);
KMP_ASSERT(count >= 0);
scan = next;
SKIP_WS(scan);
if (*scan != ')') {
KMP_WARNING(SyntaxErrorUsing, name, kind);
return;
}
scan++; // skip ')'
SKIP_WS(scan);
if (*scan != '\0') {
KMP_WARNING(ParseExtraCharsWarn, name, scan);
}
__kmp_affinity_num_places = count;
}
static void __kmp_stg_print_places(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
if ((__kmp_nested_proc_bind.used == 0) ||
(__kmp_nested_proc_bind.bind_types == NULL) ||
(__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
} else if (__kmp_affinity_type == affinity_explicit) {
if (__kmp_affinity_proclist != NULL) {
__kmp_str_buf_print(buffer, "='%s'\n", __kmp_affinity_proclist);
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} else if (__kmp_affinity_type == affinity_compact) {
int num;
if (__kmp_affinity_num_masks > 0) {
num = __kmp_affinity_num_masks;
} else if (__kmp_affinity_num_places > 0) {
num = __kmp_affinity_num_places;
} else {
num = 0;
}
if (__kmp_affinity_gran != KMP_HW_UNKNOWN) {
const char *name = __kmp_hw_get_keyword(__kmp_affinity_gran, true);
if (num > 0) {
__kmp_str_buf_print(buffer, "='%s(%d)'\n", name, num);
} else {
__kmp_str_buf_print(buffer, "='%s'\n", name);
}
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} else {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
}
static void __kmp_stg_parse_topology_method(char const *name, char const *value,
void *data) {
if (__kmp_str_match("all", 1, value)) {
__kmp_affinity_top_method = affinity_top_method_all;
}
#if KMP_USE_HWLOC
else if (__kmp_str_match("hwloc", 1, value)) {
__kmp_affinity_top_method = affinity_top_method_hwloc;
}
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
else if (__kmp_str_match("cpuid_leaf31", 12, value) ||
__kmp_str_match("cpuid 1f", 8, value) ||
__kmp_str_match("cpuid 31", 8, value) ||
__kmp_str_match("cpuid1f", 7, value) ||
__kmp_str_match("cpuid31", 7, value) ||
__kmp_str_match("leaf 1f", 7, value) ||
__kmp_str_match("leaf 31", 7, value) ||
__kmp_str_match("leaf1f", 6, value) ||
__kmp_str_match("leaf31", 6, value)) {
__kmp_affinity_top_method = affinity_top_method_x2apicid_1f;
} else if (__kmp_str_match("x2apic id", 9, value) ||
__kmp_str_match("x2apic_id", 9, value) ||
__kmp_str_match("x2apic-id", 9, value) ||
__kmp_str_match("x2apicid", 8, value) ||
__kmp_str_match("cpuid leaf 11", 13, value) ||
__kmp_str_match("cpuid_leaf_11", 13, value) ||
__kmp_str_match("cpuid-leaf-11", 13, value) ||
__kmp_str_match("cpuid leaf11", 12, value) ||
__kmp_str_match("cpuid_leaf11", 12, value) ||
__kmp_str_match("cpuid-leaf11", 12, value) ||
__kmp_str_match("cpuidleaf 11", 12, value) ||
__kmp_str_match("cpuidleaf_11", 12, value) ||
__kmp_str_match("cpuidleaf-11", 12, value) ||
__kmp_str_match("cpuidleaf11", 11, value) ||
__kmp_str_match("cpuid 11", 8, value) ||
__kmp_str_match("cpuid_11", 8, value) ||
__kmp_str_match("cpuid-11", 8, value) ||
__kmp_str_match("cpuid11", 7, value) ||
__kmp_str_match("leaf 11", 7, value) ||
__kmp_str_match("leaf_11", 7, value) ||
__kmp_str_match("leaf-11", 7, value) ||
__kmp_str_match("leaf11", 6, value)) {
__kmp_affinity_top_method = affinity_top_method_x2apicid;
} else if (__kmp_str_match("apic id", 7, value) ||
__kmp_str_match("apic_id", 7, value) ||
__kmp_str_match("apic-id", 7, value) ||
__kmp_str_match("apicid", 6, value) ||
__kmp_str_match("cpuid leaf 4", 12, value) ||
__kmp_str_match("cpuid_leaf_4", 12, value) ||
__kmp_str_match("cpuid-leaf-4", 12, value) ||
__kmp_str_match("cpuid leaf4", 11, value) ||
__kmp_str_match("cpuid_leaf4", 11, value) ||
__kmp_str_match("cpuid-leaf4", 11, value) ||
__kmp_str_match("cpuidleaf 4", 11, value) ||
__kmp_str_match("cpuidleaf_4", 11, value) ||
__kmp_str_match("cpuidleaf-4", 11, value) ||
__kmp_str_match("cpuidleaf4", 10, value) ||
__kmp_str_match("cpuid 4", 7, value) ||
__kmp_str_match("cpuid_4", 7, value) ||
__kmp_str_match("cpuid-4", 7, value) ||
__kmp_str_match("cpuid4", 6, value) ||
__kmp_str_match("leaf 4", 6, value) ||
__kmp_str_match("leaf_4", 6, value) ||
__kmp_str_match("leaf-4", 6, value) ||
__kmp_str_match("leaf4", 5, value)) {
__kmp_affinity_top_method = affinity_top_method_apicid;
}
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
else if (__kmp_str_match("/proc/cpuinfo", 2, value) ||
__kmp_str_match("cpuinfo", 5, value)) {
__kmp_affinity_top_method = affinity_top_method_cpuinfo;
}
#if KMP_GROUP_AFFINITY
else if (__kmp_str_match("group", 1, value)) {
KMP_WARNING(StgDeprecatedValue, name, value, "all");
__kmp_affinity_top_method = affinity_top_method_group;
}
#endif /* KMP_GROUP_AFFINITY */
else if (__kmp_str_match("flat", 1, value)) {
__kmp_affinity_top_method = affinity_top_method_flat;
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
} // __kmp_stg_parse_topology_method
static void __kmp_stg_print_topology_method(kmp_str_buf_t *buffer,
char const *name, void *data) {
char const *value = NULL;
switch (__kmp_affinity_top_method) {
case affinity_top_method_default:
value = "default";
break;
case affinity_top_method_all:
value = "all";
break;
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
case affinity_top_method_x2apicid_1f:
value = "x2APIC id leaf 0x1f";
break;
case affinity_top_method_x2apicid:
value = "x2APIC id leaf 0xb";
break;
case affinity_top_method_apicid:
value = "APIC id";
break;
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#if KMP_USE_HWLOC
case affinity_top_method_hwloc:
value = "hwloc";
break;
#endif
case affinity_top_method_cpuinfo:
value = "cpuinfo";
break;
#if KMP_GROUP_AFFINITY
case affinity_top_method_group:
value = "group";
break;
#endif /* KMP_GROUP_AFFINITY */
case affinity_top_method_flat:
value = "flat";
break;
}
if (value != NULL) {
__kmp_stg_print_str(buffer, name, value);
}
} // __kmp_stg_print_topology_method
// KMP_TEAMS_PROC_BIND
struct kmp_proc_bind_info_t {
const char *name;
kmp_proc_bind_t proc_bind;
};
static kmp_proc_bind_info_t proc_bind_table[] = {
{"spread", proc_bind_spread},
{"true", proc_bind_spread},
{"close", proc_bind_close},
// teams-bind = false means "replicate the primary thread's affinity"
{"false", proc_bind_primary},
{"primary", proc_bind_primary}};
static void __kmp_stg_parse_teams_proc_bind(char const *name, char const *value,
void *data) {
int valid;
const char *end;
valid = 0;
for (size_t i = 0; i < sizeof(proc_bind_table) / sizeof(proc_bind_table[0]);
++i) {
if (__kmp_match_str(proc_bind_table[i].name, value, &end)) {
__kmp_teams_proc_bind = proc_bind_table[i].proc_bind;
valid = 1;
break;
}
}
if (!valid) {
KMP_WARNING(StgInvalidValue, name, value);
}
}
static void __kmp_stg_print_teams_proc_bind(kmp_str_buf_t *buffer,
char const *name, void *data) {
const char *value = KMP_I18N_STR(NotDefined);
for (size_t i = 0; i < sizeof(proc_bind_table) / sizeof(proc_bind_table[0]);
++i) {
if (__kmp_teams_proc_bind == proc_bind_table[i].proc_bind) {
value = proc_bind_table[i].name;
break;
}
}
__kmp_stg_print_str(buffer, name, value);
}
#endif /* KMP_AFFINITY_SUPPORTED */
// OMP_PROC_BIND / bind-var is functional on all 4.0 builds, including OS X*
// OMP_PLACES / place-partition-var is not.
static void __kmp_stg_parse_proc_bind(char const *name, char const *value,
void *data) {
kmp_setting_t **rivals = (kmp_setting_t **)data;
int rc;
rc = __kmp_stg_check_rivals(name, value, rivals);
if (rc) {
return;
}
// In OMP 4.0 OMP_PROC_BIND is a vector of proc_bind types.
KMP_DEBUG_ASSERT((__kmp_nested_proc_bind.bind_types != NULL) &&
(__kmp_nested_proc_bind.used > 0));
const char *buf = value;
const char *next;
int num;
SKIP_WS(buf);
if ((*buf >= '0') && (*buf <= '9')) {
next = buf;
SKIP_DIGITS(next);
num = __kmp_str_to_int(buf, *next);
KMP_ASSERT(num >= 0);
buf = next;
SKIP_WS(buf);
} else {
num = -1;
}
next = buf;
if (__kmp_match_str("disabled", buf, &next)) {
buf = next;
SKIP_WS(buf);
#if KMP_AFFINITY_SUPPORTED
__kmp_affinity_type = affinity_disabled;
#endif /* KMP_AFFINITY_SUPPORTED */
__kmp_nested_proc_bind.used = 1;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
} else if ((num == (int)proc_bind_false) ||
__kmp_match_str("false", buf, &next)) {
buf = next;
SKIP_WS(buf);
#if KMP_AFFINITY_SUPPORTED
__kmp_affinity_type = affinity_none;
#endif /* KMP_AFFINITY_SUPPORTED */
__kmp_nested_proc_bind.used = 1;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
} else if ((num == (int)proc_bind_true) ||
__kmp_match_str("true", buf, &next)) {
buf = next;
SKIP_WS(buf);
__kmp_nested_proc_bind.used = 1;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_true;
} else {
// Count the number of values in the env var string
const char *scan;
int nelem = 1;
for (scan = buf; *scan != '\0'; scan++) {
if (*scan == ',') {
nelem++;
}
}
// Create / expand the nested proc_bind array as needed
if (__kmp_nested_proc_bind.size < nelem) {
__kmp_nested_proc_bind.bind_types =
(kmp_proc_bind_t *)KMP_INTERNAL_REALLOC(
__kmp_nested_proc_bind.bind_types,
sizeof(kmp_proc_bind_t) * nelem);
if (__kmp_nested_proc_bind.bind_types == NULL) {
KMP_FATAL(MemoryAllocFailed);
}
__kmp_nested_proc_bind.size = nelem;
}
__kmp_nested_proc_bind.used = nelem;
if (nelem > 1 && !__kmp_dflt_max_active_levels_set)
__kmp_dflt_max_active_levels = KMP_MAX_ACTIVE_LEVELS_LIMIT;
// Save values in the nested proc_bind array
int i = 0;
for (;;) {
enum kmp_proc_bind_t bind;
if ((num == (int)proc_bind_primary) ||
__kmp_match_str("master", buf, &next) ||
__kmp_match_str("primary", buf, &next)) {
buf = next;
SKIP_WS(buf);
bind = proc_bind_primary;
} else if ((num == (int)proc_bind_close) ||
__kmp_match_str("close", buf, &next)) {
buf = next;
SKIP_WS(buf);
bind = proc_bind_close;
} else if ((num == (int)proc_bind_spread) ||
__kmp_match_str("spread", buf, &next)) {
buf = next;
SKIP_WS(buf);
bind = proc_bind_spread;
} else {
KMP_WARNING(StgInvalidValue, name, value);
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
__kmp_nested_proc_bind.used = 1;
return;
}
__kmp_nested_proc_bind.bind_types[i++] = bind;
if (i >= nelem) {
break;
}
KMP_DEBUG_ASSERT(*buf == ',');
buf++;
SKIP_WS(buf);
// Read next value if it was specified as an integer
if ((*buf >= '0') && (*buf <= '9')) {
next = buf;
SKIP_DIGITS(next);
num = __kmp_str_to_int(buf, *next);
KMP_ASSERT(num >= 0);
buf = next;
SKIP_WS(buf);
} else {
num = -1;
}
}
SKIP_WS(buf);
}
if (*buf != '\0') {
KMP_WARNING(ParseExtraCharsWarn, name, buf);
}
}
static void __kmp_stg_print_proc_bind(kmp_str_buf_t *buffer, char const *name,
void *data) {
int nelem = __kmp_nested_proc_bind.used;
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
if (nelem == 0) {
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
} else {
int i;
__kmp_str_buf_print(buffer, "='", name);
for (i = 0; i < nelem; i++) {
switch (__kmp_nested_proc_bind.bind_types[i]) {
case proc_bind_false:
__kmp_str_buf_print(buffer, "false");
break;
case proc_bind_true:
__kmp_str_buf_print(buffer, "true");
break;
case proc_bind_primary:
__kmp_str_buf_print(buffer, "primary");
break;
case proc_bind_close:
__kmp_str_buf_print(buffer, "close");
break;
case proc_bind_spread:
__kmp_str_buf_print(buffer, "spread");
break;
case proc_bind_intel:
__kmp_str_buf_print(buffer, "intel");
break;
case proc_bind_default:
__kmp_str_buf_print(buffer, "default");
break;
}
if (i < nelem - 1) {
__kmp_str_buf_print(buffer, ",");
}
}
__kmp_str_buf_print(buffer, "'\n");
}
}
static void __kmp_stg_parse_display_affinity(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_display_affinity);
}
static void __kmp_stg_print_display_affinity(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_display_affinity);
}
static void __kmp_stg_parse_affinity_format(char const *name, char const *value,
void *data) {
size_t length = KMP_STRLEN(value);
__kmp_strncpy_truncate(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, value,
length);
}
static void __kmp_stg_print_affinity_format(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
__kmp_str_buf_print(buffer, "%s'\n", __kmp_affinity_format);
}
/*-----------------------------------------------------------------------------
OMP_ALLOCATOR sets default allocator. Here is the grammar:
<allocator> |= <predef-allocator> | <predef-mem-space> |
<predef-mem-space>:<traits>
<traits> |= <trait>=<value> | <trait>=<value>,<traits>
<predef-allocator> |= omp_default_mem_alloc | omp_large_cap_mem_alloc |
omp_const_mem_alloc | omp_high_bw_mem_alloc |
omp_low_lat_mem_alloc | omp_cgroup_mem_alloc |
omp_pteam_mem_alloc | omp_thread_mem_alloc
<predef-mem-space> |= omp_default_mem_space | omp_large_cap_mem_space |
omp_const_mem_space | omp_high_bw_mem_space |
omp_low_lat_mem_space
<trait> |= sync_hint | alignment | access | pool_size | fallback |
fb_data | pinned | partition
<value> |= one of the allowed values of trait |
non-negative integer | <predef-allocator>
-----------------------------------------------------------------------------*/
static void __kmp_stg_parse_allocator(char const *name, char const *value,
void *data) {
const char *buf = value;
const char *next, *scan, *start;
char *key;
omp_allocator_handle_t al;
omp_memspace_handle_t ms = omp_default_mem_space;
bool is_memspace = false;
int ntraits = 0, count = 0;
SKIP_WS(buf);
next = buf;
const char *delim = strchr(buf, ':');
const char *predef_mem_space = strstr(buf, "mem_space");
bool is_memalloc = (!predef_mem_space && !delim) ? true : false;
// Count the number of traits in the env var string
if (delim) {
ntraits = 1;
for (scan = buf; *scan != '\0'; scan++) {
if (*scan == ',')
ntraits++;
}
}
omp_alloctrait_t *traits =
(omp_alloctrait_t *)KMP_ALLOCA(ntraits * sizeof(omp_alloctrait_t));
// Helper macros
#define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0)
#define GET_NEXT(sentinel) \
{ \
SKIP_WS(next); \
if (*next == sentinel) \
next++; \
SKIP_WS(next); \
scan = next; \
}
#define SKIP_PAIR(key) \
{ \
char const str_delimiter[] = {',', 0}; \
char *value = __kmp_str_token(CCAST(char *, scan), str_delimiter, \
CCAST(char **, &next)); \
KMP_WARNING(StgInvalidValue, key, value); \
ntraits--; \
SKIP_WS(next); \
scan = next; \
}
#define SET_KEY() \
{ \
char const str_delimiter[] = {'=', 0}; \
key = __kmp_str_token(CCAST(char *, start), str_delimiter, \
CCAST(char **, &next)); \
scan = next; \
}
scan = next;
while (*next != '\0') {
if (is_memalloc ||
__kmp_match_str("fb_data", scan, &next)) { // allocator check
start = scan;
GET_NEXT('=');
// check HBW and LCAP first as the only non-default supported
if (__kmp_match_str("omp_high_bw_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
if (__kmp_memkind_available) {
__kmp_def_allocator = omp_high_bw_mem_alloc;
return;
} else {
KMP_WARNING(OmpNoAllocator, "omp_high_bw_mem_alloc");
}
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_high_bw_mem_alloc);
}
} else if (__kmp_match_str("omp_large_cap_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
if (__kmp_memkind_available) {
__kmp_def_allocator = omp_large_cap_mem_alloc;
return;
} else {
KMP_WARNING(OmpNoAllocator, "omp_large_cap_mem_alloc");
}
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_large_cap_mem_alloc);
}
} else if (__kmp_match_str("omp_default_mem_alloc", scan, &next)) {
// default requested
SKIP_WS(next);
if (!is_memalloc) {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_default_mem_alloc);
}
} else if (__kmp_match_str("omp_const_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
KMP_WARNING(OmpNoAllocator, "omp_const_mem_alloc");
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_const_mem_alloc);
}
} else if (__kmp_match_str("omp_low_lat_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
KMP_WARNING(OmpNoAllocator, "omp_low_lat_mem_alloc");
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_low_lat_mem_alloc);
}
} else if (__kmp_match_str("omp_cgroup_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
KMP_WARNING(OmpNoAllocator, "omp_cgroup_mem_alloc");
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_cgroup_mem_alloc);
}
} else if (__kmp_match_str("omp_pteam_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
KMP_WARNING(OmpNoAllocator, "omp_pteam_mem_alloc");
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_pteam_mem_alloc);
}
} else if (__kmp_match_str("omp_thread_mem_alloc", scan, &next)) {
SKIP_WS(next);
if (is_memalloc) {
KMP_WARNING(OmpNoAllocator, "omp_thread_mem_alloc");
} else {
traits[count].key = omp_atk_fb_data;
traits[count].value = RCAST(omp_uintptr_t, omp_thread_mem_alloc);
}
} else {
if (!is_memalloc) {
SET_KEY();
SKIP_PAIR(key);
continue;
}
}
if (is_memalloc) {
__kmp_def_allocator = omp_default_mem_alloc;
if (next == buf || *next != '\0') {
// either no match or extra symbols present after the matched token
KMP_WARNING(StgInvalidValue, name, value);
}
return;
} else {
++count;
if (count == ntraits)
break;
GET_NEXT(',');
}
} else { // memspace
if (!is_memspace) {
if (__kmp_match_str("omp_default_mem_space", scan, &next)) {
SKIP_WS(next);
ms = omp_default_mem_space;
} else if (__kmp_match_str("omp_large_cap_mem_space", scan, &next)) {
SKIP_WS(next);
ms = omp_large_cap_mem_space;
} else if (__kmp_match_str("omp_const_mem_space", scan, &next)) {
SKIP_WS(next);
ms = omp_const_mem_space;
} else if (__kmp_match_str("omp_high_bw_mem_space", scan, &next)) {
SKIP_WS(next);
ms = omp_high_bw_mem_space;
} else if (__kmp_match_str("omp_low_lat_mem_space", scan, &next)) {
SKIP_WS(next);
ms = omp_low_lat_mem_space;
} else {
__kmp_def_allocator = omp_default_mem_alloc;
if (next == buf || *next != '\0') {
// either no match or extra symbols present after the matched token
KMP_WARNING(StgInvalidValue, name, value);
}
return;
}
is_memspace = true;
}
if (delim) { // traits
GET_NEXT(':');
start = scan;
if (__kmp_match_str("sync_hint", scan, &next)) {
GET_NEXT('=');
traits[count].key = omp_atk_sync_hint;
if (__kmp_match_str("contended", scan, &next)) {
traits[count].value = omp_atv_contended;
} else if (__kmp_match_str("uncontended", scan, &next)) {
traits[count].value = omp_atv_uncontended;
} else if (__kmp_match_str("serialized", scan, &next)) {
traits[count].value = omp_atv_serialized;
} else if (__kmp_match_str("private", scan, &next)) {
traits[count].value = omp_atv_private;
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
} else if (__kmp_match_str("alignment", scan, &next)) {
GET_NEXT('=');
if (!isdigit(*next)) {
SET_KEY();
SKIP_PAIR(key);
continue;
}
SKIP_DIGITS(next);
int n = __kmp_str_to_int(scan, ',');
if (n < 0 || !IS_POWER_OF_TWO(n)) {
SET_KEY();
SKIP_PAIR(key);
continue;
}
traits[count].key = omp_atk_alignment;
traits[count].value = n;
} else if (__kmp_match_str("access", scan, &next)) {
GET_NEXT('=');
traits[count].key = omp_atk_access;
if (__kmp_match_str("all", scan, &next)) {
traits[count].value = omp_atv_all;
} else if (__kmp_match_str("cgroup", scan, &next)) {
traits[count].value = omp_atv_cgroup;
} else if (__kmp_match_str("pteam", scan, &next)) {
traits[count].value = omp_atv_pteam;
} else if (__kmp_match_str("thread", scan, &next)) {
traits[count].value = omp_atv_thread;
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
} else if (__kmp_match_str("pool_size", scan, &next)) {
GET_NEXT('=');
if (!isdigit(*next)) {
SET_KEY();
SKIP_PAIR(key);
continue;
}
SKIP_DIGITS(next);
int n = __kmp_str_to_int(scan, ',');
if (n < 0) {
SET_KEY();
SKIP_PAIR(key);
continue;
}
traits[count].key = omp_atk_pool_size;
traits[count].value = n;
} else if (__kmp_match_str("fallback", scan, &next)) {
GET_NEXT('=');
traits[count].key = omp_atk_fallback;
if (__kmp_match_str("default_mem_fb", scan, &next)) {
traits[count].value = omp_atv_default_mem_fb;
} else if (__kmp_match_str("null_fb", scan, &next)) {
traits[count].value = omp_atv_null_fb;
} else if (__kmp_match_str("abort_fb", scan, &next)) {
traits[count].value = omp_atv_abort_fb;
} else if (__kmp_match_str("allocator_fb", scan, &next)) {
traits[count].value = omp_atv_allocator_fb;
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
} else if (__kmp_match_str("pinned", scan, &next)) {
GET_NEXT('=');
traits[count].key = omp_atk_pinned;
if (__kmp_str_match_true(next)) {
traits[count].value = omp_atv_true;
} else if (__kmp_str_match_false(next)) {
traits[count].value = omp_atv_false;
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
} else if (__kmp_match_str("partition", scan, &next)) {
GET_NEXT('=');
traits[count].key = omp_atk_partition;
if (__kmp_match_str("environment", scan, &next)) {
traits[count].value = omp_atv_environment;
} else if (__kmp_match_str("nearest", scan, &next)) {
traits[count].value = omp_atv_nearest;
} else if (__kmp_match_str("blocked", scan, &next)) {
traits[count].value = omp_atv_blocked;
} else if (__kmp_match_str("interleaved", scan, &next)) {
traits[count].value = omp_atv_interleaved;
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
} else {
SET_KEY();
SKIP_PAIR(key);
continue;
}
SKIP_WS(next);
++count;
if (count == ntraits)
break;
GET_NEXT(',');
} // traits
} // memspace
} // while
al = __kmpc_init_allocator(__kmp_get_gtid(), ms, ntraits, traits);
__kmp_def_allocator = (al == omp_null_allocator) ? omp_default_mem_alloc : al;
}
static void __kmp_stg_print_allocator(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_def_allocator == omp_default_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_default_mem_alloc");
} else if (__kmp_def_allocator == omp_high_bw_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_high_bw_mem_alloc");
} else if (__kmp_def_allocator == omp_large_cap_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_large_cap_mem_alloc");
} else if (__kmp_def_allocator == omp_const_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_const_mem_alloc");
} else if (__kmp_def_allocator == omp_low_lat_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_low_lat_mem_alloc");
} else if (__kmp_def_allocator == omp_cgroup_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_cgroup_mem_alloc");
} else if (__kmp_def_allocator == omp_pteam_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_pteam_mem_alloc");
} else if (__kmp_def_allocator == omp_thread_mem_alloc) {
__kmp_stg_print_str(buffer, name, "omp_thread_mem_alloc");
}
}
// -----------------------------------------------------------------------------
// OMP_DYNAMIC
static void __kmp_stg_parse_omp_dynamic(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &(__kmp_global.g.g_dynamic));
} // __kmp_stg_parse_omp_dynamic
static void __kmp_stg_print_omp_dynamic(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_global.g.g_dynamic);
} // __kmp_stg_print_omp_dynamic
static void __kmp_stg_parse_kmp_dynamic_mode(char const *name,
char const *value, void *data) {
if (TCR_4(__kmp_init_parallel)) {
KMP_WARNING(EnvParallelWarn, name);
__kmp_env_toPrint(name, 0);
return;
}
#ifdef USE_LOAD_BALANCE
else if (__kmp_str_match("load balance", 2, value) ||
__kmp_str_match("load_balance", 2, value) ||
__kmp_str_match("load-balance", 2, value) ||
__kmp_str_match("loadbalance", 2, value) ||
__kmp_str_match("balance", 1, value)) {
__kmp_global.g.g_dynamic_mode = dynamic_load_balance;
}
#endif /* USE_LOAD_BALANCE */
else if (__kmp_str_match("thread limit", 1, value) ||
__kmp_str_match("thread_limit", 1, value) ||
__kmp_str_match("thread-limit", 1, value) ||
__kmp_str_match("threadlimit", 1, value) ||
__kmp_str_match("limit", 2, value)) {
__kmp_global.g.g_dynamic_mode = dynamic_thread_limit;
} else if (__kmp_str_match("random", 1, value)) {
__kmp_global.g.g_dynamic_mode = dynamic_random;
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
} //__kmp_stg_parse_kmp_dynamic_mode
static void __kmp_stg_print_kmp_dynamic_mode(kmp_str_buf_t *buffer,
char const *name, void *data) {
#if KMP_DEBUG
if (__kmp_global.g.g_dynamic_mode == dynamic_default) {
__kmp_str_buf_print(buffer, " %s: %s \n", name, KMP_I18N_STR(NotDefined));
}
#ifdef USE_LOAD_BALANCE
else if (__kmp_global.g.g_dynamic_mode == dynamic_load_balance) {
__kmp_stg_print_str(buffer, name, "load balance");
}
#endif /* USE_LOAD_BALANCE */
else if (__kmp_global.g.g_dynamic_mode == dynamic_thread_limit) {
__kmp_stg_print_str(buffer, name, "thread limit");
} else if (__kmp_global.g.g_dynamic_mode == dynamic_random) {
__kmp_stg_print_str(buffer, name, "random");
} else {
KMP_ASSERT(0);
}
#endif /* KMP_DEBUG */
} // __kmp_stg_print_kmp_dynamic_mode
#ifdef USE_LOAD_BALANCE
// -----------------------------------------------------------------------------
// KMP_LOAD_BALANCE_INTERVAL
static void __kmp_stg_parse_ld_balance_interval(char const *name,
char const *value, void *data) {
double interval = __kmp_convert_to_double(value);
if (interval >= 0) {
__kmp_load_balance_interval = interval;
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
} // __kmp_stg_parse_load_balance_interval
static void __kmp_stg_print_ld_balance_interval(kmp_str_buf_t *buffer,
char const *name, void *data) {
#if KMP_DEBUG
__kmp_str_buf_print(buffer, " %s=%8.6f\n", name,
__kmp_load_balance_interval);
#endif /* KMP_DEBUG */
} // __kmp_stg_print_load_balance_interval
#endif /* USE_LOAD_BALANCE */
// -----------------------------------------------------------------------------
// KMP_INIT_AT_FORK
static void __kmp_stg_parse_init_at_fork(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_need_register_atfork);
if (__kmp_need_register_atfork) {
__kmp_need_register_atfork_specified = TRUE;
}
} // __kmp_stg_parse_init_at_fork
static void __kmp_stg_print_init_at_fork(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_need_register_atfork_specified);
} // __kmp_stg_print_init_at_fork
// -----------------------------------------------------------------------------
// KMP_SCHEDULE
static void __kmp_stg_parse_schedule(char const *name, char const *value,
void *data) {
if (value != NULL) {
size_t length = KMP_STRLEN(value);
if (length > INT_MAX) {
KMP_WARNING(LongValue, name);
} else {
const char *semicolon;
if (value[length - 1] == '"' || value[length - 1] == '\'')
KMP_WARNING(UnbalancedQuotes, name);
do {
char sentinel;
semicolon = strchr(value, ';');
if (*value && semicolon != value) {
const char *comma = strchr(value, ',');
if (comma) {
++comma;
sentinel = ',';
} else
sentinel = ';';
if (!__kmp_strcasecmp_with_sentinel("static", value, sentinel)) {
if (!__kmp_strcasecmp_with_sentinel("greedy", comma, ';')) {
__kmp_static = kmp_sch_static_greedy;
continue;
} else if (!__kmp_strcasecmp_with_sentinel("balanced", comma,
';')) {
__kmp_static = kmp_sch_static_balanced;
continue;
}
} else if (!__kmp_strcasecmp_with_sentinel("guided", value,
sentinel)) {
if (!__kmp_strcasecmp_with_sentinel("iterative", comma, ';')) {
__kmp_guided = kmp_sch_guided_iterative_chunked;
continue;
} else if (!__kmp_strcasecmp_with_sentinel("analytical", comma,
';')) {
/* analytical not allowed for too many threads */
__kmp_guided = kmp_sch_guided_analytical_chunked;
continue;
}
}
KMP_WARNING(InvalidClause, name, value);
} else
KMP_WARNING(EmptyClause, name);
} while ((value = semicolon ? semicolon + 1 : NULL));
}
}
} // __kmp_stg_parse__schedule
static void __kmp_stg_print_schedule(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
if (__kmp_static == kmp_sch_static_greedy) {
__kmp_str_buf_print(buffer, "%s", "static,greedy");
} else if (__kmp_static == kmp_sch_static_balanced) {
__kmp_str_buf_print(buffer, "%s", "static,balanced");
}
if (__kmp_guided == kmp_sch_guided_iterative_chunked) {
__kmp_str_buf_print(buffer, ";%s'\n", "guided,iterative");
} else if (__kmp_guided == kmp_sch_guided_analytical_chunked) {
__kmp_str_buf_print(buffer, ";%s'\n", "guided,analytical");
}
} // __kmp_stg_print_schedule
// -----------------------------------------------------------------------------
// OMP_SCHEDULE
static inline void __kmp_omp_schedule_restore() {
#if KMP_USE_HIER_SCHED
__kmp_hier_scheds.deallocate();
#endif
__kmp_chunk = 0;
__kmp_sched = kmp_sch_default;
}
// if parse_hier = true:
// Parse [HW,][modifier:]kind[,chunk]
// else:
// Parse [modifier:]kind[,chunk]
static const char *__kmp_parse_single_omp_schedule(const char *name,
const char *value,
bool parse_hier = false) {
/* get the specified scheduling style */
const char *ptr = value;
const char *delim;
int chunk = 0;
enum sched_type sched = kmp_sch_default;
if (*ptr == '\0')
return NULL;
delim = ptr;
while (*delim != ',' && *delim != ':' && *delim != '\0')
delim++;
#if KMP_USE_HIER_SCHED
kmp_hier_layer_e layer = kmp_hier_layer_e::LAYER_THREAD;
if (parse_hier) {
if (*delim == ',') {
if (!__kmp_strcasecmp_with_sentinel("L1", ptr, ',')) {
layer = kmp_hier_layer_e::LAYER_L1;
} else if (!__kmp_strcasecmp_with_sentinel("L2", ptr, ',')) {
layer = kmp_hier_layer_e::LAYER_L2;
} else if (!__kmp_strcasecmp_with_sentinel("L3", ptr, ',')) {
layer = kmp_hier_layer_e::LAYER_L3;
} else if (!__kmp_strcasecmp_with_sentinel("NUMA", ptr, ',')) {
layer = kmp_hier_layer_e::LAYER_NUMA;
}
}
if (layer != kmp_hier_layer_e::LAYER_THREAD && *delim != ',') {
// If there is no comma after the layer, then this schedule is invalid
KMP_WARNING(StgInvalidValue, name, value);
__kmp_omp_schedule_restore();
return NULL;
} else if (layer != kmp_hier_layer_e::LAYER_THREAD) {
ptr = ++delim;
while (*delim != ',' && *delim != ':' && *delim != '\0')
delim++;
}
}
#endif // KMP_USE_HIER_SCHED
// Read in schedule modifier if specified
enum sched_type sched_modifier = (enum sched_type)0;
if (*delim == ':') {
if (!__kmp_strcasecmp_with_sentinel("monotonic", ptr, *delim)) {
sched_modifier = sched_type::kmp_sch_modifier_monotonic;
ptr = ++delim;
while (*delim != ',' && *delim != ':' && *delim != '\0')
delim++;
} else if (!__kmp_strcasecmp_with_sentinel("nonmonotonic", ptr, *delim)) {
sched_modifier = sched_type::kmp_sch_modifier_nonmonotonic;
ptr = ++delim;
while (*delim != ',' && *delim != ':' && *delim != '\0')
delim++;
} else if (!parse_hier) {
// If there is no proper schedule modifier, then this schedule is invalid
KMP_WARNING(StgInvalidValue, name, value);
__kmp_omp_schedule_restore();
return NULL;
}
}
// Read in schedule kind (required)
if (!__kmp_strcasecmp_with_sentinel("dynamic", ptr, *delim))
sched = kmp_sch_dynamic_chunked;
else if (!__kmp_strcasecmp_with_sentinel("guided", ptr, *delim))
sched = kmp_sch_guided_chunked;
// AC: TODO: probably remove TRAPEZOIDAL (OMP 3.0 does not allow it)
else if (!__kmp_strcasecmp_with_sentinel("auto", ptr, *delim))
sched = kmp_sch_auto;
else if (!__kmp_strcasecmp_with_sentinel("trapezoidal", ptr, *delim))
sched = kmp_sch_trapezoidal;
else if (!__kmp_strcasecmp_with_sentinel("static", ptr, *delim))
sched = kmp_sch_static;
#if KMP_STATIC_STEAL_ENABLED
else if (!__kmp_strcasecmp_with_sentinel("static_steal", ptr, *delim)) {
// replace static_steal with dynamic to better cope with ordered loops
sched = kmp_sch_dynamic_chunked;
sched_modifier = sched_type::kmp_sch_modifier_nonmonotonic;
}
#endif
else {
// If there is no proper schedule kind, then this schedule is invalid
KMP_WARNING(StgInvalidValue, name, value);
__kmp_omp_schedule_restore();
return NULL;
}
// Read in schedule chunk size if specified
if (*delim == ',') {
ptr = delim + 1;
SKIP_WS(ptr);
if (!isdigit(*ptr)) {
// If there is no chunk after comma, then this schedule is invalid
KMP_WARNING(StgInvalidValue, name, value);
__kmp_omp_schedule_restore();
return NULL;
}
SKIP_DIGITS(ptr);
// auto schedule should not specify chunk size
if (sched == kmp_sch_auto) {
__kmp_msg(kmp_ms_warning, KMP_MSG(IgnoreChunk, name, delim),
__kmp_msg_null);
} else {
if (sched == kmp_sch_static)
sched = kmp_sch_static_chunked;
chunk = __kmp_str_to_int(delim + 1, *ptr);
if (chunk < 1) {
chunk = KMP_DEFAULT_CHUNK;
__kmp_msg(kmp_ms_warning, KMP_MSG(InvalidChunk, name, delim),
__kmp_msg_null);
KMP_INFORM(Using_int_Value, name, __kmp_chunk);
// AC: next block commented out until KMP_DEFAULT_CHUNK != KMP_MIN_CHUNK
// (to improve code coverage :)
// The default chunk size is 1 according to standard, thus making
// KMP_MIN_CHUNK not 1 we would introduce mess:
// wrong chunk becomes 1, but it will be impossible to explicitly set
// to 1 because it becomes KMP_MIN_CHUNK...
// } else if ( chunk < KMP_MIN_CHUNK ) {
// chunk = KMP_MIN_CHUNK;
} else if (chunk > KMP_MAX_CHUNK) {
chunk = KMP_MAX_CHUNK;
__kmp_msg(kmp_ms_warning, KMP_MSG(LargeChunk, name, delim),
__kmp_msg_null);
KMP_INFORM(Using_int_Value, name, chunk);
}
}
} else {
ptr = delim;
}
SCHEDULE_SET_MODIFIERS(sched, sched_modifier);
#if KMP_USE_HIER_SCHED
if (layer != kmp_hier_layer_e::LAYER_THREAD) {
__kmp_hier_scheds.append(sched, chunk, layer);
} else
#endif
{
__kmp_chunk = chunk;
__kmp_sched = sched;
}
return ptr;
}
static void __kmp_stg_parse_omp_schedule(char const *name, char const *value,
void *data) {
size_t length;
const char *ptr = value;
SKIP_WS(ptr);
if (value) {
length = KMP_STRLEN(value);
if (length) {
if (value[length - 1] == '"' || value[length - 1] == '\'')
KMP_WARNING(UnbalancedQuotes, name);
/* get the specified scheduling style */
#if KMP_USE_HIER_SCHED
if (!__kmp_strcasecmp_with_sentinel("EXPERIMENTAL", ptr, ' ')) {
SKIP_TOKEN(ptr);
SKIP_WS(ptr);
while ((ptr = __kmp_parse_single_omp_schedule(name, ptr, true))) {
while (*ptr == ' ' || *ptr == '\t' || *ptr == ':')
ptr++;
if (*ptr == '\0')
break;
}
} else
#endif
__kmp_parse_single_omp_schedule(name, ptr);
} else
KMP_WARNING(EmptyString, name);
}
#if KMP_USE_HIER_SCHED
__kmp_hier_scheds.sort();
#endif
K_DIAG(1, ("__kmp_static == %d\n", __kmp_static))
K_DIAG(1, ("__kmp_guided == %d\n", __kmp_guided))
K_DIAG(1, ("__kmp_sched == %d\n", __kmp_sched))
K_DIAG(1, ("__kmp_chunk == %d\n", __kmp_chunk))
} // __kmp_stg_parse_omp_schedule
static void __kmp_stg_print_omp_schedule(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
enum sched_type sched = SCHEDULE_WITHOUT_MODIFIERS(__kmp_sched);
if (SCHEDULE_HAS_MONOTONIC(__kmp_sched)) {
__kmp_str_buf_print(buffer, "monotonic:");
} else if (SCHEDULE_HAS_NONMONOTONIC(__kmp_sched)) {
__kmp_str_buf_print(buffer, "nonmonotonic:");
}
if (__kmp_chunk) {
switch (sched) {
case kmp_sch_dynamic_chunked:
__kmp_str_buf_print(buffer, "%s,%d'\n", "dynamic", __kmp_chunk);
break;
case kmp_sch_guided_iterative_chunked:
case kmp_sch_guided_analytical_chunked:
__kmp_str_buf_print(buffer, "%s,%d'\n", "guided", __kmp_chunk);
break;
case kmp_sch_trapezoidal:
__kmp_str_buf_print(buffer, "%s,%d'\n", "trapezoidal", __kmp_chunk);
break;
case kmp_sch_static:
case kmp_sch_static_chunked:
case kmp_sch_static_balanced:
case kmp_sch_static_greedy:
__kmp_str_buf_print(buffer, "%s,%d'\n", "static", __kmp_chunk);
break;
case kmp_sch_static_steal:
__kmp_str_buf_print(buffer, "%s,%d'\n", "static_steal", __kmp_chunk);
break;
case kmp_sch_auto:
__kmp_str_buf_print(buffer, "%s,%d'\n", "auto", __kmp_chunk);
break;
}
} else {
switch (sched) {
case kmp_sch_dynamic_chunked:
__kmp_str_buf_print(buffer, "%s'\n", "dynamic");
break;
case kmp_sch_guided_iterative_chunked:
case kmp_sch_guided_analytical_chunked:
__kmp_str_buf_print(buffer, "%s'\n", "guided");
break;
case kmp_sch_trapezoidal:
__kmp_str_buf_print(buffer, "%s'\n", "trapezoidal");
break;
case kmp_sch_static:
case kmp_sch_static_chunked:
case kmp_sch_static_balanced:
case kmp_sch_static_greedy:
__kmp_str_buf_print(buffer, "%s'\n", "static");
break;
case kmp_sch_static_steal:
__kmp_str_buf_print(buffer, "%s'\n", "static_steal");
break;
case kmp_sch_auto:
__kmp_str_buf_print(buffer, "%s'\n", "auto");
break;
}
}
} // __kmp_stg_print_omp_schedule
#if KMP_USE_HIER_SCHED
// -----------------------------------------------------------------------------
// KMP_DISP_HAND_THREAD
static void __kmp_stg_parse_kmp_hand_thread(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &(__kmp_dispatch_hand_threading));
} // __kmp_stg_parse_kmp_hand_thread
static void __kmp_stg_print_kmp_hand_thread(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_dispatch_hand_threading);
} // __kmp_stg_print_kmp_hand_thread
#endif
// -----------------------------------------------------------------------------
// KMP_FORCE_MONOTONIC_DYNAMIC_SCHEDULE
static void __kmp_stg_parse_kmp_force_monotonic(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &(__kmp_force_monotonic));
} // __kmp_stg_parse_kmp_force_monotonic
static void __kmp_stg_print_kmp_force_monotonic(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_force_monotonic);
} // __kmp_stg_print_kmp_force_monotonic
// -----------------------------------------------------------------------------
// KMP_ATOMIC_MODE
static void __kmp_stg_parse_atomic_mode(char const *name, char const *value,
void *data) {
// Modes: 0 -- do not change default; 1 -- Intel perf mode, 2 -- GOMP
// compatibility mode.
int mode = 0;
int max = 1;
#ifdef KMP_GOMP_COMPAT
max = 2;
#endif /* KMP_GOMP_COMPAT */
__kmp_stg_parse_int(name, value, 0, max, &mode);
// TODO; parse_int is not very suitable for this case. In case of overflow it
// is better to use
// 0 rather that max value.
if (mode > 0) {
__kmp_atomic_mode = mode;
}
} // __kmp_stg_parse_atomic_mode
static void __kmp_stg_print_atomic_mode(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_atomic_mode);
} // __kmp_stg_print_atomic_mode
// -----------------------------------------------------------------------------
// KMP_CONSISTENCY_CHECK
static void __kmp_stg_parse_consistency_check(char const *name,
char const *value, void *data) {
if (!__kmp_strcasecmp_with_sentinel("all", value, 0)) {
// Note, this will not work from kmp_set_defaults because th_cons stack was
// not allocated
// for existed thread(s) thus the first __kmp_push_<construct> will break
// with assertion.
// TODO: allocate th_cons if called from kmp_set_defaults.
__kmp_env_consistency_check = TRUE;
} else if (!__kmp_strcasecmp_with_sentinel("none", value, 0)) {
__kmp_env_consistency_check = FALSE;
} else {
KMP_WARNING(StgInvalidValue, name, value);
}
} // __kmp_stg_parse_consistency_check
static void __kmp_stg_print_consistency_check(kmp_str_buf_t *buffer,
char const *name, void *data) {
#if KMP_DEBUG
const char *value = NULL;
if (__kmp_env_consistency_check) {
value = "all";
} else {
value = "none";
}
if (value != NULL) {
__kmp_stg_print_str(buffer, name, value);
}
#endif /* KMP_DEBUG */
} // __kmp_stg_print_consistency_check
#if USE_ITT_BUILD
// -----------------------------------------------------------------------------
// KMP_ITT_PREPARE_DELAY
#if USE_ITT_NOTIFY
static void __kmp_stg_parse_itt_prepare_delay(char const *name,
char const *value, void *data) {
// Experimental code: KMP_ITT_PREPARE_DELAY specifies numbert of loop
// iterations.
int delay = 0;
__kmp_stg_parse_int(name, value, 0, INT_MAX, &delay);
__kmp_itt_prepare_delay = delay;
} // __kmp_str_parse_itt_prepare_delay
static void __kmp_stg_print_itt_prepare_delay(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_uint64(buffer, name, __kmp_itt_prepare_delay);
} // __kmp_str_print_itt_prepare_delay
#endif // USE_ITT_NOTIFY
#endif /* USE_ITT_BUILD */
// -----------------------------------------------------------------------------
// KMP_MALLOC_POOL_INCR
static void __kmp_stg_parse_malloc_pool_incr(char const *name,
char const *value, void *data) {
__kmp_stg_parse_size(name, value, KMP_MIN_MALLOC_POOL_INCR,
KMP_MAX_MALLOC_POOL_INCR, NULL, &__kmp_malloc_pool_incr,
1);
} // __kmp_stg_parse_malloc_pool_incr
static void __kmp_stg_print_malloc_pool_incr(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_size(buffer, name, __kmp_malloc_pool_incr);
} // _kmp_stg_print_malloc_pool_incr
#ifdef KMP_DEBUG
// -----------------------------------------------------------------------------
// KMP_PAR_RANGE
static void __kmp_stg_parse_par_range_env(char const *name, char const *value,
void *data) {
__kmp_stg_parse_par_range(name, value, &__kmp_par_range,
__kmp_par_range_routine, __kmp_par_range_filename,
&__kmp_par_range_lb, &__kmp_par_range_ub);
} // __kmp_stg_parse_par_range_env
static void __kmp_stg_print_par_range_env(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_par_range != 0) {
__kmp_stg_print_str(buffer, name, par_range_to_print);
}
} // __kmp_stg_print_par_range_env
#endif
// -----------------------------------------------------------------------------
// KMP_GTID_MODE
static void __kmp_stg_parse_gtid_mode(char const *name, char const *value,
void *data) {
// Modes:
// 0 -- do not change default
// 1 -- sp search
// 2 -- use "keyed" TLS var, i.e.
// pthread_getspecific(Linux* OS/OS X*) or TlsGetValue(Windows* OS)
// 3 -- __declspec(thread) TLS var in tdata section
int mode = 0;
int max = 2;
#ifdef KMP_TDATA_GTID
max = 3;
#endif /* KMP_TDATA_GTID */
__kmp_stg_parse_int(name, value, 0, max, &mode);
// TODO; parse_int is not very suitable for this case. In case of overflow it
// is better to use 0 rather that max value.
if (mode == 0) {
__kmp_adjust_gtid_mode = TRUE;
} else {
__kmp_gtid_mode = mode;
__kmp_adjust_gtid_mode = FALSE;
}
} // __kmp_str_parse_gtid_mode
static void __kmp_stg_print_gtid_mode(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_adjust_gtid_mode) {
__kmp_stg_print_int(buffer, name, 0);
} else {
__kmp_stg_print_int(buffer, name, __kmp_gtid_mode);
}
} // __kmp_stg_print_gtid_mode
// -----------------------------------------------------------------------------
// KMP_NUM_LOCKS_IN_BLOCK
static void __kmp_stg_parse_lock_block(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, KMP_INT_MAX, &__kmp_num_locks_in_block);
} // __kmp_str_parse_lock_block
static void __kmp_stg_print_lock_block(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_num_locks_in_block);
} // __kmp_stg_print_lock_block
// -----------------------------------------------------------------------------
// KMP_LOCK_KIND
#if KMP_USE_DYNAMIC_LOCK
#define KMP_STORE_LOCK_SEQ(a) (__kmp_user_lock_seq = lockseq_##a)
#else
#define KMP_STORE_LOCK_SEQ(a)
#endif
static void __kmp_stg_parse_lock_kind(char const *name, char const *value,
void *data) {
if (__kmp_init_user_locks) {
KMP_WARNING(EnvLockWarn, name);
return;
}
if (__kmp_str_match("tas", 2, value) ||
__kmp_str_match("test and set", 2, value) ||
__kmp_str_match("test_and_set", 2, value) ||
__kmp_str_match("test-and-set", 2, value) ||
__kmp_str_match("test andset", 2, value) ||
__kmp_str_match("test_andset", 2, value) ||
__kmp_str_match("test-andset", 2, value) ||
__kmp_str_match("testand set", 2, value) ||
__kmp_str_match("testand_set", 2, value) ||
__kmp_str_match("testand-set", 2, value) ||
__kmp_str_match("testandset", 2, value)) {
__kmp_user_lock_kind = lk_tas;
KMP_STORE_LOCK_SEQ(tas);
}
#if KMP_USE_FUTEX
else if (__kmp_str_match("futex", 1, value)) {
if (__kmp_futex_determine_capable()) {
__kmp_user_lock_kind = lk_futex;
KMP_STORE_LOCK_SEQ(futex);
} else {
KMP_WARNING(FutexNotSupported, name, value);
}
}
#endif
else if (__kmp_str_match("ticket", 2, value)) {
__kmp_user_lock_kind = lk_ticket;
KMP_STORE_LOCK_SEQ(ticket);
} else if (__kmp_str_match("queuing", 1, value) ||
__kmp_str_match("queue", 1, value)) {
__kmp_user_lock_kind = lk_queuing;
KMP_STORE_LOCK_SEQ(queuing);
} else if (__kmp_str_match("drdpa ticket", 1, value) ||
__kmp_str_match("drdpa_ticket", 1, value) ||
__kmp_str_match("drdpa-ticket", 1, value) ||
__kmp_str_match("drdpaticket", 1, value) ||
__kmp_str_match("drdpa", 1, value)) {
__kmp_user_lock_kind = lk_drdpa;
KMP_STORE_LOCK_SEQ(drdpa);
}
#if KMP_USE_ADAPTIVE_LOCKS
else if (__kmp_str_match("adaptive", 1, value)) {
if (__kmp_cpuinfo.flags.rtm) { // ??? Is cpuinfo available here?
__kmp_user_lock_kind = lk_adaptive;
KMP_STORE_LOCK_SEQ(adaptive);
} else {
KMP_WARNING(AdaptiveNotSupported, name, value);
__kmp_user_lock_kind = lk_queuing;
KMP_STORE_LOCK_SEQ(queuing);
}
}
#endif // KMP_USE_ADAPTIVE_LOCKS
#if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
else if (__kmp_str_match("rtm_queuing", 1, value)) {
if (__kmp_cpuinfo.flags.rtm) {
__kmp_user_lock_kind = lk_rtm_queuing;
KMP_STORE_LOCK_SEQ(rtm_queuing);
} else {
KMP_WARNING(AdaptiveNotSupported, name, value);
__kmp_user_lock_kind = lk_queuing;
KMP_STORE_LOCK_SEQ(queuing);
}
} else if (__kmp_str_match("rtm_spin", 1, value)) {
if (__kmp_cpuinfo.flags.rtm) {
__kmp_user_lock_kind = lk_rtm_spin;
KMP_STORE_LOCK_SEQ(rtm_spin);
} else {
KMP_WARNING(AdaptiveNotSupported, name, value);
__kmp_user_lock_kind = lk_tas;
KMP_STORE_LOCK_SEQ(queuing);
}
} else if (__kmp_str_match("hle", 1, value)) {
__kmp_user_lock_kind = lk_hle;
KMP_STORE_LOCK_SEQ(hle);
}
#endif
else {
KMP_WARNING(StgInvalidValue, name, value);
}
}
static void __kmp_stg_print_lock_kind(kmp_str_buf_t *buffer, char const *name,
void *data) {
const char *value = NULL;
switch (__kmp_user_lock_kind) {
case lk_default:
value = "default";
break;
case lk_tas:
value = "tas";
break;
#if KMP_USE_FUTEX
case lk_futex:
value = "futex";
break;
#endif
#if KMP_USE_DYNAMIC_LOCK && KMP_USE_TSX
case lk_rtm_queuing:
value = "rtm_queuing";
break;
case lk_rtm_spin:
value = "rtm_spin";
break;
case lk_hle:
value = "hle";
break;
#endif
case lk_ticket:
value = "ticket";
break;
case lk_queuing:
value = "queuing";
break;
case lk_drdpa:
value = "drdpa";
break;
#if KMP_USE_ADAPTIVE_LOCKS
case lk_adaptive:
value = "adaptive";
break;
#endif
}
if (value != NULL) {
__kmp_stg_print_str(buffer, name, value);
}
}
// -----------------------------------------------------------------------------
// KMP_SPIN_BACKOFF_PARAMS
// KMP_SPIN_BACKOFF_PARAMS=max_backoff[,min_tick] (max backoff size, min tick
// for machine pause)
static void __kmp_stg_parse_spin_backoff_params(const char *name,
const char *value, void *data) {
const char *next = value;
int total = 0; // Count elements that were set. It'll be used as an array size
int prev_comma = FALSE; // For correct processing sequential commas
int i;
kmp_uint32 max_backoff = __kmp_spin_backoff_params.max_backoff;
kmp_uint32 min_tick = __kmp_spin_backoff_params.min_tick;
// Run only 3 iterations because it is enough to read two values or find a
// syntax error
for (i = 0; i < 3; i++) {
SKIP_WS(next);
if (*next == '\0') {
break;
}
// Next character is not an integer or not a comma OR number of values > 2
// => end of list
if (((*next < '0' || *next > '9') && *next != ',') || total > 2) {
KMP_WARNING(EnvSyntaxError, name, value);
return;
}
// The next character is ','
if (*next == ',') {
// ',' is the first character
if (total == 0 || prev_comma) {
total++;
}
prev_comma = TRUE;
next++; // skip ','
SKIP_WS(next);
}
// Next character is a digit
if (*next >= '0' && *next <= '9') {
int num;
const char *buf = next;
char const *msg = NULL;
prev_comma = FALSE;
SKIP_DIGITS(next);
total++;
const char *tmp = next;
SKIP_WS(tmp);
if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) {
KMP_WARNING(EnvSpacesNotAllowed, name, value);
return;
}
num = __kmp_str_to_int(buf, *next);
if (num <= 0) { // The number of retries should be > 0
msg = KMP_I18N_STR(ValueTooSmall);
num = 1;
} else if (num > KMP_INT_MAX) {
msg = KMP_I18N_STR(ValueTooLarge);
num = KMP_INT_MAX;
}
if (msg != NULL) {
// Message is not empty. Print warning.
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
KMP_INFORM(Using_int_Value, name, num);
}
if (total == 1) {
max_backoff = num;
} else if (total == 2) {
min_tick = num;
}
}
}
KMP_DEBUG_ASSERT(total > 0);
if (total <= 0) {
KMP_WARNING(EnvSyntaxError, name, value);
return;
}
__kmp_spin_backoff_params.max_backoff = max_backoff;
__kmp_spin_backoff_params.min_tick = min_tick;
}
static void __kmp_stg_print_spin_backoff_params(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
__kmp_str_buf_print(buffer, "%d,%d'\n", __kmp_spin_backoff_params.max_backoff,
__kmp_spin_backoff_params.min_tick);
}
#if KMP_USE_ADAPTIVE_LOCKS
// -----------------------------------------------------------------------------
// KMP_ADAPTIVE_LOCK_PROPS, KMP_SPECULATIVE_STATSFILE
// Parse out values for the tunable parameters from a string of the form
// KMP_ADAPTIVE_LOCK_PROPS=max_soft_retries[,max_badness]
static void __kmp_stg_parse_adaptive_lock_props(const char *name,
const char *value, void *data) {
int max_retries = 0;
int max_badness = 0;
const char *next = value;
int total = 0; // Count elements that were set. It'll be used as an array size
int prev_comma = FALSE; // For correct processing sequential commas
int i;
// Save values in the structure __kmp_speculative_backoff_params
// Run only 3 iterations because it is enough to read two values or find a
// syntax error
for (i = 0; i < 3; i++) {
SKIP_WS(next);
if (*next == '\0') {
break;
}
// Next character is not an integer or not a comma OR number of values > 2
// => end of list
if (((*next < '0' || *next > '9') && *next != ',') || total > 2) {
KMP_WARNING(EnvSyntaxError, name, value);
return;
}
// The next character is ','
if (*next == ',') {
// ',' is the first character
if (total == 0 || prev_comma) {
total++;
}
prev_comma = TRUE;
next++; // skip ','
SKIP_WS(next);
}
// Next character is a digit
if (*next >= '0' && *next <= '9') {
int num;
const char *buf = next;
char const *msg = NULL;
prev_comma = FALSE;
SKIP_DIGITS(next);
total++;
const char *tmp = next;
SKIP_WS(tmp);
if ((*next == ' ' || *next == '\t') && (*tmp >= '0' && *tmp <= '9')) {
KMP_WARNING(EnvSpacesNotAllowed, name, value);
return;
}
num = __kmp_str_to_int(buf, *next);
if (num < 0) { // The number of retries should be >= 0
msg = KMP_I18N_STR(ValueTooSmall);
num = 1;
} else if (num > KMP_INT_MAX) {
msg = KMP_I18N_STR(ValueTooLarge);
num = KMP_INT_MAX;
}
if (msg != NULL) {
// Message is not empty. Print warning.
KMP_WARNING(ParseSizeIntWarn, name, value, msg);
KMP_INFORM(Using_int_Value, name, num);
}
if (total == 1) {
max_retries = num;
} else if (total == 2) {
max_badness = num;
}
}
}
KMP_DEBUG_ASSERT(total > 0);
if (total <= 0) {
KMP_WARNING(EnvSyntaxError, name, value);
return;
}
__kmp_adaptive_backoff_params.max_soft_retries = max_retries;
__kmp_adaptive_backoff_params.max_badness = max_badness;
}
static void __kmp_stg_print_adaptive_lock_props(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME_EX(name);
} else {
__kmp_str_buf_print(buffer, " %s='", name);
}
__kmp_str_buf_print(buffer, "%d,%d'\n",
__kmp_adaptive_backoff_params.max_soft_retries,
__kmp_adaptive_backoff_params.max_badness);
} // __kmp_stg_print_adaptive_lock_props
#if KMP_DEBUG_ADAPTIVE_LOCKS
static void __kmp_stg_parse_speculative_statsfile(char const *name,
char const *value,
void *data) {
__kmp_stg_parse_file(name, value, "",
CCAST(char **, &__kmp_speculative_statsfile));
} // __kmp_stg_parse_speculative_statsfile
static void __kmp_stg_print_speculative_statsfile(kmp_str_buf_t *buffer,
char const *name,
void *data) {
if (__kmp_str_match("-", 0, __kmp_speculative_statsfile)) {
__kmp_stg_print_str(buffer, name, "stdout");
} else {
__kmp_stg_print_str(buffer, name, __kmp_speculative_statsfile);
}
} // __kmp_stg_print_speculative_statsfile
#endif // KMP_DEBUG_ADAPTIVE_LOCKS
#endif // KMP_USE_ADAPTIVE_LOCKS
// -----------------------------------------------------------------------------
// KMP_HW_SUBSET (was KMP_PLACE_THREADS)
// 2s16c,2t => 2S16C,2T => 2S16C \0 2T
// Return KMP_HW_SUBSET preferred hardware type in case a token is ambiguously
// short. The original KMP_HW_SUBSET environment variable had single letters:
// s, c, t for sockets, cores, threads repsectively.
static kmp_hw_t __kmp_hw_subset_break_tie(const kmp_hw_t *possible,
size_t num_possible) {
for (size_t i = 0; i < num_possible; ++i) {
if (possible[i] == KMP_HW_THREAD)
return KMP_HW_THREAD;
else if (possible[i] == KMP_HW_CORE)
return KMP_HW_CORE;
else if (possible[i] == KMP_HW_SOCKET)
return KMP_HW_SOCKET;
}
return KMP_HW_UNKNOWN;
}
// Return hardware type from string or HW_UNKNOWN if string cannot be parsed
// This algorithm is very forgiving to the user in that, the instant it can
// reduce the search space to one, it assumes that is the topology level the
// user wanted, even if it is misspelled later in the token.
static kmp_hw_t __kmp_stg_parse_hw_subset_name(char const *token) {
size_t index, num_possible, token_length;
kmp_hw_t possible[KMP_HW_LAST];
const char *end;
// Find the end of the hardware token string
end = token;
token_length = 0;
while (isalnum(*end) || *end == '_') {
token_length++;
end++;
}
// Set the possibilities to all hardware types
num_possible = 0;
KMP_FOREACH_HW_TYPE(type) { possible[num_possible++] = type; }
// Eliminate hardware types by comparing the front of the token
// with hardware names
// In most cases, the first letter in the token will indicate exactly
// which hardware type is parsed, e.g., 'C' = Core
index = 0;
while (num_possible > 1 && index < token_length) {
size_t n = num_possible;
char token_char = (char)toupper(token[index]);
for (size_t i = 0; i < n; ++i) {
const char *s;
kmp_hw_t type = possible[i];
s = __kmp_hw_get_keyword(type, false);
if (index < KMP_STRLEN(s)) {
char c = (char)toupper(s[index]);
// Mark hardware types for removal when the characters do not match
if (c != token_char) {
possible[i] = KMP_HW_UNKNOWN;
num_possible--;
}
}
}
// Remove hardware types that this token cannot be
size_t start = 0;
for (size_t i = 0; i < n; ++i) {
if (possible[i] != KMP_HW_UNKNOWN) {
kmp_hw_t temp = possible[i];
possible[i] = possible[start];
possible[start] = temp;
start++;
}
}
KMP_ASSERT(start == num_possible);
index++;
}
// Attempt to break a tie if user has very short token
// (e.g., is 'T' tile or thread?)
if (num_possible > 1)
return __kmp_hw_subset_break_tie(possible, num_possible);
if (num_possible == 1)
return possible[0];
return KMP_HW_UNKNOWN;
}
// The longest observable sequence of items can only be HW_LAST length
// The input string is usually short enough, let's use 512 limit for now
#define MAX_T_LEVEL KMP_HW_LAST
#define MAX_STR_LEN 512
static void __kmp_stg_parse_hw_subset(char const *name, char const *value,
void *data) {
// Value example: 1s,5c@3,2T
// Which means "use 1 socket, 5 cores with offset 3, 2 threads per core"
kmp_setting_t **rivals = (kmp_setting_t **)data;
if (strcmp(name, "KMP_PLACE_THREADS") == 0) {
KMP_INFORM(EnvVarDeprecated, name, "KMP_HW_SUBSET");
}
if (__kmp_stg_check_rivals(name, value, rivals)) {
return;
}
char *components[MAX_T_LEVEL];
char const *digits = "0123456789";
char input[MAX_STR_LEN];
size_t len = 0, mlen = MAX_STR_LEN;
int level = 0;
bool absolute = false;
// Canonicalize the string (remove spaces, unify delimiters, etc.)
char *pos = CCAST(char *, value);
while (*pos && mlen) {
if (*pos != ' ') { // skip spaces
if (len == 0 && *pos == ':') {
absolute = true;
} else {
input[len] = (char)(toupper(*pos));
if (input[len] == 'X')
input[len] = ','; // unify delimiters of levels
if (input[len] == 'O' && strchr(digits, *(pos + 1)))
input[len] = '@'; // unify delimiters of offset
len++;
}
}
mlen--;
pos++;
}
if (len == 0 || mlen == 0) {
goto err; // contents is either empty or too long
}
input[len] = '\0';
// Split by delimiter
pos = input;
components[level++] = pos;
while ((pos = strchr(pos, ','))) {
if (level >= MAX_T_LEVEL)
goto err; // too many components provided
*pos = '\0'; // modify input and avoid more copying
components[level++] = ++pos; // expect something after ","
}
__kmp_hw_subset = kmp_hw_subset_t::allocate();
if (absolute)
__kmp_hw_subset->set_absolute();
// Check each component
for (int i = 0; i < level; ++i) {
int offset = 0;
int num = atoi(components[i]); // each component should start with a number
if (num <= 0) {
goto err; // only positive integers are valid for count
}
if ((pos = strchr(components[i], '@'))) {
offset = atoi(pos + 1); // save offset
*pos = '\0'; // cut the offset from the component
}
pos = components[i] + strspn(components[i], digits);
if (pos == components[i]) {
goto err;
}
// detect the component type
kmp_hw_t type = __kmp_stg_parse_hw_subset_name(pos);
if (type == KMP_HW_UNKNOWN) {
goto err;
}
if (__kmp_hw_subset->specified(type)) {
goto err;
}
__kmp_hw_subset->push_back(num, type, offset);
}
return;
err:
KMP_WARNING(AffHWSubsetInvalid, name, value);
if (__kmp_hw_subset) {
kmp_hw_subset_t::deallocate(__kmp_hw_subset);
__kmp_hw_subset = nullptr;
}
return;
}
static void __kmp_stg_print_hw_subset(kmp_str_buf_t *buffer, char const *name,
void *data) {
kmp_str_buf_t buf;
int depth;
if (!__kmp_hw_subset)
return;
__kmp_str_buf_init(&buf);
if (__kmp_env_format)
KMP_STR_BUF_PRINT_NAME_EX(name);
else
__kmp_str_buf_print(buffer, " %s='", name);
depth = __kmp_hw_subset->get_depth();
for (int i = 0; i < depth; ++i) {
const auto &item = __kmp_hw_subset->at(i);
__kmp_str_buf_print(&buf, "%s%d%s", (i > 0 ? "," : ""), item.num,
__kmp_hw_get_keyword(item.type));
if (item.offset)
__kmp_str_buf_print(&buf, "@%d", item.offset);
}
__kmp_str_buf_print(buffer, "%s'\n", buf.str);
__kmp_str_buf_free(&buf);
}
#if USE_ITT_BUILD
// -----------------------------------------------------------------------------
// KMP_FORKJOIN_FRAMES
static void __kmp_stg_parse_forkjoin_frames(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_forkjoin_frames);
} // __kmp_stg_parse_forkjoin_frames
static void __kmp_stg_print_forkjoin_frames(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_forkjoin_frames);
} // __kmp_stg_print_forkjoin_frames
// -----------------------------------------------------------------------------
// KMP_FORKJOIN_FRAMES_MODE
static void __kmp_stg_parse_forkjoin_frames_mode(char const *name,
char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, 3, &__kmp_forkjoin_frames_mode);
} // __kmp_stg_parse_forkjoin_frames
static void __kmp_stg_print_forkjoin_frames_mode(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_int(buffer, name, __kmp_forkjoin_frames_mode);
} // __kmp_stg_print_forkjoin_frames
#endif /* USE_ITT_BUILD */
// -----------------------------------------------------------------------------
// KMP_ENABLE_TASK_THROTTLING
static void __kmp_stg_parse_task_throttling(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_enable_task_throttling);
} // __kmp_stg_parse_task_throttling
static void __kmp_stg_print_task_throttling(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_enable_task_throttling);
} // __kmp_stg_print_task_throttling
#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
// -----------------------------------------------------------------------------
// KMP_USER_LEVEL_MWAIT
static void __kmp_stg_parse_user_level_mwait(char const *name,
char const *value, void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_user_level_mwait);
} // __kmp_stg_parse_user_level_mwait
static void __kmp_stg_print_user_level_mwait(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_user_level_mwait);
} // __kmp_stg_print_user_level_mwait
// -----------------------------------------------------------------------------
// KMP_MWAIT_HINTS
static void __kmp_stg_parse_mwait_hints(char const *name, char const *value,
void *data) {
__kmp_stg_parse_int(name, value, 0, INT_MAX, &__kmp_mwait_hints);
} // __kmp_stg_parse_mwait_hints
static void __kmp_stg_print_mwait_hints(kmp_str_buf_t *buffer, char const *name,
void *data) {
__kmp_stg_print_int(buffer, name, __kmp_mwait_hints);
} // __kmp_stg_print_mwait_hints
#endif // KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
// -----------------------------------------------------------------------------
// OMP_DISPLAY_ENV
static void __kmp_stg_parse_omp_display_env(char const *name, char const *value,
void *data) {
if (__kmp_str_match("VERBOSE", 1, value)) {
__kmp_display_env_verbose = TRUE;
} else {
__kmp_stg_parse_bool(name, value, &__kmp_display_env);
}
} // __kmp_stg_parse_omp_display_env
static void __kmp_stg_print_omp_display_env(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_display_env_verbose) {
__kmp_stg_print_str(buffer, name, "VERBOSE");
} else {
__kmp_stg_print_bool(buffer, name, __kmp_display_env);
}
} // __kmp_stg_print_omp_display_env
static void __kmp_stg_parse_omp_cancellation(char const *name,
char const *value, void *data) {
if (TCR_4(__kmp_init_parallel)) {
KMP_WARNING(EnvParallelWarn, name);
return;
} // read value before first parallel only
__kmp_stg_parse_bool(name, value, &__kmp_omp_cancellation);
} // __kmp_stg_parse_omp_cancellation
static void __kmp_stg_print_omp_cancellation(kmp_str_buf_t *buffer,
char const *name, void *data) {
__kmp_stg_print_bool(buffer, name, __kmp_omp_cancellation);
} // __kmp_stg_print_omp_cancellation
#if OMPT_SUPPORT
int __kmp_tool = 1;
static void __kmp_stg_parse_omp_tool(char const *name, char const *value,
void *data) {
__kmp_stg_parse_bool(name, value, &__kmp_tool);
} // __kmp_stg_parse_omp_tool
static void __kmp_stg_print_omp_tool(kmp_str_buf_t *buffer, char const *name,
void *data) {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_BOOL_EX(name, __kmp_tool, "enabled", "disabled");
} else {
__kmp_str_buf_print(buffer, " %s=%s\n", name,
__kmp_tool ? "enabled" : "disabled");
}
} // __kmp_stg_print_omp_tool
char *__kmp_tool_libraries = NULL;
static void __kmp_stg_parse_omp_tool_libraries(char const *name,
char const *value, void *data) {
__kmp_stg_parse_str(name, value, &__kmp_tool_libraries);
} // __kmp_stg_parse_omp_tool_libraries
static void __kmp_stg_print_omp_tool_libraries(kmp_str_buf_t *buffer,
char const *name, void *data) {
if (__kmp_tool_libraries)
__kmp_stg_print_str(buffer, name, __kmp_tool_libraries);
else {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} // __kmp_stg_print_omp_tool_libraries
char *__kmp_tool_verbose_init = NULL;
static void __kmp_stg_parse_omp_tool_verbose_init(char const *name,
char const *value,
void *data) {
__kmp_stg_parse_str(name, value, &__kmp_tool_verbose_init);
} // __kmp_stg_parse_omp_tool_libraries
static void __kmp_stg_print_omp_tool_verbose_init(kmp_str_buf_t *buffer,
char const *name,
void *data) {
if (__kmp_tool_verbose_init)
__kmp_stg_print_str(buffer, name, __kmp_tool_verbose_init);
else {
if (__kmp_env_format) {
KMP_STR_BUF_PRINT_NAME;
} else {
__kmp_str_buf_print(buffer, " %s", name);
}
__kmp_str_buf_print(buffer, ": %s\n", KMP_I18N_STR(NotDefined));
}
} // __kmp_stg_print_omp_tool_verbose_init
#endif
// Table.
static kmp_setting_t __kmp_stg_table[] = {
{"KMP_ALL_THREADS", __kmp_stg_parse_device_thread_limit, NULL, NULL, 0, 0},
{"KMP_BLOCKTIME", __kmp_stg_parse_blocktime, __kmp_stg_print_blocktime,
NULL, 0, 0},
{"KMP_USE_YIELD", __kmp_stg_parse_use_yield, __kmp_stg_print_use_yield,
NULL, 0, 0},
{"KMP_DUPLICATE_LIB_OK", __kmp_stg_parse_duplicate_lib_ok,
__kmp_stg_print_duplicate_lib_ok, NULL, 0, 0},
{"KMP_LIBRARY", __kmp_stg_parse_wait_policy, __kmp_stg_print_wait_policy,
NULL, 0, 0},
{"KMP_DEVICE_THREAD_LIMIT", __kmp_stg_parse_device_thread_limit,
__kmp_stg_print_device_thread_limit, NULL, 0, 0},
#if KMP_USE_MONITOR
{"KMP_MONITOR_STACKSIZE", __kmp_stg_parse_monitor_stacksize,
__kmp_stg_print_monitor_stacksize, NULL, 0, 0},
#endif
{"KMP_SETTINGS", __kmp_stg_parse_settings, __kmp_stg_print_settings, NULL,
0, 0},
{"KMP_STACKOFFSET", __kmp_stg_parse_stackoffset,
__kmp_stg_print_stackoffset, NULL, 0, 0},
{"KMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize,
NULL, 0, 0},
{"KMP_STACKPAD", __kmp_stg_parse_stackpad, __kmp_stg_print_stackpad, NULL,
0, 0},
{"KMP_VERSION", __kmp_stg_parse_version, __kmp_stg_print_version, NULL, 0,
0},
{"KMP_WARNINGS", __kmp_stg_parse_warnings, __kmp_stg_print_warnings, NULL,
0, 0},
{"KMP_NESTING_MODE", __kmp_stg_parse_nesting_mode,
__kmp_stg_print_nesting_mode, NULL, 0, 0},
{"OMP_NESTED", __kmp_stg_parse_nested, __kmp_stg_print_nested, NULL, 0, 0},
{"OMP_NUM_THREADS", __kmp_stg_parse_num_threads,
__kmp_stg_print_num_threads, NULL, 0, 0},
{"OMP_STACKSIZE", __kmp_stg_parse_stacksize, __kmp_stg_print_stacksize,
NULL, 0, 0},
{"KMP_TASKING", __kmp_stg_parse_tasking, __kmp_stg_print_tasking, NULL, 0,
0},
{"KMP_TASK_STEALING_CONSTRAINT", __kmp_stg_parse_task_stealing,
__kmp_stg_print_task_stealing, NULL, 0, 0},
{"OMP_MAX_ACTIVE_LEVELS", __kmp_stg_parse_max_active_levels,
__kmp_stg_print_max_active_levels, NULL, 0, 0},
{"OMP_DEFAULT_DEVICE", __kmp_stg_parse_default_device,
__kmp_stg_print_default_device, NULL, 0, 0},
{"OMP_TARGET_OFFLOAD", __kmp_stg_parse_target_offload,
__kmp_stg_print_target_offload, NULL, 0, 0},
{"OMP_MAX_TASK_PRIORITY", __kmp_stg_parse_max_task_priority,
__kmp_stg_print_max_task_priority, NULL, 0, 0},
{"KMP_TASKLOOP_MIN_TASKS", __kmp_stg_parse_taskloop_min_tasks,
__kmp_stg_print_taskloop_min_tasks, NULL, 0, 0},
{"OMP_THREAD_LIMIT", __kmp_stg_parse_thread_limit,
__kmp_stg_print_thread_limit, NULL, 0, 0},
{"KMP_TEAMS_THREAD_LIMIT", __kmp_stg_parse_teams_thread_limit,
__kmp_stg_print_teams_thread_limit, NULL, 0, 0},
{"OMP_NUM_TEAMS", __kmp_stg_parse_nteams, __kmp_stg_print_nteams, NULL, 0,
0},
{"OMP_TEAMS_THREAD_LIMIT", __kmp_stg_parse_teams_th_limit,
__kmp_stg_print_teams_th_limit, NULL, 0, 0},
{"OMP_WAIT_POLICY", __kmp_stg_parse_wait_policy,
__kmp_stg_print_wait_policy, NULL, 0, 0},
{"KMP_DISP_NUM_BUFFERS", __kmp_stg_parse_disp_buffers,
__kmp_stg_print_disp_buffers, NULL, 0, 0},
#if KMP_NESTED_HOT_TEAMS
{"KMP_HOT_TEAMS_MAX_LEVEL", __kmp_stg_parse_hot_teams_level,
__kmp_stg_print_hot_teams_level, NULL, 0, 0},
{"KMP_HOT_TEAMS_MODE", __kmp_stg_parse_hot_teams_mode,
__kmp_stg_print_hot_teams_mode, NULL, 0, 0},
#endif // KMP_NESTED_HOT_TEAMS
#if KMP_HANDLE_SIGNALS
{"KMP_HANDLE_SIGNALS", __kmp_stg_parse_handle_signals,
__kmp_stg_print_handle_signals, NULL, 0, 0},
#endif
#if KMP_ARCH_X86 || KMP_ARCH_X86_64
{"KMP_INHERIT_FP_CONTROL", __kmp_stg_parse_inherit_fp_control,
__kmp_stg_print_inherit_fp_control, NULL, 0, 0},
#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
#ifdef KMP_GOMP_COMPAT
{"GOMP_STACKSIZE", __kmp_stg_parse_stacksize, NULL, NULL, 0, 0},
#endif
#ifdef KMP_DEBUG
{"KMP_A_DEBUG", __kmp_stg_parse_a_debug, __kmp_stg_print_a_debug, NULL, 0,
0},
{"KMP_B_DEBUG", __kmp_stg_parse_b_debug, __kmp_stg_print_b_debug, NULL, 0,
0},
{"KMP_C_DEBUG", __kmp_stg_parse_c_debug, __kmp_stg_print_c_debug, NULL, 0,
0},
{"KMP_D_DEBUG", __kmp_stg_parse_d_debug, __kmp_stg_print_d_debug, NULL, 0,
0},
{"KMP_E_DEBUG", __kmp_stg_parse_e_debug, __kmp_stg_print_e_debug, NULL, 0,
0},
{"KMP_F_DEBUG", __kmp_stg_parse_f_debug, __kmp_stg_print_f_debug, NULL, 0,
0},
{"KMP_DEBUG", __kmp_stg_parse_debug, NULL, /* no print */ NULL, 0, 0},
{"KMP_DEBUG_BUF", __kmp_stg_parse_debug_buf, __kmp_stg_print_debug_buf,
NULL, 0, 0},
{"KMP_DEBUG_BUF_ATOMIC", __kmp_stg_parse_debug_buf_atomic,
__kmp_stg_print_debug_buf_atomic, NULL, 0, 0},
{"KMP_DEBUG_BUF_CHARS", __kmp_stg_parse_debug_buf_chars,
__kmp_stg_print_debug_buf_chars, NULL, 0, 0},
{"KMP_DEBUG_BUF_LINES", __kmp_stg_parse_debug_buf_lines,
__kmp_stg_print_debug_buf_lines, NULL, 0, 0},
{"KMP_DIAG", __kmp_stg_parse_diag, __kmp_stg_print_diag, NULL, 0, 0},
{"KMP_PAR_RANGE", __kmp_stg_parse_par_range_env,
__kmp_stg_print_par_range_env, NULL, 0, 0},
#endif // KMP_DEBUG
{"KMP_ALIGN_ALLOC", __kmp_stg_parse_align_alloc,
__kmp_stg_print_align_alloc, NULL, 0, 0},
{"KMP_PLAIN_BARRIER", __kmp_stg_parse_barrier_branch_bit,
__kmp_stg_print_barrier_branch_bit, NULL, 0, 0},
{"KMP_PLAIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern,
__kmp_stg_print_barrier_pattern, NULL, 0, 0},
{"KMP_FORKJOIN_BARRIER", __kmp_stg_parse_barrier_branch_bit,
__kmp_stg_print_barrier_branch_bit, NULL, 0, 0},
{"KMP_FORKJOIN_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern,
__kmp_stg_print_barrier_pattern, NULL, 0, 0},
#if KMP_FAST_REDUCTION_BARRIER
{"KMP_REDUCTION_BARRIER", __kmp_stg_parse_barrier_branch_bit,
__kmp_stg_print_barrier_branch_bit, NULL, 0, 0},
{"KMP_REDUCTION_BARRIER_PATTERN", __kmp_stg_parse_barrier_pattern,
__kmp_stg_print_barrier_pattern, NULL, 0, 0},
#endif
{"KMP_ABORT_DELAY", __kmp_stg_parse_abort_delay,
__kmp_stg_print_abort_delay, NULL, 0, 0},
{"KMP_CPUINFO_FILE", __kmp_stg_parse_cpuinfo_file,
__kmp_stg_print_cpuinfo_file, NULL, 0, 0},
{"KMP_FORCE_REDUCTION", __kmp_stg_parse_force_reduction,
__kmp_stg_print_force_reduction, NULL, 0, 0},
{"KMP_DETERMINISTIC_REDUCTION", __kmp_stg_parse_force_reduction,
__kmp_stg_print_force_reduction, NULL, 0, 0},
{"KMP_STORAGE_MAP", __kmp_stg_parse_storage_map,
__kmp_stg_print_storage_map, NULL, 0, 0},
{"KMP_ALL_THREADPRIVATE", __kmp_stg_parse_all_threadprivate,
__kmp_stg_print_all_threadprivate, NULL, 0, 0},
{"KMP_FOREIGN_THREADS_THREADPRIVATE",
__kmp_stg_parse_foreign_threads_threadprivate,
__kmp_stg_print_foreign_threads_threadprivate, NULL, 0, 0},
#if KMP_AFFINITY_SUPPORTED
{"KMP_AFFINITY", __kmp_stg_parse_affinity, __kmp_stg_print_affinity, NULL,
0, 0},
#ifdef KMP_GOMP_COMPAT
{"GOMP_CPU_AFFINITY", __kmp_stg_parse_gomp_cpu_affinity, NULL,
/* no print */ NULL, 0, 0},
#endif /* KMP_GOMP_COMPAT */
{"OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind,
NULL, 0, 0},
{"KMP_TEAMS_PROC_BIND", __kmp_stg_parse_teams_proc_bind,
__kmp_stg_print_teams_proc_bind, NULL, 0, 0},
{"OMP_PLACES", __kmp_stg_parse_places, __kmp_stg_print_places, NULL, 0, 0},
{"KMP_TOPOLOGY_METHOD", __kmp_stg_parse_topology_method,
__kmp_stg_print_topology_method, NULL, 0, 0},
#else
// KMP_AFFINITY is not supported on OS X*, nor is OMP_PLACES.
// OMP_PROC_BIND and proc-bind-var are supported, however.
{"OMP_PROC_BIND", __kmp_stg_parse_proc_bind, __kmp_stg_print_proc_bind,
NULL, 0, 0},
#endif // KMP_AFFINITY_SUPPORTED
{"OMP_DISPLAY_AFFINITY", __kmp_stg_parse_display_affinity,
__kmp_stg_print_display_affinity, NULL, 0, 0},
{"OMP_AFFINITY_FORMAT", __kmp_stg_parse_affinity_format,
__kmp_stg_print_affinity_format, NULL, 0, 0},
{"KMP_INIT_AT_FORK", __kmp_stg_parse_init_at_fork,
__kmp_stg_print_init_at_fork, NULL, 0, 0},
{"KMP_SCHEDULE", __kmp_stg_parse_schedule, __kmp_stg_print_schedule, NULL,
0, 0},
{"OMP_SCHEDULE", __kmp_stg_parse_omp_schedule, __kmp_stg_print_omp_schedule,
NULL, 0, 0},
#if KMP_USE_HIER_SCHED
{"KMP_DISP_HAND_THREAD", __kmp_stg_parse_kmp_hand_thread,
__kmp_stg_print_kmp_hand_thread, NULL, 0, 0},
#endif
{"KMP_FORCE_MONOTONIC_DYNAMIC_SCHEDULE",
__kmp_stg_parse_kmp_force_monotonic, __kmp_stg_print_kmp_force_monotonic,
NULL, 0, 0},
{"KMP_ATOMIC_MODE", __kmp_stg_parse_atomic_mode,
__kmp_stg_print_atomic_mode, NULL, 0, 0},
{"KMP_CONSISTENCY_CHECK", __kmp_stg_parse_consistency_check,
__kmp_stg_print_consistency_check, NULL, 0, 0},
#if USE_ITT_BUILD && USE_ITT_NOTIFY
{"KMP_ITT_PREPARE_DELAY", __kmp_stg_parse_itt_prepare_delay,
__kmp_stg_print_itt_prepare_delay, NULL, 0, 0},
#endif /* USE_ITT_BUILD && USE_ITT_NOTIFY */
{"KMP_MALLOC_POOL_INCR", __kmp_stg_parse_malloc_pool_incr,
__kmp_stg_print_malloc_pool_incr, NULL, 0, 0},
{"KMP_GTID_MODE", __kmp_stg_parse_gtid_mode, __kmp_stg_print_gtid_mode,
NULL, 0, 0},
{"OMP_DYNAMIC", __kmp_stg_parse_omp_dynamic, __kmp_stg_print_omp_dynamic,
NULL, 0, 0},
{"KMP_DYNAMIC_MODE", __kmp_stg_parse_kmp_dynamic_mode,
__kmp_stg_print_kmp_dynamic_mode, NULL, 0, 0},
#ifdef USE_LOAD_BALANCE
{"KMP_LOAD_BALANCE_INTERVAL", __kmp_stg_parse_ld_balance_interval,
__kmp_stg_print_ld_balance_interval, NULL, 0, 0},
#endif
{"KMP_NUM_LOCKS_IN_BLOCK", __kmp_stg_parse_lock_block,
__kmp_stg_print_lock_block, NULL, 0, 0},
{"KMP_LOCK_KIND", __kmp_stg_parse_lock_kind, __kmp_stg_print_lock_kind,
NULL, 0, 0},
{"KMP_SPIN_BACKOFF_PARAMS", __kmp_stg_parse_spin_backoff_params,
__kmp_stg_print_spin_backoff_params, NULL, 0, 0},
#if KMP_USE_ADAPTIVE_LOCKS
{"KMP_ADAPTIVE_LOCK_PROPS", __kmp_stg_parse_adaptive_lock_props,
__kmp_stg_print_adaptive_lock_props, NULL, 0, 0},
#if KMP_DEBUG_ADAPTIVE_LOCKS
{"KMP_SPECULATIVE_STATSFILE", __kmp_stg_parse_speculative_statsfile,
__kmp_stg_print_speculative_statsfile, NULL, 0, 0},
#endif
#endif // KMP_USE_ADAPTIVE_LOCKS
{"KMP_PLACE_THREADS", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset,
NULL, 0, 0},
{"KMP_HW_SUBSET", __kmp_stg_parse_hw_subset, __kmp_stg_print_hw_subset,
NULL, 0, 0},
#if USE_ITT_BUILD
{"KMP_FORKJOIN_FRAMES", __kmp_stg_parse_forkjoin_frames,
__kmp_stg_print_forkjoin_frames, NULL, 0, 0},
{"KMP_FORKJOIN_FRAMES_MODE", __kmp_stg_parse_forkjoin_frames_mode,
__kmp_stg_print_forkjoin_frames_mode, NULL, 0, 0},
#endif
{"KMP_ENABLE_TASK_THROTTLING", __kmp_stg_parse_task_throttling,
__kmp_stg_print_task_throttling, NULL, 0, 0},
{"OMP_DISPLAY_ENV", __kmp_stg_parse_omp_display_env,
__kmp_stg_print_omp_display_env, NULL, 0, 0},
{"OMP_CANCELLATION", __kmp_stg_parse_omp_cancellation,
__kmp_stg_print_omp_cancellation, NULL, 0, 0},
{"OMP_ALLOCATOR", __kmp_stg_parse_allocator, __kmp_stg_print_allocator,
NULL, 0, 0},
{"LIBOMP_USE_HIDDEN_HELPER_TASK", __kmp_stg_parse_use_hidden_helper,
__kmp_stg_print_use_hidden_helper, NULL, 0, 0},
{"LIBOMP_NUM_HIDDEN_HELPER_THREADS",
__kmp_stg_parse_num_hidden_helper_threads,
__kmp_stg_print_num_hidden_helper_threads, NULL, 0, 0},
#if OMPT_SUPPORT
{"OMP_TOOL", __kmp_stg_parse_omp_tool, __kmp_stg_print_omp_tool, NULL, 0,
0},
{"OMP_TOOL_LIBRARIES", __kmp_stg_parse_omp_tool_libraries,
__kmp_stg_print_omp_tool_libraries, NULL, 0, 0},
{"OMP_TOOL_VERBOSE_INIT", __kmp_stg_parse_omp_tool_verbose_init,
__kmp_stg_print_omp_tool_verbose_init, NULL, 0, 0},
#endif
#if KMP_HAVE_MWAIT || KMP_HAVE_UMWAIT
{"KMP_USER_LEVEL_MWAIT", __kmp_stg_parse_user_level_mwait,
__kmp_stg_print_user_level_mwait, NULL, 0, 0},
{"KMP_MWAIT_HINTS", __kmp_stg_parse_mwait_hints,
__kmp_stg_print_mwait_hints, NULL, 0, 0},
#endif
{"", NULL, NULL, NULL, 0, 0}}; // settings
static int const __kmp_stg_count =
sizeof(__kmp_stg_table) / sizeof(kmp_setting_t);
static inline kmp_setting_t *__kmp_stg_find(char const *name) {
int i;
if (name != NULL) {
for (i = 0; i < __kmp_stg_count; ++i) {
if (strcmp(__kmp_stg_table[i].name, name) == 0) {
return &__kmp_stg_table[i];
}
}
}
return NULL;
} // __kmp_stg_find
static int __kmp_stg_cmp(void const *_a, void const *_b) {
const kmp_setting_t *a = RCAST(const kmp_setting_t *, _a);
const kmp_setting_t *b = RCAST(const kmp_setting_t *, _b);
// Process KMP_AFFINITY last.
// It needs to come after OMP_PLACES and GOMP_CPU_AFFINITY.
if (strcmp(a->name, "KMP_AFFINITY") == 0) {
if (strcmp(b->name, "KMP_AFFINITY") == 0) {
return 0;
}
return 1;
} else if (strcmp(b->name, "KMP_AFFINITY") == 0) {
return -1;
}
return strcmp(a->name, b->name);
} // __kmp_stg_cmp
static void __kmp_stg_init(void) {
static int initialized = 0;
if (!initialized) {
// Sort table.
qsort(__kmp_stg_table, __kmp_stg_count - 1, sizeof(kmp_setting_t),
__kmp_stg_cmp);
{ // Initialize *_STACKSIZE data.
kmp_setting_t *kmp_stacksize =
__kmp_stg_find("KMP_STACKSIZE"); // 1st priority.
#ifdef KMP_GOMP_COMPAT
kmp_setting_t *gomp_stacksize =
__kmp_stg_find("GOMP_STACKSIZE"); // 2nd priority.
#endif
kmp_setting_t *omp_stacksize =
__kmp_stg_find("OMP_STACKSIZE"); // 3rd priority.
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
// !!! Compiler does not understand rivals is used and optimizes out
// assignments
// !!! rivals[ i ++ ] = ...;
static kmp_setting_t *volatile rivals[4];
static kmp_stg_ss_data_t kmp_data = {1, CCAST(kmp_setting_t **, rivals)};
#ifdef KMP_GOMP_COMPAT
static kmp_stg_ss_data_t gomp_data = {1024,
CCAST(kmp_setting_t **, rivals)};
#endif
static kmp_stg_ss_data_t omp_data = {1024,
CCAST(kmp_setting_t **, rivals)};
int i = 0;
rivals[i++] = kmp_stacksize;
#ifdef KMP_GOMP_COMPAT
if (gomp_stacksize != NULL) {
rivals[i++] = gomp_stacksize;
}
#endif
rivals[i++] = omp_stacksize;
rivals[i++] = NULL;
kmp_stacksize->data = &kmp_data;
#ifdef KMP_GOMP_COMPAT
if (gomp_stacksize != NULL) {
gomp_stacksize->data = &gomp_data;
}
#endif
omp_stacksize->data = &omp_data;
}
{ // Initialize KMP_LIBRARY and OMP_WAIT_POLICY data.
kmp_setting_t *kmp_library =
__kmp_stg_find("KMP_LIBRARY"); // 1st priority.
kmp_setting_t *omp_wait_policy =
__kmp_stg_find("OMP_WAIT_POLICY"); // 2nd priority.
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
static kmp_setting_t *volatile rivals[3];
static kmp_stg_wp_data_t kmp_data = {0, CCAST(kmp_setting_t **, rivals)};
static kmp_stg_wp_data_t omp_data = {1, CCAST(kmp_setting_t **, rivals)};
int i = 0;
rivals[i++] = kmp_library;
if (omp_wait_policy != NULL) {
rivals[i++] = omp_wait_policy;
}
rivals[i++] = NULL;
kmp_library->data = &kmp_data;
if (omp_wait_policy != NULL) {
omp_wait_policy->data = &omp_data;
}
}
{ // Initialize KMP_DEVICE_THREAD_LIMIT and KMP_ALL_THREADS
kmp_setting_t *kmp_device_thread_limit =
__kmp_stg_find("KMP_DEVICE_THREAD_LIMIT"); // 1st priority.
kmp_setting_t *kmp_all_threads =
__kmp_stg_find("KMP_ALL_THREADS"); // 2nd priority.
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
static kmp_setting_t *volatile rivals[3];
int i = 0;
rivals[i++] = kmp_device_thread_limit;
rivals[i++] = kmp_all_threads;
rivals[i++] = NULL;
kmp_device_thread_limit->data = CCAST(kmp_setting_t **, rivals);
kmp_all_threads->data = CCAST(kmp_setting_t **, rivals);
}
{ // Initialize KMP_HW_SUBSET and KMP_PLACE_THREADS
// 1st priority
kmp_setting_t *kmp_hw_subset = __kmp_stg_find("KMP_HW_SUBSET");
// 2nd priority
kmp_setting_t *kmp_place_threads = __kmp_stg_find("KMP_PLACE_THREADS");
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
static kmp_setting_t *volatile rivals[3];
int i = 0;
rivals[i++] = kmp_hw_subset;
rivals[i++] = kmp_place_threads;
rivals[i++] = NULL;
kmp_hw_subset->data = CCAST(kmp_setting_t **, rivals);
kmp_place_threads->data = CCAST(kmp_setting_t **, rivals);
}
#if KMP_AFFINITY_SUPPORTED
{ // Initialize KMP_AFFINITY, GOMP_CPU_AFFINITY, and OMP_PROC_BIND data.
kmp_setting_t *kmp_affinity =
__kmp_stg_find("KMP_AFFINITY"); // 1st priority.
KMP_DEBUG_ASSERT(kmp_affinity != NULL);
#ifdef KMP_GOMP_COMPAT
kmp_setting_t *gomp_cpu_affinity =
__kmp_stg_find("GOMP_CPU_AFFINITY"); // 2nd priority.
KMP_DEBUG_ASSERT(gomp_cpu_affinity != NULL);
#endif
kmp_setting_t *omp_proc_bind =
__kmp_stg_find("OMP_PROC_BIND"); // 3rd priority.
KMP_DEBUG_ASSERT(omp_proc_bind != NULL);
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
static kmp_setting_t *volatile rivals[4];
int i = 0;
rivals[i++] = kmp_affinity;
#ifdef KMP_GOMP_COMPAT
rivals[i++] = gomp_cpu_affinity;
gomp_cpu_affinity->data = CCAST(kmp_setting_t **, rivals);
#endif
rivals[i++] = omp_proc_bind;
omp_proc_bind->data = CCAST(kmp_setting_t **, rivals);
rivals[i++] = NULL;
static kmp_setting_t *volatile places_rivals[4];
i = 0;
kmp_setting_t *omp_places = __kmp_stg_find("OMP_PLACES"); // 3rd priority.
KMP_DEBUG_ASSERT(omp_places != NULL);
places_rivals[i++] = kmp_affinity;
#ifdef KMP_GOMP_COMPAT
places_rivals[i++] = gomp_cpu_affinity;
#endif
places_rivals[i++] = omp_places;
omp_places->data = CCAST(kmp_setting_t **, places_rivals);
places_rivals[i++] = NULL;
}
#else
// KMP_AFFINITY not supported, so OMP_PROC_BIND has no rivals.
// OMP_PLACES not supported yet.
#endif // KMP_AFFINITY_SUPPORTED
{ // Initialize KMP_DETERMINISTIC_REDUCTION and KMP_FORCE_REDUCTION data.
kmp_setting_t *kmp_force_red =
__kmp_stg_find("KMP_FORCE_REDUCTION"); // 1st priority.
kmp_setting_t *kmp_determ_red =
__kmp_stg_find("KMP_DETERMINISTIC_REDUCTION"); // 2nd priority.
// !!! volatile keyword is Intel(R) C Compiler bug CQ49908 workaround.
static kmp_setting_t *volatile rivals[3];
static kmp_stg_fr_data_t force_data = {1,
CCAST(kmp_setting_t **, rivals)};
static kmp_stg_fr_data_t determ_data = {0,
CCAST(kmp_setting_t **, rivals)};
int i = 0;
rivals[i++] = kmp_force_red;
if (kmp_determ_red != NULL) {
rivals[i++] = kmp_determ_red;
}
rivals[i++] = NULL;
kmp_force_red->data = &force_data;
if (kmp_determ_red != NULL) {
kmp_determ_red->data = &determ_data;
}
}
initialized = 1;
}
// Reset flags.
int i;
for (i = 0; i < __kmp_stg_count; ++i) {
__kmp_stg_table[i].set = 0;
}
} // __kmp_stg_init
static void __kmp_stg_parse(char const *name, char const *value) {
// On Windows* OS there are some nameless variables like "C:=C:\" (yeah,
// really nameless, they are presented in environment block as
// "=C:=C\\\x00=D:=D:\\\x00...", so let us skip them.
if (name[0] == 0) {
return;
}
if (value != NULL) {
kmp_setting_t *setting = __kmp_stg_find(name);
if (setting != NULL) {
setting->parse(name, value, setting->data);
setting->defined = 1;
}
}
} // __kmp_stg_parse
static int __kmp_stg_check_rivals( // 0 -- Ok, 1 -- errors found.
char const *name, // Name of variable.
char const *value, // Value of the variable.
kmp_setting_t **rivals // List of rival settings (must include current one).
) {
if (rivals == NULL) {
return 0;
}
// Loop thru higher priority settings (listed before current).
int i = 0;
for (; strcmp(rivals[i]->name, name) != 0; i++) {
KMP_DEBUG_ASSERT(rivals[i] != NULL);
#if KMP_AFFINITY_SUPPORTED
if (rivals[i] == __kmp_affinity_notype) {
// If KMP_AFFINITY is specified without a type name,
// it does not rival OMP_PROC_BIND or GOMP_CPU_AFFINITY.
continue;
}
#endif
if (rivals[i]->set) {
KMP_WARNING(StgIgnored, name, rivals[i]->name);
return 1;
}
}
++i; // Skip current setting.
return 0;
} // __kmp_stg_check_rivals
static int __kmp_env_toPrint(char const *name, int flag) {
int rc = 0;
kmp_setting_t *setting = __kmp_stg_find(name);
if (setting != NULL) {
rc = setting->defined;
if (flag >= 0) {
setting->defined = flag;
}
}
return rc;
}
static void __kmp_aux_env_initialize(kmp_env_blk_t *block) {
char const *value;
/* OMP_NUM_THREADS */
value = __kmp_env_blk_var(block, "OMP_NUM_THREADS");
if (value) {
ompc_set_num_threads(__kmp_dflt_team_nth);
}
/* KMP_BLOCKTIME */
value = __kmp_env_blk_var(block, "KMP_BLOCKTIME");
if (value) {
kmpc_set_blocktime(__kmp_dflt_blocktime);
}
/* OMP_NESTED */
value = __kmp_env_blk_var(block, "OMP_NESTED");
if (value) {
ompc_set_nested(__kmp_dflt_max_active_levels > 1);
}
/* OMP_DYNAMIC */
value = __kmp_env_blk_var(block, "OMP_DYNAMIC");
if (value) {
ompc_set_dynamic(__kmp_global.g.g_dynamic);
}
}
void __kmp_env_initialize(char const *string) {
kmp_env_blk_t block;
int i;
__kmp_stg_init();
// Hack!!!
if (string == NULL) {
// __kmp_max_nth = __kmp_sys_max_nth;
__kmp_threads_capacity =
__kmp_initial_threads_capacity(__kmp_dflt_team_nth_ub);
}
__kmp_env_blk_init(&block, string);
// update the set flag on all entries that have an env var
for (i = 0; i < block.count; ++i) {
if ((block.vars[i].name == NULL) || (*block.vars[i].name == '\0')) {
continue;
}
if (block.vars[i].value == NULL) {
continue;
}
kmp_setting_t *setting = __kmp_stg_find(block.vars[i].name);
if (setting != NULL) {
setting->set = 1;
}
}
// We need to know if blocktime was set when processing OMP_WAIT_POLICY
blocktime_str = __kmp_env_blk_var(&block, "KMP_BLOCKTIME");
// Special case. If we parse environment, not a string, process KMP_WARNINGS
// first.
if (string == NULL) {
char const *name = "KMP_WARNINGS";
char const *value = __kmp_env_blk_var(&block, name);
__kmp_stg_parse(name, value);
}
#if KMP_AFFINITY_SUPPORTED
// Special case. KMP_AFFINITY is not a rival to other affinity env vars
// if no affinity type is specified. We want to allow
// KMP_AFFINITY=[no],verbose/[no]warnings/etc. to be enabled when
// specifying the affinity type via GOMP_CPU_AFFINITY or the OMP 4.0
// affinity mechanism.
__kmp_affinity_notype = NULL;
char const *aff_str = __kmp_env_blk_var(&block, "KMP_AFFINITY");
if (aff_str != NULL) {
// Check if the KMP_AFFINITY type is specified in the string.
// We just search the string for "compact", "scatter", etc.
// without really parsing the string. The syntax of the
// KMP_AFFINITY env var is such that none of the affinity
// type names can appear anywhere other that the type
// specifier, even as substrings.
//
// I can't find a case-insensitive version of strstr on Windows* OS.
// Use the case-sensitive version for now.
#if KMP_OS_WINDOWS
#define FIND strstr
#else
#define FIND strcasestr
#endif
if ((FIND(aff_str, "none") == NULL) &&
(FIND(aff_str, "physical") == NULL) &&
(FIND(aff_str, "logical") == NULL) &&
(FIND(aff_str, "compact") == NULL) &&
(FIND(aff_str, "scatter") == NULL) &&
(FIND(aff_str, "explicit") == NULL) &&
(FIND(aff_str, "balanced") == NULL) &&
(FIND(aff_str, "disabled") == NULL)) {
__kmp_affinity_notype = __kmp_stg_find("KMP_AFFINITY");
} else {
// A new affinity type is specified.
// Reset the affinity flags to their default values,
// in case this is called from kmp_set_defaults().
__kmp_affinity_type = affinity_default;
__kmp_affinity_gran = KMP_HW_UNKNOWN;
__kmp_affinity_top_method = affinity_top_method_default;
__kmp_affinity_respect_mask = affinity_respect_mask_default;
}
#undef FIND
// Also reset the affinity flags if OMP_PROC_BIND is specified.
aff_str = __kmp_env_blk_var(&block, "OMP_PROC_BIND");
if (aff_str != NULL) {
__kmp_affinity_type = affinity_default;
__kmp_affinity_gran = KMP_HW_UNKNOWN;
__kmp_affinity_top_method = affinity_top_method_default;
__kmp_affinity_respect_mask = affinity_respect_mask_default;
}
}
#endif /* KMP_AFFINITY_SUPPORTED */
// Set up the nested proc bind type vector.
if (__kmp_nested_proc_bind.bind_types == NULL) {
__kmp_nested_proc_bind.bind_types =
(kmp_proc_bind_t *)KMP_INTERNAL_MALLOC(sizeof(kmp_proc_bind_t));
if (__kmp_nested_proc_bind.bind_types == NULL) {
KMP_FATAL(MemoryAllocFailed);
}
__kmp_nested_proc_bind.size = 1;
__kmp_nested_proc_bind.used = 1;
#if KMP_AFFINITY_SUPPORTED
__kmp_nested_proc_bind.bind_types[0] = proc_bind_default;
#else
// default proc bind is false if affinity not supported
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
#endif
}
// Set up the affinity format ICV
// Grab the default affinity format string from the message catalog
kmp_msg_t m =
__kmp_msg_format(kmp_i18n_msg_AffFormatDefault, "%P", "%i", "%n", "%A");
KMP_DEBUG_ASSERT(KMP_STRLEN(m.str) < KMP_AFFINITY_FORMAT_SIZE);
if (__kmp_affinity_format == NULL) {
__kmp_affinity_format =
(char *)KMP_INTERNAL_MALLOC(sizeof(char) * KMP_AFFINITY_FORMAT_SIZE);
}
KMP_STRCPY_S(__kmp_affinity_format, KMP_AFFINITY_FORMAT_SIZE, m.str);
__kmp_str_free(&m.str);
// Now process all of the settings.
for (i = 0; i < block.count; ++i) {
__kmp_stg_parse(block.vars[i].name, block.vars[i].value);
}
// If user locks have been allocated yet, don't reset the lock vptr table.
if (!__kmp_init_user_locks) {
if (__kmp_user_lock_kind == lk_default) {
__kmp_user_lock_kind = lk_queuing;
}
#if KMP_USE_DYNAMIC_LOCK
__kmp_init_dynamic_user_locks();
#else
__kmp_set_user_lock_vptrs(__kmp_user_lock_kind);
#endif
} else {
KMP_DEBUG_ASSERT(string != NULL); // kmp_set_defaults() was called
KMP_DEBUG_ASSERT(__kmp_user_lock_kind != lk_default);
// Binds lock functions again to follow the transition between different
// KMP_CONSISTENCY_CHECK values. Calling this again is harmless as long
// as we do not allow lock kind changes after making a call to any
// user lock functions (true).
#if KMP_USE_DYNAMIC_LOCK
__kmp_init_dynamic_user_locks();
#else
__kmp_set_user_lock_vptrs(__kmp_user_lock_kind);
#endif
}
#if KMP_AFFINITY_SUPPORTED
if (!TCR_4(__kmp_init_middle)) {
#if KMP_USE_HWLOC
// Force using hwloc when either tiles or numa nodes requested within
// KMP_HW_SUBSET or granularity setting and no other topology method
// is requested
if (__kmp_hw_subset &&
__kmp_affinity_top_method == affinity_top_method_default)
if (__kmp_hw_subset->specified(KMP_HW_NUMA) ||
__kmp_hw_subset->specified(KMP_HW_TILE) ||
__kmp_affinity_gran == KMP_HW_TILE ||
__kmp_affinity_gran == KMP_HW_NUMA)
__kmp_affinity_top_method = affinity_top_method_hwloc;
// Force using hwloc when tiles or numa nodes requested for OMP_PLACES
if (__kmp_affinity_gran == KMP_HW_NUMA ||
__kmp_affinity_gran == KMP_HW_TILE)
__kmp_affinity_top_method = affinity_top_method_hwloc;
#endif
// Determine if the machine/OS is actually capable of supporting
// affinity.
const char *var = "KMP_AFFINITY";
KMPAffinity::pick_api();
#if KMP_USE_HWLOC
// If Hwloc topology discovery was requested but affinity was also disabled,
// then tell user that Hwloc request is being ignored and use default
// topology discovery method.
if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
__kmp_affinity_dispatch->get_api_type() != KMPAffinity::HWLOC) {
KMP_WARNING(AffIgnoringHwloc, var);
__kmp_affinity_top_method = affinity_top_method_all;
}
#endif
if (__kmp_affinity_type == affinity_disabled) {
KMP_AFFINITY_DISABLE();
} else if (!KMP_AFFINITY_CAPABLE()) {
__kmp_affinity_dispatch->determine_capable(var);
if (!KMP_AFFINITY_CAPABLE()) {
if (__kmp_affinity_verbose ||
(__kmp_affinity_warnings &&
(__kmp_affinity_type != affinity_default) &&
(__kmp_affinity_type != affinity_none) &&
(__kmp_affinity_type != affinity_disabled))) {
KMP_WARNING(AffNotSupported, var);
}
__kmp_affinity_type = affinity_disabled;
__kmp_affinity_respect_mask = 0;
__kmp_affinity_gran = KMP_HW_THREAD;
}
}
if (__kmp_affinity_type == affinity_disabled) {
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
} else if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_true) {
// OMP_PROC_BIND=true maps to OMP_PROC_BIND=spread.
__kmp_nested_proc_bind.bind_types[0] = proc_bind_spread;
}
if (KMP_AFFINITY_CAPABLE()) {
#if KMP_GROUP_AFFINITY
// This checks to see if the initial affinity mask is equal
// to a single windows processor group. If it is, then we do
// not respect the initial affinity mask and instead, use the
// entire machine.
bool exactly_one_group = false;
if (__kmp_num_proc_groups > 1) {
int group;
bool within_one_group;
// Get the initial affinity mask and determine if it is
// contained within a single group.
kmp_affin_mask_t *init_mask;
KMP_CPU_ALLOC(init_mask);
__kmp_get_system_affinity(init_mask, TRUE);
group = __kmp_get_proc_group(init_mask);
within_one_group = (group >= 0);
// If the initial affinity is within a single group,
// then determine if it is equal to that single group.
if (within_one_group) {
DWORD num_bits_in_group = __kmp_GetActiveProcessorCount(group);
DWORD num_bits_in_mask = 0;
for (int bit = init_mask->begin(); bit != init_mask->end();
bit = init_mask->next(bit))
num_bits_in_mask++;
exactly_one_group = (num_bits_in_group == num_bits_in_mask);
}
KMP_CPU_FREE(init_mask);
}
// Handle the Win 64 group affinity stuff if there are multiple
// processor groups, or if the user requested it, and OMP 4.0
// affinity is not in effect.
if (__kmp_num_proc_groups > 1 &&
__kmp_affinity_type == affinity_default &&
__kmp_nested_proc_bind.bind_types[0] == proc_bind_default) {
// Do not respect the initial processor affinity mask if it is assigned
// exactly one Windows Processor Group since this is interpreted as the
// default OS assignment. Not respecting the mask allows the runtime to
// use all the logical processors in all groups.
if (__kmp_affinity_respect_mask == affinity_respect_mask_default &&
exactly_one_group) {
__kmp_affinity_respect_mask = FALSE;
}
// Use compact affinity with anticipation of pinning to at least the
// group granularity since threads can only be bound to one group.
if (__kmp_affinity_type == affinity_default) {
__kmp_affinity_type = affinity_compact;
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
}
if (__kmp_affinity_top_method == affinity_top_method_default)
__kmp_affinity_top_method = affinity_top_method_all;
if (__kmp_affinity_gran == KMP_HW_UNKNOWN)
__kmp_affinity_gran = KMP_HW_PROC_GROUP;
} else
#endif /* KMP_GROUP_AFFINITY */
{
if (__kmp_affinity_respect_mask == affinity_respect_mask_default) {
#if KMP_GROUP_AFFINITY
if (__kmp_num_proc_groups > 1 && exactly_one_group) {
__kmp_affinity_respect_mask = FALSE;
} else
#endif /* KMP_GROUP_AFFINITY */
{
__kmp_affinity_respect_mask = TRUE;
}
}
if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
(__kmp_nested_proc_bind.bind_types[0] != proc_bind_default)) {
if (__kmp_affinity_type == affinity_default) {
__kmp_affinity_type = affinity_compact;
__kmp_affinity_dups = FALSE;
}
} else if (__kmp_affinity_type == affinity_default) {
#if KMP_MIC_SUPPORTED
if (__kmp_mic_type != non_mic) {
__kmp_nested_proc_bind.bind_types[0] = proc_bind_intel;
} else
#endif
{
__kmp_nested_proc_bind.bind_types[0] = proc_bind_false;
}
#if KMP_MIC_SUPPORTED
if (__kmp_mic_type != non_mic) {
__kmp_affinity_type = affinity_scatter;
} else
#endif
{
__kmp_affinity_type = affinity_none;
}
}
if ((__kmp_affinity_gran == KMP_HW_UNKNOWN) &&
(__kmp_affinity_gran_levels < 0)) {
#if KMP_MIC_SUPPORTED
if (__kmp_mic_type != non_mic) {
__kmp_affinity_gran = KMP_HW_THREAD;
} else
#endif
{
__kmp_affinity_gran = KMP_HW_CORE;
}
}
if (__kmp_affinity_top_method == affinity_top_method_default) {
__kmp_affinity_top_method = affinity_top_method_all;
}
}
}
K_DIAG(1, ("__kmp_affinity_type == %d\n", __kmp_affinity_type));
K_DIAG(1, ("__kmp_affinity_compact == %d\n", __kmp_affinity_compact));
K_DIAG(1, ("__kmp_affinity_offset == %d\n", __kmp_affinity_offset));
K_DIAG(1, ("__kmp_affinity_verbose == %d\n", __kmp_affinity_verbose));
K_DIAG(1, ("__kmp_affinity_warnings == %d\n", __kmp_affinity_warnings));
K_DIAG(1, ("__kmp_affinity_respect_mask == %d\n",
__kmp_affinity_respect_mask));
K_DIAG(1, ("__kmp_affinity_gran == %d\n", __kmp_affinity_gran));
KMP_DEBUG_ASSERT(__kmp_affinity_type != affinity_default);
KMP_DEBUG_ASSERT(__kmp_nested_proc_bind.bind_types[0] != proc_bind_default);
K_DIAG(1, ("__kmp_nested_proc_bind.bind_types[0] == %d\n",
__kmp_nested_proc_bind.bind_types[0]));
}
#endif /* KMP_AFFINITY_SUPPORTED */
if (__kmp_version) {
__kmp_print_version_1();
}
// Post-initialization step: some env. vars need their value's further
// processing
if (string != NULL) { // kmp_set_defaults() was called
__kmp_aux_env_initialize(&block);
}
__kmp_env_blk_free(&block);
KMP_MB();
} // __kmp_env_initialize
void __kmp_env_print() {
kmp_env_blk_t block;
int i;
kmp_str_buf_t buffer;
__kmp_stg_init();
__kmp_str_buf_init(&buffer);
__kmp_env_blk_init(&block, NULL);
__kmp_env_blk_sort(&block);
// Print real environment values.
__kmp_str_buf_print(&buffer, "\n%s\n\n", KMP_I18N_STR(UserSettings));
for (i = 0; i < block.count; ++i) {
char const *name = block.vars[i].name;
char const *value = block.vars[i].value;
if ((KMP_STRLEN(name) > 4 && strncmp(name, "KMP_", 4) == 0) ||
strncmp(name, "OMP_", 4) == 0
#ifdef KMP_GOMP_COMPAT
|| strncmp(name, "GOMP_", 5) == 0
#endif // KMP_GOMP_COMPAT
) {
__kmp_str_buf_print(&buffer, " %s=%s\n", name, value);
}
}
__kmp_str_buf_print(&buffer, "\n");
// Print internal (effective) settings.
__kmp_str_buf_print(&buffer, "%s\n\n", KMP_I18N_STR(EffectiveSettings));
for (int i = 0; i < __kmp_stg_count; ++i) {
if (__kmp_stg_table[i].print != NULL) {
__kmp_stg_table[i].print(&buffer, __kmp_stg_table[i].name,
__kmp_stg_table[i].data);
}
}
__kmp_printf("%s", buffer.str);
__kmp_env_blk_free(&block);
__kmp_str_buf_free(&buffer);
__kmp_printf("\n");
} // __kmp_env_print
void __kmp_env_print_2() {
__kmp_display_env_impl(__kmp_display_env, __kmp_display_env_verbose);
} // __kmp_env_print_2
void __kmp_display_env_impl(int display_env, int display_env_verbose) {
kmp_env_blk_t block;
kmp_str_buf_t buffer;
__kmp_env_format = 1;
__kmp_stg_init();
__kmp_str_buf_init(&buffer);
__kmp_env_blk_init(&block, NULL);
__kmp_env_blk_sort(&block);
__kmp_str_buf_print(&buffer, "\n%s\n", KMP_I18N_STR(DisplayEnvBegin));
__kmp_str_buf_print(&buffer, " _OPENMP='%d'\n", __kmp_openmp_version);
for (int i = 0; i < __kmp_stg_count; ++i) {
if (__kmp_stg_table[i].print != NULL &&
((display_env && strncmp(__kmp_stg_table[i].name, "OMP_", 4) == 0) ||
display_env_verbose)) {
__kmp_stg_table[i].print(&buffer, __kmp_stg_table[i].name,
__kmp_stg_table[i].data);
}
}
__kmp_str_buf_print(&buffer, "%s\n", KMP_I18N_STR(DisplayEnvEnd));
__kmp_str_buf_print(&buffer, "\n");
__kmp_printf("%s", buffer.str);
__kmp_env_blk_free(&block);
__kmp_str_buf_free(&buffer);
__kmp_printf("\n");
}
#if OMPD_SUPPORT
// Dump environment variables for OMPD
void __kmp_env_dump() {
kmp_env_blk_t block;
kmp_str_buf_t buffer, env, notdefined;
__kmp_stg_init();
__kmp_str_buf_init(&buffer);
__kmp_str_buf_init(&env);
__kmp_str_buf_init(&notdefined);
__kmp_env_blk_init(&block, NULL);
__kmp_env_blk_sort(&block);
__kmp_str_buf_print(&notdefined, ": %s", KMP_I18N_STR(NotDefined));
for (int i = 0; i < __kmp_stg_count; ++i) {
if (__kmp_stg_table[i].print == NULL)
continue;
__kmp_str_buf_clear(&env);
__kmp_stg_table[i].print(&env, __kmp_stg_table[i].name,
__kmp_stg_table[i].data);
if (env.used < 4) // valid definition must have indents (3) and a new line
continue;
if (strstr(env.str, notdefined.str))
// normalize the string
__kmp_str_buf_print(&buffer, "%s=undefined\n", __kmp_stg_table[i].name);
else
__kmp_str_buf_cat(&buffer, env.str + 3, env.used - 3);
}
ompd_env_block = (char *)__kmp_allocate(buffer.used + 1);
KMP_MEMCPY(ompd_env_block, buffer.str, buffer.used + 1);
ompd_env_block_size = (ompd_size_t)KMP_STRLEN(ompd_env_block);
__kmp_env_blk_free(&block);
__kmp_str_buf_free(&buffer);
__kmp_str_buf_free(&env);
__kmp_str_buf_free(&notdefined);
}
#endif // OMPD_SUPPORT
// end of file