blob: d74d14ff9785362f738b27b77772fe483e589b15 [file] [log] [blame]
//===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops
// and generates target-independent LLVM-IR.
// The vectorizer uses the TargetTransformInfo analysis to estimate the costs
// of instructions in order to estimate the profitability of vectorization.
//
// The loop vectorizer combines consecutive loop iterations into a single
// 'wide' iteration. After this transformation the index is incremented
// by the SIMD vector width, and not by one.
//
// This pass has three parts:
// 1. The main loop pass that drives the different parts.
// 2. LoopVectorizationLegality - A unit that checks for the legality
// of the vectorization.
// 3. InnerLoopVectorizer - A unit that performs the actual
// widening of instructions.
// 4. LoopVectorizationCostModel - A unit that checks for the profitability
// of vectorization. It decides on the optimal vector width, which
// can be one, if vectorization is not profitable.
//
// There is a development effort going on to migrate loop vectorizer to the
// VPlan infrastructure and to introduce outer loop vectorization support (see
// docs/Proposal/VectorizationPlan.rst and
// http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this
// purpose, we temporarily introduced the VPlan-native vectorization path: an
// alternative vectorization path that is natively implemented on top of the
// VPlan infrastructure. See EnableVPlanNativePath for enabling.
//
//===----------------------------------------------------------------------===//
//
// The reduction-variable vectorization is based on the paper:
// D. Nuzman and R. Henderson. Multi-platform Auto-vectorization.
//
// Variable uniformity checks are inspired by:
// Karrenberg, R. and Hack, S. Whole Function Vectorization.
//
// The interleaved access vectorization is based on the paper:
// Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved
// Data for SIMD
//
// Other ideas/concepts are from:
// A. Zaks and D. Nuzman. Autovectorization in GCC-two years later.
//
// S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of
// Vectorizing Compilers.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Vectorize/LoopVectorize.h"
#include "LoopVectorizationPlanner.h"
#include "VPRecipeBuilder.h"
#include "VPlan.h"
#include "VPlanHCFGBuilder.h"
#include "VPlanPredicator.h"
#include "VPlanTransforms.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/DemandedBits.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/IR/Verifier.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/InstructionCost.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/InjectTLIMappings.h"
#include "llvm/Transforms/Utils/LoopSimplify.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/LoopVersioning.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstdlib>
#include <functional>
#include <iterator>
#include <limits>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
using namespace llvm;
#define LV_NAME "loop-vectorize"
#define DEBUG_TYPE LV_NAME
#ifndef NDEBUG
const char VerboseDebug[] = DEBUG_TYPE "-verbose";
#endif
/// @{
/// Metadata attribute names
const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all";
const char LLVMLoopVectorizeFollowupVectorized[] =
"llvm.loop.vectorize.followup_vectorized";
const char LLVMLoopVectorizeFollowupEpilogue[] =
"llvm.loop.vectorize.followup_epilogue";
/// @}
STATISTIC(LoopsVectorized, "Number of loops vectorized");
STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized");
static cl::opt<bool> EnableEpilogueVectorization(
"enable-epilogue-vectorization", cl::init(true), cl::Hidden,
cl::desc("Enable vectorization of epilogue loops."));
static cl::opt<unsigned> EpilogueVectorizationForceVF(
"epilogue-vectorization-force-VF", cl::init(1), cl::Hidden,
cl::desc("When epilogue vectorization is enabled, and a value greater than "
"1 is specified, forces the given VF for all applicable epilogue "
"loops."));
static cl::opt<unsigned> EpilogueVectorizationMinVF(
"epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden,
cl::desc("Only loops with vectorization factor equal to or larger than "
"the specified value are considered for epilogue vectorization."));
/// Loops with a known constant trip count below this number are vectorized only
/// if no scalar iteration overheads are incurred.
static cl::opt<unsigned> TinyTripCountVectorThreshold(
"vectorizer-min-trip-count", cl::init(16), cl::Hidden,
cl::desc("Loops with a constant trip count that is smaller than this "
"value are vectorized only if no scalar iteration overheads "
"are incurred."));
static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
"pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
cl::desc("The maximum allowed number of runtime memory checks with a "
"vectorize(enable) pragma."));
// Option prefer-predicate-over-epilogue indicates that an epilogue is undesired,
// that predication is preferred, and this lists all options. I.e., the
// vectorizer will try to fold the tail-loop (epilogue) into the vector body
// and predicate the instructions accordingly. If tail-folding fails, there are
// different fallback strategies depending on these values:
namespace PreferPredicateTy {
enum Option {
ScalarEpilogue = 0,
PredicateElseScalarEpilogue,
PredicateOrDontVectorize
};
} // namespace PreferPredicateTy
static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue(
"prefer-predicate-over-epilogue",
cl::init(PreferPredicateTy::ScalarEpilogue),
cl::Hidden,
cl::desc("Tail-folding and predication preferences over creating a scalar "
"epilogue loop."),
cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue,
"scalar-epilogue",
"Don't tail-predicate loops, create scalar epilogue"),
clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue,
"predicate-else-scalar-epilogue",
"prefer tail-folding, create scalar epilogue if tail "
"folding fails."),
clEnumValN(PreferPredicateTy::PredicateOrDontVectorize,
"predicate-dont-vectorize",
"prefers tail-folding, don't attempt vectorization if "
"tail-folding fails.")));
static cl::opt<bool> MaximizeBandwidth(
"vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden,
cl::desc("Maximize bandwidth when selecting vectorization factor which "
"will be determined by the smallest type in loop."));
static cl::opt<bool> EnableInterleavedMemAccesses(
"enable-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on interleaved memory accesses in a loop"));
/// An interleave-group may need masking if it resides in a block that needs
/// predication, or in order to mask away gaps.
static cl::opt<bool> EnableMaskedInterleavedMemAccesses(
"enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden,
cl::desc("Enable vectorization on masked interleaved memory accesses in a loop"));
static cl::opt<unsigned> TinyTripCountInterleaveThreshold(
"tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden,
cl::desc("We don't interleave loops with a estimated constant trip count "
"below this number"));
static cl::opt<unsigned> ForceTargetNumScalarRegs(
"force-target-num-scalar-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of scalar registers."));
static cl::opt<unsigned> ForceTargetNumVectorRegs(
"force-target-num-vector-regs", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's number of vector registers."));
static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor(
"force-target-max-scalar-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"scalar loops."));
static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor(
"force-target-max-vector-interleave", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's max interleave factor for "
"vectorized loops."));
static cl::opt<unsigned> ForceTargetInstructionCost(
"force-target-instruction-cost", cl::init(0), cl::Hidden,
cl::desc("A flag that overrides the target's expected cost for "
"an instruction to a single constant value. Mostly "
"useful for getting consistent testing."));
static cl::opt<bool> ForceTargetSupportsScalableVectors(
"force-target-supports-scalable-vectors", cl::init(false), cl::Hidden,
cl::desc(
"Pretend that scalable vectors are supported, even if the target does "
"not support them. This flag should only be used for testing."));
static cl::opt<unsigned> SmallLoopCost(
"small-loop-cost", cl::init(20), cl::Hidden,
cl::desc(
"The cost of a loop that is considered 'small' by the interleaver."));
static cl::opt<bool> LoopVectorizeWithBlockFrequency(
"loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden,
cl::desc("Enable the use of the block frequency analysis to access PGO "
"heuristics minimizing code growth in cold regions and being more "
"aggressive in hot regions."));
// Runtime interleave loops for load/store throughput.
static cl::opt<bool> EnableLoadStoreRuntimeInterleave(
"enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden,
cl::desc(
"Enable runtime interleaving until load/store ports are saturated"));
/// Interleave small loops with scalar reductions.
static cl::opt<bool> InterleaveSmallLoopScalarReduction(
"interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden,
cl::desc("Enable interleaving for loops with small iteration counts that "
"contain scalar reductions to expose ILP."));
/// The number of stores in a loop that are allowed to need predication.
static cl::opt<unsigned> NumberOfStoresToPredicate(
"vectorize-num-stores-pred", cl::init(1), cl::Hidden,
cl::desc("Max number of stores to be predicated behind an if."));
static cl::opt<bool> EnableIndVarRegisterHeur(
"enable-ind-var-reg-heur", cl::init(true), cl::Hidden,
cl::desc("Count the induction variable only once when interleaving"));
static cl::opt<bool> EnableCondStoresVectorization(
"enable-cond-stores-vec", cl::init(true), cl::Hidden,
cl::desc("Enable if predication of stores during vectorization."));
static cl::opt<unsigned> MaxNestedScalarReductionIC(
"max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden,
cl::desc("The maximum interleave count to use when interleaving a scalar "
"reduction in a nested loop."));
static cl::opt<bool>
PreferInLoopReductions("prefer-inloop-reductions", cl::init(false),
cl::Hidden,
cl::desc("Prefer in-loop vector reductions, "
"overriding the targets preference."));
static cl::opt<bool> ForceOrderedReductions(
"force-ordered-reductions", cl::init(false), cl::Hidden,
cl::desc("Enable the vectorisation of loops with in-order (strict) "
"FP reductions"));
static cl::opt<bool> PreferPredicatedReductionSelect(
"prefer-predicated-reduction-select", cl::init(false), cl::Hidden,
cl::desc(
"Prefer predicating a reduction operation over an after loop select."));
cl::opt<bool> EnableVPlanNativePath(
"enable-vplan-native-path", cl::init(false), cl::Hidden,
cl::desc("Enable VPlan-native vectorization path with "
"support for outer loop vectorization."));
// FIXME: Remove this switch once we have divergence analysis. Currently we
// assume divergent non-backedge branches when this switch is true.
cl::opt<bool> EnableVPlanPredication(
"enable-vplan-predication", cl::init(false), cl::Hidden,
cl::desc("Enable VPlan-native vectorization path predicator with "
"support for outer loop vectorization."));
// This flag enables the stress testing of the VPlan H-CFG construction in the
// VPlan-native vectorization path. It must be used in conjuction with
// -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the
// verification of the H-CFGs built.
static cl::opt<bool> VPlanBuildStressTest(
"vplan-build-stress-test", cl::init(false), cl::Hidden,
cl::desc(
"Build VPlan for every supported loop nest in the function and bail "
"out right after the build (stress test the VPlan H-CFG construction "
"in the VPlan-native vectorization path)."));
cl::opt<bool> llvm::EnableLoopInterleaving(
"interleave-loops", cl::init(true), cl::Hidden,
cl::desc("Enable loop interleaving in Loop vectorization passes"));
cl::opt<bool> llvm::EnableLoopVectorization(
"vectorize-loops", cl::init(true), cl::Hidden,
cl::desc("Run the Loop vectorization passes"));
cl::opt<bool> PrintVPlansInDotFormat(
"vplan-print-in-dot-format", cl::init(false), cl::Hidden,
cl::desc("Use dot format instead of plain text when dumping VPlans"));
/// A helper function that returns true if the given type is irregular. The
/// type is irregular if its allocated size doesn't equal the store size of an
/// element of the corresponding vector type.
static bool hasIrregularType(Type *Ty, const DataLayout &DL) {
// Determine if an array of N elements of type Ty is "bitcast compatible"
// with a <N x Ty> vector.
// This is only true if there is no padding between the array elements.
return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty);
}
/// A helper function that returns the reciprocal of the block probability of
/// predicated blocks. If we return X, we are assuming the predicated block
/// will execute once for every X iterations of the loop header.
///
/// TODO: We should use actual block probability here, if available. Currently,
/// we always assume predicated blocks have a 50% chance of executing.
static unsigned getReciprocalPredBlockProb() { return 2; }
/// A helper function that returns an integer or floating-point constant with
/// value C.
static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) {
return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C)
: ConstantFP::get(Ty, C);
}
/// Returns "best known" trip count for the specified loop \p L as defined by
/// the following procedure:
/// 1) Returns exact trip count if it is known.
/// 2) Returns expected trip count according to profile data if any.
/// 3) Returns upper bound estimate if it is known.
/// 4) Returns None if all of the above failed.
static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) {
// Check if exact trip count is known.
if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L))
return ExpectedTC;
// Check if there is an expected trip count available from profile data.
if (LoopVectorizeWithBlockFrequency)
if (auto EstimatedTC = getLoopEstimatedTripCount(L))
return EstimatedTC;
// Check if upper bound estimate is known.
if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L))
return ExpectedTC;
return None;
}
// Forward declare GeneratedRTChecks.
class GeneratedRTChecks;
namespace llvm {
/// InnerLoopVectorizer vectorizes loops which contain only one basic
/// block to a specified vectorization factor (VF).
/// This class performs the widening of scalars into vectors, or multiple
/// scalars. This class also implements the following features:
/// * It inserts an epilogue loop for handling loops that don't have iteration
/// counts that are known to be a multiple of the vectorization factor.
/// * It handles the code generation for reduction variables.
/// * Scalarization (implementation using scalars) of un-vectorizable
/// instructions.
/// InnerLoopVectorizer does not perform any vectorization-legality
/// checks, and relies on the caller to check for the different legality
/// aspects. The InnerLoopVectorizer relies on the
/// LoopVectorizationLegality class to provide information about the induction
/// and reduction variables that were found to a given vectorization factor.
class InnerLoopVectorizer {
public:
InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, ElementCount VecWidth,
unsigned UnrollFactor, LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &RTChecks)
: OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI),
AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor),
Builder(PSE.getSE()->getContext()), Legal(LVL), Cost(CM), BFI(BFI),
PSI(PSI), RTChecks(RTChecks) {
// Query this against the original loop and save it here because the profile
// of the original loop header may change as the transformation happens.
OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize(
OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass);
}
virtual ~InnerLoopVectorizer() = default;
/// Create a new empty loop that will contain vectorized instructions later
/// on, while the old loop will be used as the scalar remainder. Control flow
/// is generated around the vectorized (and scalar epilogue) loops consisting
/// of various checks and bypasses. Return the pre-header block of the new
/// loop.
/// In the case of epilogue vectorization, this function is overriden to
/// handle the more complex control flow around the loops.
virtual BasicBlock *createVectorizedLoopSkeleton();
/// Widen a single call instruction within the innermost loop.
void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands,
VPTransformState &State);
/// Fix the vectorized code, taking care of header phi's, live-outs, and more.
void fixVectorizedLoop(VPTransformState &State);
// Return true if any runtime check is added.
bool areSafetyChecksAdded() { return AddedSafetyChecks; }
/// A type for vectorized values in the new loop. Each value from the
/// original loop, when vectorized, is represented by UF vector values in the
/// new unrolled loop, where UF is the unroll factor.
using VectorParts = SmallVector<Value *, 2>;
/// Vectorize a single first-order recurrence or pointer induction PHINode in
/// a block. This method handles the induction variable canonicalization. It
/// supports both VF = 1 for unrolled loops and arbitrary length vectors.
void widenPHIInstruction(Instruction *PN, VPWidenPHIRecipe *PhiR,
VPTransformState &State);
/// A helper function to scalarize a single Instruction in the innermost loop.
/// Generates a sequence of scalar instances for each lane between \p MinLane
/// and \p MaxLane, times each part between \p MinPart and \p MaxPart,
/// inclusive. Uses the VPValue operands from \p RepRecipe instead of \p
/// Instr's operands.
void scalarizeInstruction(Instruction *Instr, VPReplicateRecipe *RepRecipe,
const VPIteration &Instance, bool IfPredicateInstr,
VPTransformState &State);
/// Widen an integer or floating-point induction variable \p IV. If \p Trunc
/// is provided, the integer induction variable will first be truncated to
/// the corresponding type.
void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc,
VPValue *Def, VPValue *CastDef,
VPTransformState &State);
/// Construct the vector value of a scalarized value \p V one lane at a time.
void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance,
VPTransformState &State);
/// Try to vectorize interleaved access group \p Group with the base address
/// given in \p Addr, optionally masking the vector operations if \p
/// BlockInMask is non-null. Use \p State to translate given VPValues to IR
/// values in the vectorized loop.
void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group,
ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr,
ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask = nullptr);
/// Vectorize Load and Store instructions with the base address given in \p
/// Addr, optionally masking the vector operations if \p BlockInMask is
/// non-null. Use \p State to translate given VPValues to IR values in the
/// vectorized loop.
void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State,
VPValue *Def, VPValue *Addr,
VPValue *StoredValue, VPValue *BlockInMask,
bool ConsecutiveStride, bool Reverse);
/// Set the debug location in the builder \p Ptr using the debug location in
/// \p V. If \p Ptr is None then it uses the class member's Builder.
void setDebugLocFromInst(const Value *V,
Optional<IRBuilder<> *> CustomBuilder = None);
/// Fix the non-induction PHIs in the OrigPHIsToFix vector.
void fixNonInductionPHIs(VPTransformState &State);
/// Returns true if the reordering of FP operations is not allowed, but we are
/// able to vectorize with strict in-order reductions for the given RdxDesc.
bool useOrderedReductions(RecurrenceDescriptor &RdxDesc);
/// Create a broadcast instruction. This method generates a broadcast
/// instruction (shuffle) for loop invariant values and for the induction
/// value. If this is the induction variable then we extend it to N, N+1, ...
/// this is needed because each iteration in the loop corresponds to a SIMD
/// element.
virtual Value *getBroadcastInstrs(Value *V);
/// Add metadata from one instruction to another.
///
/// This includes both the original MDs from \p From and additional ones (\see
/// addNewMetadata). Use this for *newly created* instructions in the vector
/// loop.
void addMetadata(Instruction *To, Instruction *From);
/// Similar to the previous function but it adds the metadata to a
/// vector of instructions.
void addMetadata(ArrayRef<Value *> To, Instruction *From);
protected:
friend class LoopVectorizationPlanner;
/// A small list of PHINodes.
using PhiVector = SmallVector<PHINode *, 4>;
/// A type for scalarized values in the new loop. Each value from the
/// original loop, when scalarized, is represented by UF x VF scalar values
/// in the new unrolled loop, where UF is the unroll factor and VF is the
/// vectorization factor.
using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
/// Set up the values of the IVs correctly when exiting the vector loop.
void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II,
Value *CountRoundDown, Value *EndValue,
BasicBlock *MiddleBlock);
/// Create a new induction variable inside L.
PHINode *createInductionVariable(Loop *L, Value *Start, Value *End,
Value *Step, Instruction *DL);
/// Handle all cross-iteration phis in the header.
void fixCrossIterationPHIs(VPTransformState &State);
/// Create the exit value of first order recurrences in the middle block and
/// update their users.
void fixFirstOrderRecurrence(VPWidenPHIRecipe *PhiR, VPTransformState &State);
/// Create code for the loop exit value of the reduction.
void fixReduction(VPReductionPHIRecipe *Phi, VPTransformState &State);
/// Clear NSW/NUW flags from reduction instructions if necessary.
void clearReductionWrapFlags(const RecurrenceDescriptor &RdxDesc,
VPTransformState &State);
/// Fixup the LCSSA phi nodes in the unique exit block. This simply
/// means we need to add the appropriate incoming value from the middle
/// block as exiting edges from the scalar epilogue loop (if present) are
/// already in place, and we exit the vector loop exclusively to the middle
/// block.
void fixLCSSAPHIs(VPTransformState &State);
/// Iteratively sink the scalarized operands of a predicated instruction into
/// the block that was created for it.
void sinkScalarOperands(Instruction *PredInst);
/// Shrinks vector element sizes to the smallest bitwidth they can be legally
/// represented as.
void truncateToMinimalBitwidths(VPTransformState &State);
/// This function adds
/// (StartIdx * Step, (StartIdx + 1) * Step, (StartIdx + 2) * Step, ...)
/// to each vector element of Val. The sequence starts at StartIndex.
/// \p Opcode is relevant for FP induction variable.
virtual Value *
getStepVector(Value *Val, Value *StartIdx, Value *Step,
Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd);
/// Compute scalar induction steps. \p ScalarIV is the scalar induction
/// variable on which to base the steps, \p Step is the size of the step, and
/// \p EntryVal is the value from the original loop that maps to the steps.
/// Note that \p EntryVal doesn't have to be an induction variable - it
/// can also be a truncate instruction.
void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal,
const InductionDescriptor &ID, VPValue *Def,
VPValue *CastDef, VPTransformState &State);
/// Create a vector induction phi node based on an existing scalar one. \p
/// EntryVal is the value from the original loop that maps to the vector phi
/// node, and \p Step is the loop-invariant step. If \p EntryVal is a
/// truncate instruction, instead of widening the original IV, we widen a
/// version of the IV truncated to \p EntryVal's type.
void createVectorIntOrFpInductionPHI(const InductionDescriptor &II,
Value *Step, Value *Start,
Instruction *EntryVal, VPValue *Def,
VPValue *CastDef,
VPTransformState &State);
/// Returns true if an instruction \p I should be scalarized instead of
/// vectorized for the chosen vectorization factor.
bool shouldScalarizeInstruction(Instruction *I) const;
/// Returns true if we should generate a scalar version of \p IV.
bool needsScalarInduction(Instruction *IV) const;
/// If there is a cast involved in the induction variable \p ID, which should
/// be ignored in the vectorized loop body, this function records the
/// VectorLoopValue of the respective Phi also as the VectorLoopValue of the
/// cast. We had already proved that the casted Phi is equal to the uncasted
/// Phi in the vectorized loop (under a runtime guard), and therefore
/// there is no need to vectorize the cast - the same value can be used in the
/// vector loop for both the Phi and the cast.
/// If \p VectorLoopValue is a scalarized value, \p Lane is also specified,
/// Otherwise, \p VectorLoopValue is a widened/vectorized value.
///
/// \p EntryVal is the value from the original loop that maps to the vector
/// phi node and is used to distinguish what is the IV currently being
/// processed - original one (if \p EntryVal is a phi corresponding to the
/// original IV) or the "newly-created" one based on the proof mentioned above
/// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the
/// latter case \p EntryVal is a TruncInst and we must not record anything for
/// that IV, but it's error-prone to expect callers of this routine to care
/// about that, hence this explicit parameter.
void recordVectorLoopValueForInductionCast(
const InductionDescriptor &ID, const Instruction *EntryVal,
Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State,
unsigned Part, unsigned Lane = UINT_MAX);
/// Generate a shuffle sequence that will reverse the vector Vec.
virtual Value *reverseVector(Value *Vec);
/// Returns (and creates if needed) the original loop trip count.
Value *getOrCreateTripCount(Loop *NewLoop);
/// Returns (and creates if needed) the trip count of the widened loop.
Value *getOrCreateVectorTripCount(Loop *NewLoop);
/// Returns a bitcasted value to the requested vector type.
/// Also handles bitcasts of vector<float> <-> vector<pointer> types.
Value *createBitOrPointerCast(Value *V, VectorType *DstVTy,
const DataLayout &DL);
/// Emit a bypass check to see if the vector trip count is zero, including if
/// it overflows.
void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass);
/// Emit a bypass check to see if all of the SCEV assumptions we've
/// had to make are correct. Returns the block containing the checks or
/// nullptr if no checks have been added.
BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass);
/// Emit bypass checks to check any memory assumptions we may have made.
/// Returns the block containing the checks or nullptr if no checks have been
/// added.
BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass);
/// Compute the transformed value of Index at offset StartValue using step
/// StepValue.
/// For integer induction, returns StartValue + Index * StepValue.
/// For pointer induction, returns StartValue[Index * StepValue].
/// FIXME: The newly created binary instructions should contain nsw/nuw
/// flags, which can be found from the original scalar operations.
Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE,
const DataLayout &DL,
const InductionDescriptor &ID) const;
/// Emit basic blocks (prefixed with \p Prefix) for the iteration check,
/// vector loop preheader, middle block and scalar preheader. Also
/// allocate a loop object for the new vector loop and return it.
Loop *createVectorLoopSkeleton(StringRef Prefix);
/// Create new phi nodes for the induction variables to resume iteration count
/// in the scalar epilogue, from where the vectorized loop left off (given by
/// \p VectorTripCount).
/// In cases where the loop skeleton is more complicated (eg. epilogue
/// vectorization) and the resume values can come from an additional bypass
/// block, the \p AdditionalBypass pair provides information about the bypass
/// block and the end value on the edge from bypass to this loop.
void createInductionResumeValues(
Loop *L, Value *VectorTripCount,
std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr});
/// Complete the loop skeleton by adding debug MDs, creating appropriate
/// conditional branches in the middle block, preparing the builder and
/// running the verifier. Take in the vector loop \p L as argument, and return
/// the preheader of the completed vector loop.
BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID);
/// Add additional metadata to \p To that was not present on \p Orig.
///
/// Currently this is used to add the noalias annotations based on the
/// inserted memchecks. Use this for instructions that are *cloned* into the
/// vector loop.
void addNewMetadata(Instruction *To, const Instruction *Orig);
/// Collect poison-generating recipes that may generate a poison value that is
/// used after vectorization, even when their operands are not poison. Those
/// recipes meet the following conditions:
/// * Contribute to the address computation of a recipe generating a widen
/// memory load/store (VPWidenMemoryInstructionRecipe or
/// VPInterleaveRecipe).
/// * Such a widen memory load/store has at least one underlying Instruction
/// that is in a basic block that needs predication and after vectorization
/// the generated instruction won't be predicated.
void collectPoisonGeneratingRecipes(VPTransformState &State);
/// Allow subclasses to override and print debug traces before/after vplan
/// execution, when trace information is requested.
virtual void printDebugTracesAtStart(){};
virtual void printDebugTracesAtEnd(){};
/// The original loop.
Loop *OrigLoop;
/// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies
/// dynamic knowledge to simplify SCEV expressions and converts them to a
/// more usable form.
PredicatedScalarEvolution &PSE;
/// Loop Info.
LoopInfo *LI;
/// Dominator Tree.
DominatorTree *DT;
/// Alias Analysis.
AAResults *AA;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Target Transform Info.
const TargetTransformInfo *TTI;
/// Assumption Cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
/// LoopVersioning. It's only set up (non-null) if memchecks were
/// used.
///
/// This is currently only used to add no-alias metadata based on the
/// memchecks. The actually versioning is performed manually.
std::unique_ptr<LoopVersioning> LVer;
/// The vectorization SIMD factor to use. Each vector will have this many
/// vector elements.
ElementCount VF;
/// The vectorization unroll factor to use. Each scalar is vectorized to this
/// many different vector instructions.
unsigned UF;
/// The builder that we use
IRBuilder<> Builder;
// --- Vectorization state ---
/// The vector-loop preheader.
BasicBlock *LoopVectorPreHeader;
/// The scalar-loop preheader.
BasicBlock *LoopScalarPreHeader;
/// Middle Block between the vector and the scalar.
BasicBlock *LoopMiddleBlock;
/// The unique ExitBlock of the scalar loop if one exists. Note that
/// there can be multiple exiting edges reaching this block.
BasicBlock *LoopExitBlock;
/// The vector loop body.
BasicBlock *LoopVectorBody;
/// The scalar loop body.
BasicBlock *LoopScalarBody;
/// A list of all bypass blocks. The first block is the entry of the loop.
SmallVector<BasicBlock *, 4> LoopBypassBlocks;
/// The new Induction variable which was added to the new block.
PHINode *Induction = nullptr;
/// The induction variable of the old basic block.
PHINode *OldInduction = nullptr;
/// Store instructions that were predicated.
SmallVector<Instruction *, 4> PredicatedInstructions;
/// Trip count of the original loop.
Value *TripCount = nullptr;
/// Trip count of the widened loop (TripCount - TripCount % (VF*UF))
Value *VectorTripCount = nullptr;
/// The legality analysis.
LoopVectorizationLegality *Legal;
/// The profitablity analysis.
LoopVectorizationCostModel *Cost;
// Record whether runtime checks are added.
bool AddedSafetyChecks = false;
// Holds the end values for each induction variable. We save the end values
// so we can later fix-up the external users of the induction variables.
DenseMap<PHINode *, Value *> IVEndValues;
// Vector of original scalar PHIs whose corresponding widened PHIs need to be
// fixed up at the end of vector code generation.
SmallVector<PHINode *, 8> OrigPHIsToFix;
/// BFI and PSI are used to check for profile guided size optimizations.
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;
// Whether this loop should be optimized for size based on profile guided size
// optimizatios.
bool OptForSizeBasedOnProfile;
/// Structure to hold information about generated runtime checks, responsible
/// for cleaning the checks, if vectorization turns out unprofitable.
GeneratedRTChecks &RTChecks;
};
class InnerLoopUnroller : public InnerLoopVectorizer {
public:
InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE,
LoopInfo *LI, DominatorTree *DT,
const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, unsigned UnrollFactor,
LoopVectorizationLegality *LVL,
LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI,
ProfileSummaryInfo *PSI, GeneratedRTChecks &Check)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
ElementCount::getFixed(1), UnrollFactor, LVL, CM,
BFI, PSI, Check) {}
private:
Value *getBroadcastInstrs(Value *V) override;
Value *getStepVector(
Value *Val, Value *StartIdx, Value *Step,
Instruction::BinaryOps Opcode = Instruction::BinaryOpsEnd) override;
Value *reverseVector(Value *Vec) override;
};
/// Encapsulate information regarding vectorization of a loop and its epilogue.
/// This information is meant to be updated and used across two stages of
/// epilogue vectorization.
struct EpilogueLoopVectorizationInfo {
ElementCount MainLoopVF = ElementCount::getFixed(0);
unsigned MainLoopUF = 0;
ElementCount EpilogueVF = ElementCount::getFixed(0);
unsigned EpilogueUF = 0;
BasicBlock *MainLoopIterationCountCheck = nullptr;
BasicBlock *EpilogueIterationCountCheck = nullptr;
BasicBlock *SCEVSafetyCheck = nullptr;
BasicBlock *MemSafetyCheck = nullptr;
Value *TripCount = nullptr;
Value *VectorTripCount = nullptr;
EpilogueLoopVectorizationInfo(ElementCount MVF, unsigned MUF,
ElementCount EVF, unsigned EUF)
: MainLoopVF(MVF), MainLoopUF(MUF), EpilogueVF(EVF), EpilogueUF(EUF) {
assert(EUF == 1 &&
"A high UF for the epilogue loop is likely not beneficial.");
}
};
/// An extension of the inner loop vectorizer that creates a skeleton for a
/// vectorized loop that has its epilogue (residual) also vectorized.
/// The idea is to run the vplan on a given loop twice, firstly to setup the
/// skeleton and vectorize the main loop, and secondly to complete the skeleton
/// from the first step and vectorize the epilogue. This is achieved by
/// deriving two concrete strategy classes from this base class and invoking
/// them in succession from the loop vectorizer planner.
class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer {
public:
InnerLoopAndEpilogueVectorizer(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI,
Checks),
EPI(EPI) {}
// Override this function to handle the more complex control flow around the
// three loops.
BasicBlock *createVectorizedLoopSkeleton() final override {
return createEpilogueVectorizedLoopSkeleton();
}
/// The interface for creating a vectorized skeleton using one of two
/// different strategies, each corresponding to one execution of the vplan
/// as described above.
virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0;
/// Holds and updates state information required to vectorize the main loop
/// and its epilogue in two separate passes. This setup helps us avoid
/// regenerating and recomputing runtime safety checks. It also helps us to
/// shorten the iteration-count-check path length for the cases where the
/// iteration count of the loop is so small that the main vector loop is
/// completely skipped.
EpilogueLoopVectorizationInfo &EPI;
};
/// A specialized derived class of inner loop vectorizer that performs
/// vectorization of *main* loops in the process of vectorizing loops and their
/// epilogues.
class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerMainLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Check)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Check) {}
/// Implements the interface for creating a vectorized skeleton using the
/// *main loop* strategy (ie the first pass of vplan execution).
BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
protected:
/// Emits an iteration count bypass check once for the main loop (when \p
/// ForEpilogue is false) and once for the epilogue loop (when \p
/// ForEpilogue is true).
BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass,
bool ForEpilogue);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
// A specialized derived class of inner loop vectorizer that performs
// vectorization of *epilogue* loops in the process of vectorizing loops and
// their epilogues.
class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer {
public:
EpilogueVectorizerEpilogueLoop(
Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI,
DominatorTree *DT, const TargetLibraryInfo *TLI,
const TargetTransformInfo *TTI, AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI,
LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM,
BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI,
GeneratedRTChecks &Checks)
: InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE,
EPI, LVL, CM, BFI, PSI, Checks) {}
/// Implements the interface for creating a vectorized skeleton using the
/// *epilogue loop* strategy (ie the second pass of vplan execution).
BasicBlock *createEpilogueVectorizedLoopSkeleton() final override;
protected:
/// Emits an iteration count bypass check after the main vector loop has
/// finished to see if there are any iterations left to execute by either
/// the vector epilogue or the scalar epilogue.
BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L,
BasicBlock *Bypass,
BasicBlock *Insert);
void printDebugTracesAtStart() override;
void printDebugTracesAtEnd() override;
};
} // end namespace llvm
/// Look for a meaningful debug location on the instruction or it's
/// operands.
static Instruction *getDebugLocFromInstOrOperands(Instruction *I) {
if (!I)
return I;
DebugLoc Empty;
if (I->getDebugLoc() != Empty)
return I;
for (Use &Op : I->operands()) {
if (Instruction *OpInst = dyn_cast<Instruction>(Op))
if (OpInst->getDebugLoc() != Empty)
return OpInst;
}
return I;
}
void InnerLoopVectorizer::setDebugLocFromInst(
const Value *V, Optional<IRBuilder<> *> CustomBuilder) {
IRBuilder<> *B = (CustomBuilder == None) ? &Builder : *CustomBuilder;
if (const Instruction *Inst = dyn_cast_or_null<Instruction>(V)) {
const DILocation *DIL = Inst->getDebugLoc();
// When a FSDiscriminator is enabled, we don't need to add the multiply
// factors to the discriminators.
if (DIL && Inst->getFunction()->isDebugInfoForProfiling() &&
!isa<DbgInfoIntrinsic>(Inst) && !EnableFSDiscriminator) {
// FIXME: For scalable vectors, assume vscale=1.
auto NewDIL =
DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue());
if (NewDIL)
B->SetCurrentDebugLocation(NewDIL.getValue());
else
LLVM_DEBUG(dbgs()
<< "Failed to create new discriminator: "
<< DIL->getFilename() << " Line: " << DIL->getLine());
} else
B->SetCurrentDebugLocation(DIL);
} else
B->SetCurrentDebugLocation(DebugLoc());
}
/// Write a \p DebugMsg about vectorization to the debug output stream. If \p I
/// is passed, the message relates to that particular instruction.
#ifndef NDEBUG
static void debugVectorizationMessage(const StringRef Prefix,
const StringRef DebugMsg,
Instruction *I) {
dbgs() << "LV: " << Prefix << DebugMsg;
if (I != nullptr)
dbgs() << " " << *I;
else
dbgs() << '.';
dbgs() << '\n';
}
#endif
/// Create an analysis remark that explains why vectorization failed
///
/// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p
/// RemarkName is the identifier for the remark. If \p I is passed it is an
/// instruction that prevents vectorization. Otherwise \p TheLoop is used for
/// the location of the remark. \return the remark object that can be
/// streamed to.
static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName,
StringRef RemarkName, Loop *TheLoop, Instruction *I) {
Value *CodeRegion = TheLoop->getHeader();
DebugLoc DL = TheLoop->getStartLoc();
if (I) {
CodeRegion = I->getParent();
// If there is no debug location attached to the instruction, revert back to
// using the loop's.
if (I->getDebugLoc())
DL = I->getDebugLoc();
}
return OptimizationRemarkAnalysis(PassName, RemarkName, DL, CodeRegion);
}
/// Return a value for Step multiplied by VF.
static Value *createStepForVF(IRBuilder<> &B, Type *Ty, ElementCount VF,
int64_t Step) {
assert(Ty->isIntegerTy() && "Expected an integer step");
Constant *StepVal = ConstantInt::get(Ty, Step * VF.getKnownMinValue());
return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal;
}
namespace llvm {
/// Return the runtime value for VF.
Value *getRuntimeVF(IRBuilder<> &B, Type *Ty, ElementCount VF) {
Constant *EC = ConstantInt::get(Ty, VF.getKnownMinValue());
return VF.isScalable() ? B.CreateVScale(EC) : EC;
}
static Value *getRuntimeVFAsFloat(IRBuilder<> &B, Type *FTy, ElementCount VF) {
assert(FTy->isFloatingPointTy() && "Expected floating point type!");
Type *IntTy = IntegerType::get(FTy->getContext(), FTy->getScalarSizeInBits());
Value *RuntimeVF = getRuntimeVF(B, IntTy, VF);
return B.CreateUIToFP(RuntimeVF, FTy);
}
void reportVectorizationFailure(const StringRef DebugMsg,
const StringRef OREMsg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("Not vectorizing: ", DebugMsg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< "loop not vectorized: " << OREMsg);
}
void reportVectorizationInfo(const StringRef Msg, const StringRef ORETag,
OptimizationRemarkEmitter *ORE, Loop *TheLoop,
Instruction *I) {
LLVM_DEBUG(debugVectorizationMessage("", Msg, I));
LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE);
ORE->emit(
createLVAnalysis(Hints.vectorizeAnalysisPassName(), ORETag, TheLoop, I)
<< Msg);
}
} // end namespace llvm
#ifndef NDEBUG
/// \return string containing a file name and a line # for the given loop.
static std::string getDebugLocString(const Loop *L) {
std::string Result;
if (L) {
raw_string_ostream OS(Result);
if (const DebugLoc LoopDbgLoc = L->getStartLoc())
LoopDbgLoc.print(OS);
else
// Just print the module name.
OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
OS.flush();
}
return Result;
}
#endif
void InnerLoopVectorizer::addNewMetadata(Instruction *To,
const Instruction *Orig) {
// If the loop was versioned with memchecks, add the corresponding no-alias
// metadata.
if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig)))
LVer->annotateInstWithNoAlias(To, Orig);
}
void InnerLoopVectorizer::collectPoisonGeneratingRecipes(
VPTransformState &State) {
// Collect recipes in the backward slice of `Root` that may generate a poison
// value that is used after vectorization.
SmallPtrSet<VPRecipeBase *, 16> Visited;
auto collectPoisonGeneratingInstrsInBackwardSlice([&](VPRecipeBase *Root) {
SmallVector<VPRecipeBase *, 16> Worklist;
Worklist.push_back(Root);
// Traverse the backward slice of Root through its use-def chain.
while (!Worklist.empty()) {
VPRecipeBase *CurRec = Worklist.back();
Worklist.pop_back();
if (!Visited.insert(CurRec).second)
continue;
// Prune search if we find another recipe generating a widen memory
// instruction. Widen memory instructions involved in address computation
// will lead to gather/scatter instructions, which don't need to be
// handled.
if (isa<VPWidenMemoryInstructionRecipe>(CurRec) ||
isa<VPInterleaveRecipe>(CurRec))
continue;
// This recipe contributes to the address computation of a widen
// load/store. Collect recipe if its underlying instruction has
// poison-generating flags.
Instruction *Instr = CurRec->getUnderlyingInstr();
if (Instr && Instr->hasPoisonGeneratingFlags())
State.MayGeneratePoisonRecipes.insert(CurRec);
// Add new definitions to the worklist.
for (VPValue *operand : CurRec->operands())
if (VPDef *OpDef = operand->getDef())
Worklist.push_back(cast<VPRecipeBase>(OpDef));
}
});
// Traverse all the recipes in the VPlan and collect the poison-generating
// recipes in the backward slice starting at the address of a VPWidenRecipe or
// VPInterleaveRecipe.
auto Iter = depth_first(
VPBlockRecursiveTraversalWrapper<VPBlockBase *>(State.Plan->getEntry()));
for (VPBasicBlock *VPBB : VPBlockUtils::blocksOnly<VPBasicBlock>(Iter)) {
for (VPRecipeBase &Recipe : *VPBB) {
if (auto *WidenRec = dyn_cast<VPWidenMemoryInstructionRecipe>(&Recipe)) {
Instruction *UnderlyingInstr = WidenRec->getUnderlyingInstr();
VPDef *AddrDef = WidenRec->getAddr()->getDef();
if (AddrDef && WidenRec->isConsecutive() && UnderlyingInstr &&
Legal->blockNeedsPredication(UnderlyingInstr->getParent()))
collectPoisonGeneratingInstrsInBackwardSlice(
cast<VPRecipeBase>(AddrDef));
} else if (auto *InterleaveRec = dyn_cast<VPInterleaveRecipe>(&Recipe)) {
VPDef *AddrDef = InterleaveRec->getAddr()->getDef();
if (AddrDef) {
// Check if any member of the interleave group needs predication.
const InterleaveGroup<Instruction> *InterGroup =
InterleaveRec->getInterleaveGroup();
bool NeedPredication = false;
for (int I = 0, NumMembers = InterGroup->getNumMembers();
I < NumMembers; ++I) {
Instruction *Member = InterGroup->getMember(I);
if (Member)
NeedPredication |=
Legal->blockNeedsPredication(Member->getParent());
}
if (NeedPredication)
collectPoisonGeneratingInstrsInBackwardSlice(
cast<VPRecipeBase>(AddrDef));
}
}
}
}
}
void InnerLoopVectorizer::addMetadata(Instruction *To,
Instruction *From) {
propagateMetadata(To, From);
addNewMetadata(To, From);
}
void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To,
Instruction *From) {
for (Value *V : To) {
if (Instruction *I = dyn_cast<Instruction>(V))
addMetadata(I, From);
}
}
namespace llvm {
// Loop vectorization cost-model hints how the scalar epilogue loop should be
// lowered.
enum ScalarEpilogueLowering {
// The default: allowing scalar epilogues.
CM_ScalarEpilogueAllowed,
// Vectorization with OptForSize: don't allow epilogues.
CM_ScalarEpilogueNotAllowedOptSize,
// A special case of vectorisation with OptForSize: loops with a very small
// trip count are considered for vectorization under OptForSize, thereby
// making sure the cost of their loop body is dominant, free of runtime
// guards and scalar iteration overheads.
CM_ScalarEpilogueNotAllowedLowTripLoop,
// Loop hint predicate indicating an epilogue is undesired.
CM_ScalarEpilogueNotNeededUsePredicate,
// Directive indicating we must either tail fold or not vectorize
CM_ScalarEpilogueNotAllowedUsePredicate
};
/// ElementCountComparator creates a total ordering for ElementCount
/// for the purposes of using it in a set structure.
struct ElementCountComparator {
bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
}
};
using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
/// LoopVectorizationCostModel - estimates the expected speedups due to
/// vectorization.
/// In many cases vectorization is not profitable. This can happen because of
/// a number of reasons. In this class we mainly attempt to predict the
/// expected speedup/slowdowns due to the supported instruction set. We use the
/// TargetTransformInfo to query the different backends for the cost of
/// different operations.
class LoopVectorizationCostModel {
public:
LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L,
PredicatedScalarEvolution &PSE, LoopInfo *LI,
LoopVectorizationLegality *Legal,
const TargetTransformInfo &TTI,
const TargetLibraryInfo *TLI, DemandedBits *DB,
AssumptionCache *AC,
OptimizationRemarkEmitter *ORE, const Function *F,
const LoopVectorizeHints *Hints,
InterleavedAccessInfo &IAI)
: ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal),
TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F),
Hints(Hints), InterleaveInfo(IAI) {}
/// \return An upper bound for the vectorization factors (both fixed and
/// scalable). If the factors are 0, vectorization and interleaving should be
/// avoided up front.
FixedScalableVFPair computeMaxVF(ElementCount UserVF, unsigned UserIC);
/// \return True if runtime checks are required for vectorization, and false
/// otherwise.
bool runtimeChecksRequired();
/// \return The most profitable vectorization factor and the cost of that VF.
/// This method checks every VF in \p CandidateVFs. If UserVF is not ZERO
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor
selectVectorizationFactor(const ElementCountSet &CandidateVFs);
VectorizationFactor
selectEpilogueVectorizationFactor(const ElementCount MaxVF,
const LoopVectorizationPlanner &LVP);
/// Setup cost-based decisions for user vectorization factor.
/// \return true if the UserVF is a feasible VF to be chosen.
bool selectUserVectorizationFactor(ElementCount UserVF) {
collectUniformsAndScalars(UserVF);
collectInstsToScalarize(UserVF);
return expectedCost(UserVF).first.isValid();
}
/// \return The size (in bits) of the smallest and widest types in the code
/// that needs to be vectorized. We ignore values that remain scalar such as
/// 64 bit loop indices.
std::pair<unsigned, unsigned> getSmallestAndWidestTypes();
/// \return The desired interleave count.
/// If interleave count has been specified by metadata it will be returned.
/// Otherwise, the interleave count is computed and returned. VF and LoopCost
/// are the selected vectorization factor and the cost of the selected VF.
unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost);
/// Memory access instruction may be vectorized in more than one way.
/// Form of instruction after vectorization depends on cost.
/// This function takes cost-based decisions for Load/Store instructions
/// and collects them in a map. This decisions map is used for building
/// the lists of loop-uniform and loop-scalar instructions.
/// The calculated cost is saved with widening decision in order to
/// avoid redundant calculations.
void setCostBasedWideningDecision(ElementCount VF);
/// A struct that represents some properties of the register usage
/// of a loop.
struct RegisterUsage {
/// Holds the number of loop invariant values that are used in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs;
/// Holds the maximum number of concurrent live intervals in the loop.
/// The key is ClassID of target-provided register class.
SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers;
};
/// \return Returns information about the register usages of the loop for the
/// given vectorization factors.
SmallVector<RegisterUsage, 8>
calculateRegisterUsage(ArrayRef<ElementCount> VFs);
/// Collect values we want to ignore in the cost model.
void collectValuesToIgnore();
/// Collect all element types in the loop for which widening is needed.
void collectElementTypesForWidening();
/// Split reductions into those that happen in the loop, and those that happen
/// outside. In loop reductions are collected into InLoopReductionChains.
void collectInLoopReductions();
/// Returns true if we should use strict in-order reductions for the given
/// RdxDesc. This is true if the -enable-strict-reductions flag is passed,
/// the IsOrdered flag of RdxDesc is set and we do not allow reordering
/// of FP operations.
bool useOrderedReductions(const RecurrenceDescriptor &RdxDesc) {
return !Hints->allowReordering() && RdxDesc.isOrdered();
}
/// \returns The smallest bitwidth each instruction can be represented with.
/// The vector equivalents of these instructions should be truncated to this
/// type.
const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const {
return MinBWs;
}
/// \returns True if it is more profitable to scalarize instruction \p I for
/// vectorization factor \p VF.
bool isProfitableToScalarize(Instruction *I, ElementCount VF) const {
assert(VF.isVector() &&
"Profitable to scalarize relevant only for VF > 1.");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto Scalars = InstsToScalarize.find(VF);
assert(Scalars != InstsToScalarize.end() &&
"VF not yet analyzed for scalarization profitability");
return Scalars->second.find(I) != Scalars->second.end();
}
/// Returns true if \p I is known to be uniform after vectorization.
bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const {
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto UniformsPerVF = Uniforms.find(VF);
assert(UniformsPerVF != Uniforms.end() &&
"VF not yet analyzed for uniformity");
return UniformsPerVF->second.count(I);
}
/// Returns true if \p I is known to be scalar after vectorization.
bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const {
if (VF.isScalar())
return true;
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return false;
auto ScalarsPerVF = Scalars.find(VF);
assert(ScalarsPerVF != Scalars.end() &&
"Scalar values are not calculated for VF");
return ScalarsPerVF->second.count(I);
}
/// \returns True if instruction \p I can be truncated to a smaller bitwidth
/// for vectorization factor \p VF.
bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const {
return VF.isVector() && MinBWs.find(I) != MinBWs.end() &&
!isProfitableToScalarize(I, VF) &&
!isScalarAfterVectorization(I, VF);
}
/// Decision that was taken during cost calculation for memory instruction.
enum InstWidening {
CM_Unknown,
CM_Widen, // For consecutive accesses with stride +1.
CM_Widen_Reverse, // For consecutive accesses with stride -1.
CM_Interleave,
CM_GatherScatter,
CM_Scalarize
};
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// instruction \p I and vector width \p VF.
void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
}
/// Save vectorization decision \p W and \p Cost taken by the cost model for
/// interleaving group \p Grp and vector width \p VF.
void setWideningDecision(const InterleaveGroup<Instruction> *Grp,
ElementCount VF, InstWidening W,
InstructionCost Cost) {
assert(VF.isVector() && "Expected VF >=2");
/// Broadcast this decicion to all instructions inside the group.
/// But the cost will be assigned to one instruction only.
for (unsigned i = 0; i < Grp->getFactor(); ++i) {
if (auto *I = Grp->getMember(i)) {
if (Grp->getInsertPos() == I)
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost);
else
WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0);
}
}
}
/// Return the cost model decision for the given instruction \p I and vector
/// width \p VF. Return CM_Unknown if this instruction did not pass
/// through the cost modeling.
InstWidening getWideningDecision(Instruction *I, ElementCount VF) const {
assert(VF.isVector() && "Expected VF to be a vector VF");
// Cost model is not run in the VPlan-native path - return conservative
// result until this changes.
if (EnableVPlanNativePath)
return CM_GatherScatter;
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
auto Itr = WideningDecisions.find(InstOnVF);
if (Itr == WideningDecisions.end())
return CM_Unknown;
return Itr->second.first;
}
/// Return the vectorization cost for the given instruction \p I and vector
/// width \p VF.
InstructionCost getWideningCost(Instruction *I, ElementCount VF) {
assert(VF.isVector() && "Expected VF >=2");
std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF);
assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() &&
"The cost is not calculated");
return WideningDecisions[InstOnVF].second;
}
/// Return True if instruction \p I is an optimizable truncate whose operand
/// is an induction variable. Such a truncate will be removed by adding a new
/// induction variable with the destination type.
bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) {
// If the instruction is not a truncate, return false.
auto *Trunc = dyn_cast<TruncInst>(I);
if (!Trunc)
return false;
// Get the source and destination types of the truncate.
Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF);
Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF);
// If the truncate is free for the given types, return false. Replacing a
// free truncate with an induction variable would add an induction variable
// update instruction to each iteration of the loop. We exclude from this
// check the primary induction variable since it will need an update
// instruction regardless.
Value *Op = Trunc->getOperand(0);
if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy))
return false;
// If the truncated value is not an induction variable, return false.
return Legal->isInductionPhi(Op);
}
/// Collects the instructions to scalarize for each predicated instruction in
/// the loop.
void collectInstsToScalarize(ElementCount VF);
/// Collect Uniform and Scalar values for the given \p VF.
/// The sets depend on CM decision for Load/Store instructions
/// that may be vectorized as interleave, gather-scatter or scalarized.
void collectUniformsAndScalars(ElementCount VF) {
// Do the analysis once.
if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end())
return;
setCostBasedWideningDecision(VF);
collectLoopUniforms(VF);
collectLoopScalars(VF);
}
/// Returns true if the target machine supports masked store operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(DataType, Ptr) &&
TTI.isLegalMaskedStore(DataType, Alignment);
}
/// Returns true if the target machine supports masked load operation
/// for the given \p DataType and kind of access to \p Ptr.
bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) const {
return Legal->isConsecutivePtr(DataType, Ptr) &&
TTI.isLegalMaskedLoad(DataType, Alignment);
}
/// Returns true if the target machine can represent \p V as a masked gather
/// or scatter operation.
bool isLegalGatherOrScatter(Value *V) {
bool LI = isa<LoadInst>(V);
bool SI = isa<StoreInst>(V);
if (!LI && !SI)
return false;
auto *Ty = getLoadStoreType(V);
Align Align = getLoadStoreAlignment(V);
return (LI && TTI.isLegalMaskedGather(Ty, Align)) ||
(SI && TTI.isLegalMaskedScatter(Ty, Align));
}
/// Returns true if the target machine supports all of the reduction
/// variables found for the given VF.
bool canVectorizeReductions(ElementCount VF) const {
return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool {
const RecurrenceDescriptor &RdxDesc = Reduction.second;
return TTI.isLegalToVectorizeReduction(RdxDesc, VF);
}));
}
/// Returns true if \p I is an instruction that will be scalarized with
/// predication. Such instructions include conditional stores and
/// instructions that may divide by zero.
/// If a non-zero VF has been calculated, we check if I will be scalarized
/// predication for that VF.
bool isScalarWithPredication(Instruction *I) const;
// Returns true if \p I is an instruction that will be predicated either
// through scalar predication or masked load/store or masked gather/scatter.
// Superset of instructions that return true for isScalarWithPredication.
bool isPredicatedInst(Instruction *I, bool IsKnownUniform = false) {
// When we know the load is uniform and the original scalar loop was not
// predicated we don't need to mark it as a predicated instruction. Any
// vectorised blocks created when tail-folding are something artificial we
// have introduced and we know there is always at least one active lane.
// That's why we call Legal->blockNeedsPredication here because it doesn't
// query tail-folding.
if (IsKnownUniform && isa<LoadInst>(I) &&
!Legal->blockNeedsPredication(I->getParent()))
return false;
if (!blockNeedsPredicationForAnyReason(I->getParent()))
return false;
// Loads and stores that need some form of masked operation are predicated
// instructions.
if (isa<LoadInst>(I) || isa<StoreInst>(I))
return Legal->isMaskRequired(I);
return isScalarWithPredication(I);
}
/// Returns true if \p I is a memory instruction with consecutive memory
/// access that can be widened.
bool
memoryInstructionCanBeWidened(Instruction *I,
ElementCount VF = ElementCount::getFixed(1));
/// Returns true if \p I is a memory instruction in an interleaved-group
/// of memory accesses that can be vectorized with wide vector loads/stores
/// and shuffles.
bool
interleavedAccessCanBeWidened(Instruction *I,
ElementCount VF = ElementCount::getFixed(1));
/// Check if \p Instr belongs to any interleaved access group.
bool isAccessInterleaved(Instruction *Instr) {
return InterleaveInfo.isInterleaved(Instr);
}
/// Get the interleaved access group that \p Instr belongs to.
const InterleaveGroup<Instruction> *
getInterleavedAccessGroup(Instruction *Instr) {
return InterleaveInfo.getInterleaveGroup(Instr);
}
/// Returns true if we're required to use a scalar epilogue for at least
/// the final iteration of the original loop.
bool requiresScalarEpilogue(ElementCount VF) const {
if (!isScalarEpilogueAllowed())
return false;
// If we might exit from anywhere but the latch, must run the exiting
// iteration in scalar form.
if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch())
return true;
return VF.isVector() && InterleaveInfo.requiresScalarEpilogue();
}
/// Returns true if a scalar epilogue is not allowed due to optsize or a
/// loop hint annotation.
bool isScalarEpilogueAllowed() const {
return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed;
}
/// Returns true if all loop blocks should be masked to fold tail loop.
bool foldTailByMasking() const { return FoldTailByMasking; }
/// Returns true if the instructions in this block requires predication
/// for any reason, e.g. because tail folding now requires a predicate
/// or because the block in the original loop was predicated.
bool blockNeedsPredicationForAnyReason(BasicBlock *BB) const {
return foldTailByMasking() || Legal->blockNeedsPredication(BB);
}
/// A SmallMapVector to store the InLoop reduction op chains, mapping phi
/// nodes to the chain of instructions representing the reductions. Uses a
/// MapVector to ensure deterministic iteration order.
using ReductionChainMap =
SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>;
/// Return the chain of instructions representing an inloop reduction.
const ReductionChainMap &getInLoopReductionChains() const {
return InLoopReductionChains;
}
/// Returns true if the Phi is part of an inloop reduction.
bool isInLoopReduction(PHINode *Phi) const {
return InLoopReductionChains.count(Phi);
}
/// Estimate cost of an intrinsic call instruction CI if it were vectorized
/// with factor VF. Return the cost of the instruction, including
/// scalarization overhead if it's needed.
InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF) const;
/// Estimate cost of a call instruction CI if it were vectorized with factor
/// VF. Return the cost of the instruction, including scalarization overhead
/// if it's needed. The flag NeedToScalarize shows if the call needs to be
/// scalarized -
/// i.e. either vector version isn't available, or is too expensive.
InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF,
bool &NeedToScalarize) const;
/// Returns true if the per-lane cost of VectorizationFactor A is lower than
/// that of B.
bool isMoreProfitable(const VectorizationFactor &A,
const VectorizationFactor &B) const;
/// Invalidates decisions already taken by the cost model.
void invalidateCostModelingDecisions() {
WideningDecisions.clear();
Uniforms.clear();
Scalars.clear();
}
private:
unsigned NumPredStores = 0;
/// \return An upper bound for the vectorization factors for both
/// fixed and scalable vectorization, where the minimum-known number of
/// elements is a power-of-2 larger than zero. If scalable vectorization is
/// disabled or unsupported, then the scalable part will be equal to
/// ElementCount::getScalable(0).
FixedScalableVFPair computeFeasibleMaxVF(unsigned ConstTripCount,
ElementCount UserVF);
/// \return the maximized element count based on the targets vector
/// registers and the loop trip-count, but limited to a maximum safe VF.
/// This is a helper function of computeFeasibleMaxVF.
/// FIXME: MaxSafeVF is currently passed by reference to avoid some obscure
/// issue that occurred on one of the buildbots which cannot be reproduced
/// without having access to the properietary compiler (see comments on
/// D98509). The issue is currently under investigation and this workaround
/// will be removed as soon as possible.
ElementCount getMaximizedVFForTarget(unsigned ConstTripCount,
unsigned SmallestType,
unsigned WidestType,
const ElementCount &MaxSafeVF);
/// \return the maximum legal scalable VF, based on the safe max number
/// of elements.
ElementCount getMaxLegalScalableVF(unsigned MaxSafeElements);
/// The vectorization cost is a combination of the cost itself and a boolean
/// indicating whether any of the contributing operations will actually
/// operate on vector values after type legalization in the backend. If this
/// latter value is false, then all operations will be scalarized (i.e. no
/// vectorization has actually taken place).
using VectorizationCostTy = std::pair<InstructionCost, bool>;
/// Returns the expected execution cost. The unit of the cost does
/// not matter because we use the 'cost' units to compare different
/// vector widths. The cost that is returned is *not* normalized by
/// the factor width. If \p Invalid is not nullptr, this function
/// will add a pair(Instruction*, ElementCount) to \p Invalid for
/// each instruction that has an Invalid cost for the given VF.
using InstructionVFPair = std::pair<Instruction *, ElementCount>;
VectorizationCostTy
expectedCost(ElementCount VF,
SmallVectorImpl<InstructionVFPair> *Invalid = nullptr);
/// Returns the execution time cost of an instruction for a given vector
/// width. Vector width of one means scalar.
VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF);
/// The cost-computation logic from getInstructionCost which provides
/// the vector type as an output parameter.
InstructionCost getInstructionCost(Instruction *I, ElementCount VF,
Type *&VectorTy);
/// Return the cost of instructions in an inloop reduction pattern, if I is
/// part of that pattern.
Optional<InstructionCost>
getReductionPatternCost(Instruction *I, ElementCount VF, Type *VectorTy,
TTI::TargetCostKind CostKind);
/// Calculate vectorization cost of memory instruction \p I.
InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF);
/// The cost computation for scalarized memory instruction.
InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF);
/// The cost computation for interleaving group of memory instructions.
InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF);
/// The cost computation for Gather/Scatter instruction.
InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF);
/// The cost computation for widening instruction \p I with consecutive
/// memory access.
InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF);
/// The cost calculation for Load/Store instruction \p I with uniform pointer -
/// Load: scalar load + broadcast.
/// Store: scalar store + (loop invariant value stored? 0 : extract of last
/// element)
InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF);
/// Estimate the overhead of scalarizing an instruction. This is a
/// convenience wrapper for the type-based getScalarizationOverhead API.
InstructionCost getScalarizationOverhead(Instruction *I,
ElementCount VF) const;
/// Returns whether the instruction is a load or store and will be a emitted
/// as a vector operation.
bool isConsecutiveLoadOrStore(Instruction *I);
/// Returns true if an artificially high cost for emulated masked memrefs
/// should be used.
bool useEmulatedMaskMemRefHack(Instruction *I);
/// Map of scalar integer values to the smallest bitwidth they can be legally
/// represented as. The vector equivalents of these values should be truncated
/// to this type.
MapVector<Instruction *, uint64_t> MinBWs;
/// A type representing the costs for instructions if they were to be
/// scalarized rather than vectorized. The entries are Instruction-Cost
/// pairs.
using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>;
/// A set containing all BasicBlocks that are known to present after
/// vectorization as a predicated block.
SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization;
/// Records whether it is allowed to have the original scalar loop execute at
/// least once. This may be needed as a fallback loop in case runtime
/// aliasing/dependence checks fail, or to handle the tail/remainder
/// iterations when the trip count is unknown or doesn't divide by the VF,
/// or as a peel-loop to handle gaps in interleave-groups.
/// Under optsize and when the trip count is very small we don't allow any
/// iterations to execute in the scalar loop.
ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed;
/// All blocks of loop are to be masked to fold tail of scalar iterations.
bool FoldTailByMasking = false;
/// A map holding scalar costs for different vectorization factors. The
/// presence of a cost for an instruction in the mapping indicates that the
/// instruction will be scalarized when vectorizing with the associated
/// vectorization factor. The entries are VF-ScalarCostTy pairs.
DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize;
/// Holds the instructions known to be uniform after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms;
/// Holds the instructions known to be scalar after vectorization.
/// The data is collected per VF.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars;
/// Holds the instructions (address computations) that are forced to be
/// scalarized.
DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars;
/// PHINodes of the reductions that should be expanded in-loop along with
/// their associated chains of reduction operations, in program order from top
/// (PHI) to bottom
ReductionChainMap InLoopReductionChains;
/// A Map of inloop reduction operations and their immediate chain operand.
/// FIXME: This can be removed once reductions can be costed correctly in
/// vplan. This was added to allow quick lookup to the inloop operations,
/// without having to loop through InLoopReductionChains.
DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains;
/// Returns the expected difference in cost from scalarizing the expression
/// feeding a predicated instruction \p PredInst. The instructions to
/// scalarize and their scalar costs are collected in \p ScalarCosts. A
/// non-negative return value implies the expression will be scalarized.
/// Currently, only single-use chains are considered for scalarization.
int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts,
ElementCount VF);
/// Collect the instructions that are uniform after vectorization. An
/// instruction is uniform if we represent it with a single scalar value in
/// the vectorized loop corresponding to each vector iteration. Examples of
/// uniform instructions include pointer operands of consecutive or
/// interleaved memory accesses. Note that although uniformity implies an
/// instruction will be scalar, the reverse is not true. In general, a
/// scalarized instruction will be represented by VF scalar values in the
/// vectorized loop, each corresponding to an iteration of the original
/// scalar loop.
void collectLoopUniforms(ElementCount VF);
/// Collect the instructions that are scalar after vectorization. An
/// instruction is scalar if it is known to be uniform or will be scalarized
/// during vectorization. collectLoopScalars should only add non-uniform nodes
/// to the list if they are used by a load/store instruction that is marked as
/// CM_Scalarize. Non-uniform scalarized instructions will be represented by
/// VF values in the vectorized loop, each corresponding to an iteration of
/// the original scalar loop.
void collectLoopScalars(ElementCount VF);
/// Keeps cost model vectorization decision and cost for instructions.
/// Right now it is used for memory instructions only.
using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>,
std::pair<InstWidening, InstructionCost>>;
DecisionList WideningDecisions;
/// Returns true if \p V is expected to be vectorized and it needs to be
/// extracted.
bool needsExtract(Value *V, ElementCount VF) const {
Instruction *I = dyn_cast<Instruction>(V);
if (VF.isScalar() || !I || !TheLoop->contains(I) ||
TheLoop->isLoopInvariant(I))
return false;
// Assume we can vectorize V (and hence we need extraction) if the
// scalars are not computed yet. This can happen, because it is called
// via getScalarizationOverhead from setCostBasedWideningDecision, before
// the scalars are collected. That should be a safe assumption in most
// cases, because we check if the operands have vectorizable types
// beforehand in LoopVectorizationLegality.
return Scalars.find(VF) == Scalars.end() ||
!isScalarAfterVectorization(I, VF);
};
/// Returns a range containing only operands needing to be extracted.
SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops,
ElementCount VF) const {
return SmallVector<Value *, 4>(make_filter_range(
Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); }));
}
/// Determines if we have the infrastructure to vectorize loop \p L and its
/// epilogue, assuming the main loop is vectorized by \p VF.
bool isCandidateForEpilogueVectorization(const Loop &L,
const ElementCount VF) const;
/// Returns true if epilogue vectorization is considered profitable, and
/// false otherwise.
/// \p VF is the vectorization factor chosen for the original loop.
bool isEpilogueVectorizationProfitable(const ElementCount VF) const;
public:
/// The loop that we evaluate.
Loop *TheLoop;
/// Predicated scalar evolution analysis.
PredicatedScalarEvolution &PSE;
/// Loop Info analysis.
LoopInfo *LI;
/// Vectorization legality.
LoopVectorizationLegality *Legal;
/// Vector target information.
const TargetTransformInfo &TTI;
/// Target Library Info.
const TargetLibraryInfo *TLI;
/// Demanded bits analysis.
DemandedBits *DB;
/// Assumption cache.
AssumptionCache *AC;
/// Interface to emit optimization remarks.
OptimizationRemarkEmitter *ORE;
const Function *TheFunction;
/// Loop Vectorize Hint.
const LoopVectorizeHints *Hints;
/// The interleave access information contains groups of interleaved accesses
/// with the same stride and close to each other.
InterleavedAccessInfo &InterleaveInfo;
/// Values to ignore in the cost model.
SmallPtrSet<const Value *, 16> ValuesToIgnore;
/// Values to ignore in the cost model when VF > 1.
SmallPtrSet<const Value *, 16> VecValuesToIgnore;
/// All element types found in the loop.
SmallPtrSet<Type *, 16> ElementTypesInLoop;
/// Profitable vector factors.
SmallVector<VectorizationFactor, 8> ProfitableVFs;
};
} // end namespace llvm
/// Helper struct to manage generating runtime checks for vectorization.
///
/// The runtime checks are created up-front in temporary blocks to allow better
/// estimating the cost and un-linked from the existing IR. After deciding to
/// vectorize, the checks are moved back. If deciding not to vectorize, the
/// temporary blocks are completely removed.
class GeneratedRTChecks {
/// Basic block which contains the generated SCEV checks, if any.
BasicBlock *SCEVCheckBlock = nullptr;
/// The value representing the result of the generated SCEV checks. If it is
/// nullptr, either no SCEV checks have been generated or they have been used.
Value *SCEVCheckCond = nullptr;
/// Basic block which contains the generated memory runtime checks, if any.
BasicBlock *MemCheckBlock = nullptr;
/// The value representing the result of the generated memory runtime checks.
/// If it is nullptr, either no memory runtime checks have been generated or
/// they have been used.
Value *MemRuntimeCheckCond = nullptr;
DominatorTree *DT;
LoopInfo *LI;
SCEVExpander SCEVExp;
SCEVExpander MemCheckExp;
public:
GeneratedRTChecks(ScalarEvolution &SE, DominatorTree *DT, LoopInfo *LI,
const DataLayout &DL)
: DT(DT), LI(LI), SCEVExp(SE, DL, "scev.check"),
MemCheckExp(SE, DL, "scev.check") {}
/// Generate runtime checks in SCEVCheckBlock and MemCheckBlock, so we can
/// accurately estimate the cost of the runtime checks. The blocks are
/// un-linked from the IR and is added back during vector code generation. If
/// there is no vector code generation, the check blocks are removed
/// completely.
void Create(Loop *L, const LoopAccessInfo &LAI,
const SCEVUnionPredicate &UnionPred) {
BasicBlock *LoopHeader = L->getHeader();
BasicBlock *Preheader = L->getLoopPreheader();
// Use SplitBlock to create blocks for SCEV & memory runtime checks to
// ensure the blocks are properly added to LoopInfo & DominatorTree. Those
// may be used by SCEVExpander. The blocks will be un-linked from their
// predecessors and removed from LI & DT at the end of the function.
if (!UnionPred.isAlwaysTrue()) {
SCEVCheckBlock = SplitBlock(Preheader, Preheader->getTerminator(), DT, LI,
nullptr, "vector.scevcheck");
SCEVCheckCond = SCEVExp.expandCodeForPredicate(
&UnionPred, SCEVCheckBlock->getTerminator());
}
const auto &RtPtrChecking = *LAI.getRuntimePointerChecking();
if (RtPtrChecking.Need) {
auto *Pred = SCEVCheckBlock ? SCEVCheckBlock : Preheader;
MemCheckBlock = SplitBlock(Pred, Pred->getTerminator(), DT, LI, nullptr,
"vector.memcheck");
MemRuntimeCheckCond =
addRuntimeChecks(MemCheckBlock->getTerminator(), L,
RtPtrChecking.getChecks(), MemCheckExp);
assert(MemRuntimeCheckCond &&
"no RT checks generated although RtPtrChecking "
"claimed checks are required");
}
if (!MemCheckBlock && !SCEVCheckBlock)
return;
// Unhook the temporary block with the checks, update various places
// accordingly.
if (SCEVCheckBlock)
SCEVCheckBlock->replaceAllUsesWith(Preheader);
if (MemCheckBlock)
MemCheckBlock->replaceAllUsesWith(Preheader);
if (SCEVCheckBlock) {
SCEVCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), SCEVCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
if (MemCheckBlock) {
MemCheckBlock->getTerminator()->moveBefore(Preheader->getTerminator());
new UnreachableInst(Preheader->getContext(), MemCheckBlock);
Preheader->getTerminator()->eraseFromParent();
}
DT->changeImmediateDominator(LoopHeader, Preheader);
if (MemCheckBlock) {
DT->eraseNode(MemCheckBlock);
LI->removeBlock(MemCheckBlock);
}
if (SCEVCheckBlock) {
DT->eraseNode(SCEVCheckBlock);
LI->removeBlock(SCEVCheckBlock);
}
}
/// Remove the created SCEV & memory runtime check blocks & instructions, if
/// unused.
~GeneratedRTChecks() {
SCEVExpanderCleaner SCEVCleaner(SCEVExp, *DT);
SCEVExpanderCleaner MemCheckCleaner(MemCheckExp, *DT);
if (!SCEVCheckCond)
SCEVCleaner.markResultUsed();
if (!MemRuntimeCheckCond)
MemCheckCleaner.markResultUsed();
if (MemRuntimeCheckCond) {
auto &SE = *MemCheckExp.getSE();
// Memory runtime check generation creates compares that use expanded
// values. Remove them before running the SCEVExpanderCleaners.
for (auto &I : make_early_inc_range(reverse(*MemCheckBlock))) {
if (MemCheckExp.isInsertedInstruction(&I))
continue;
SE.forgetValue(&I);
I.eraseFromParent();
}
}
MemCheckCleaner.cleanup();
SCEVCleaner.cleanup();
if (SCEVCheckCond)
SCEVCheckBlock->eraseFromParent();
if (MemRuntimeCheckCond)
MemCheckBlock->eraseFromParent();
}
/// Adds the generated SCEVCheckBlock before \p LoopVectorPreHeader and
/// adjusts the branches to branch to the vector preheader or \p Bypass,
/// depending on the generated condition.
BasicBlock *emitSCEVChecks(Loop *L, BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader,
BasicBlock *LoopExitBlock) {
if (!SCEVCheckCond)
return nullptr;
if (auto *C = dyn_cast<ConstantInt>(SCEVCheckCond))
if (C->isZero())
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
BranchInst::Create(LoopVectorPreHeader, SCEVCheckBlock);
// Create new preheader for vector loop.
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(SCEVCheckBlock, *LI);
SCEVCheckBlock->getTerminator()->eraseFromParent();
SCEVCheckBlock->moveBefore(LoopVectorPreHeader);
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
SCEVCheckBlock);
DT->addNewBlock(SCEVCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, SCEVCheckBlock);
ReplaceInstWithInst(
SCEVCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheckCond));
// Mark the check as used, to prevent it from being removed during cleanup.
SCEVCheckCond = nullptr;
return SCEVCheckBlock;
}
/// Adds the generated MemCheckBlock before \p LoopVectorPreHeader and adjusts
/// the branches to branch to the vector preheader or \p Bypass, depending on
/// the generated condition.
BasicBlock *emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass,
BasicBlock *LoopVectorPreHeader) {
// Check if we generated code that checks in runtime if arrays overlap.
if (!MemRuntimeCheckCond)
return nullptr;
auto *Pred = LoopVectorPreHeader->getSinglePredecessor();
Pred->getTerminator()->replaceSuccessorWith(LoopVectorPreHeader,
MemCheckBlock);
DT->addNewBlock(MemCheckBlock, Pred);
DT->changeImmediateDominator(LoopVectorPreHeader, MemCheckBlock);
MemCheckBlock->moveBefore(LoopVectorPreHeader);
if (auto *PL = LI->getLoopFor(LoopVectorPreHeader))
PL->addBasicBlockToLoop(MemCheckBlock, *LI);
ReplaceInstWithInst(
MemCheckBlock->getTerminator(),
BranchInst::Create(Bypass, LoopVectorPreHeader, MemRuntimeCheckCond));
MemCheckBlock->getTerminator()->setDebugLoc(
Pred->getTerminator()->getDebugLoc());
// Mark the check as used, to prevent it from being removed during cleanup.
MemRuntimeCheckCond = nullptr;
return MemCheckBlock;
}
};
// Return true if \p OuterLp is an outer loop annotated with hints for explicit
// vectorization. The loop needs to be annotated with #pragma omp simd
// simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the
// vector length information is not provided, vectorization is not considered
// explicit. Interleave hints are not allowed either. These limitations will be
// relaxed in the future.
// Please, note that we are currently forced to abuse the pragma 'clang
// vectorize' semantics. This pragma provides *auto-vectorization hints*
// (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd'
// provides *explicit vectorization hints* (LV can bypass legal checks and
// assume that vectorization is legal). However, both hints are implemented
// using the same metadata (llvm.loop.vectorize, processed by
// LoopVectorizeHints). This will be fixed in the future when the native IR
// representation for pragma 'omp simd' is introduced.
static bool isExplicitVecOuterLoop(Loop *OuterLp,
OptimizationRemarkEmitter *ORE) {
assert(!OuterLp->isInnermost() && "This is not an outer loop");
LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE);
// Only outer loops with an explicit vectorization hint are supported.
// Unannotated outer loops are ignored.
if (Hints.getForce() == LoopVectorizeHints::FK_Undefined)
return false;
Function *Fn = OuterLp->getHeader()->getParent();
if (!Hints.allowVectorization(Fn, OuterLp,
true /*VectorizeOnlyWhenForced*/)) {
LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n");
return false;
}
if (Hints.getInterleave() > 1) {
// TODO: Interleave support is future work.
LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for "
"outer loops.\n");
Hints.emitRemarkWithHints();
return false;
}
return true;
}
static void collectSupportedLoops(Loop &L, LoopInfo *LI,
OptimizationRemarkEmitter *ORE,
SmallVectorImpl<Loop *> &V) {
// Collect inner loops and outer loops without irreducible control flow. For
// now, only collect outer loops that have explicit vectorization hints. If we
// are stress testing the VPlan H-CFG construction, we collect the outermost
// loop of every loop nest.
if (L.isInnermost() || VPlanBuildStressTest ||
(EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) {
LoopBlocksRPO RPOT(&L);
RPOT.perform(LI);
if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) {
V.push_back(&L);
// TODO: Collect inner loops inside marked outer loops in case
// vectorization fails for the outer loop. Do not invoke
// 'containsIrreducibleCFG' again for inner loops when the outer loop is
// already known to be reducible. We can use an inherited attribute for
// that.
return;
}
}
for (Loop *InnerL : L)
collectSupportedLoops(*InnerL, LI, ORE, V);
}
namespace {
/// The LoopVectorize Pass.
struct LoopVectorize : public FunctionPass {
/// Pass identification, replacement for typeid
static char ID;
LoopVectorizePass Impl;
explicit LoopVectorize(bool InterleaveOnlyWhenForced = false,
bool VectorizeOnlyWhenForced = false)
: FunctionPass(ID),
Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) {
initializeLoopVectorizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
if (skipFunction(F))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>();
auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
std::function<const LoopAccessInfo &(Loop &)> GetLAA =
[&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); };
return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC,
GetLAA, *ORE, PSI).MadeAnyChange;
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<LoopAccessLegacyAnalysis>();
AU.addRequired<DemandedBitsWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
AU.addRequired<InjectTLIMappingsLegacy>();
// We currently do not preserve loopinfo/dominator analyses with outer loop
// vectorization. Until this is addressed, mark these analyses as preserved
// only for non-VPlan-native path.
// TODO: Preserve Loop and Dominator analyses for VPlan-native path.
if (!EnableVPlanNativePath) {
AU.addPreserved<LoopInfoWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
AU.addPreserved<BasicAAWrapperPass>();
AU.addPreserved<GlobalsAAWrapperPass>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Implementation of LoopVectorizationLegality, InnerLoopVectorizer and
// LoopVectorizationCostModel and LoopVectorizationPlanner.
//===----------------------------------------------------------------------===//
Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) {
// We need to place the broadcast of invariant variables outside the loop,
// but only if it's proven safe to do so. Else, broadcast will be inside
// vector loop body.
Instruction *Instr = dyn_cast<Instruction>(V);
bool SafeToHoist = OrigLoop->isLoopInvariant(V) &&
(!Instr ||
DT->dominates(Instr->getParent(), LoopVectorPreHeader));
// Place the code for broadcasting invariant variables in the new preheader.
IRBuilder<>::InsertPointGuard Guard(Builder);
if (SafeToHoist)
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
// Broadcast the scalar into all locations in the vector.
Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast");
return Shuf;
}
void InnerLoopVectorizer::createVectorIntOrFpInductionPHI(
const InductionDescriptor &II, Value *Step, Value *Start,
Instruction *EntryVal, VPValue *Def, VPValue *CastDef,
VPTransformState &State) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// Construct the initial value of the vector IV in the vector loop preheader
auto CurrIP = Builder.saveIP();
Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator());
if (isa<TruncInst>(EntryVal)) {
assert(Start->getType()->isIntegerTy() &&
"Truncation requires an integer type");
auto *TruncType = cast<IntegerType>(EntryVal->getType());
Step = Builder.CreateTrunc(Step, TruncType);
Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType);
}
Value *Zero = getSignedIntOrFpConstant(Start->getType(), 0);
Value *SplatStart = Builder.CreateVectorSplat(VF, Start);
Value *SteppedStart =
getStepVector(SplatStart, Zero, Step, II.getInductionOpcode());
// We create vector phi nodes for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (Step->getType()->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = II.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Multiply the vectorization factor by the step using integer or
// floating-point arithmetic as appropriate.
Type *StepType = Step->getType();
Value *RuntimeVF;
if (Step->getType()->isFloatingPointTy())
RuntimeVF = getRuntimeVFAsFloat(Builder, StepType, VF);
else
RuntimeVF = getRuntimeVF(Builder, StepType, VF);
Value *Mul = Builder.CreateBinOp(MulOp, Step, RuntimeVF);
// Create a vector splat to use in the induction update.
//
// FIXME: If the step is non-constant, we create the vector splat with
// IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't
// handle a constant vector splat.
Value *SplatVF = isa<Constant>(Mul)
? ConstantVector::getSplat(VF, cast<Constant>(Mul))
: Builder.CreateVectorSplat(VF, Mul);
Builder.restoreIP(CurrIP);
// We may need to add the step a number of times, depending on the unroll
// factor. The last of those goes into the PHI.
PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind",
&*LoopVectorBody->getFirstInsertionPt());
VecInd->setDebugLoc(EntryVal->getDebugLoc());
Instruction *LastInduction = VecInd;
for (unsigned Part = 0; Part < UF; ++Part) {
State.set(Def, LastInduction, Part);
if (isa<TruncInst>(EntryVal))
addMetadata(LastInduction, EntryVal);
recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef,
State, Part);
LastInduction = cast<Instruction>(
Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"));
LastInduction->setDebugLoc(EntryVal->getDebugLoc());
}
// Move the last step to the end of the latch block. This ensures consistent
// placement of all induction updates.
auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch();
auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator());
auto *ICmp = cast<Instruction>(Br->getCondition());
LastInduction->moveBefore(ICmp);
LastInduction->setName("vec.ind.next");
VecInd->addIncoming(SteppedStart, LoopVectorPreHeader);
VecInd->addIncoming(LastInduction, LoopVectorLatch);
}
bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const {
return Cost->isScalarAfterVectorization(I, VF) ||
Cost->isProfitableToScalarize(I, VF);
}
bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const {
if (shouldScalarizeInstruction(IV))
return true;
auto isScalarInst = [&](User *U) -> bool {
auto *I = cast<Instruction>(U);
return (OrigLoop->contains(I) && shouldScalarizeInstruction(I));
};
return llvm::any_of(IV->users(), isScalarInst);
}
void InnerLoopVectorizer::recordVectorLoopValueForInductionCast(
const InductionDescriptor &ID, const Instruction *EntryVal,
Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State,
unsigned Part, unsigned Lane) {
assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) &&
"Expected either an induction phi-node or a truncate of it!");
// This induction variable is not the phi from the original loop but the
// newly-created IV based on the proof that casted Phi is equal to the
// uncasted Phi in the vectorized loop (under a runtime guard possibly). It
// re-uses the same InductionDescriptor that original IV uses but we don't
// have to do any recording in this case - that is done when original IV is
// processed.
if (isa<TruncInst>(EntryVal))
return;
if (!CastDef) {
assert(ID.getCastInsts().empty() &&
"there are casts for ID, but no CastDef");
return;
}
assert(!ID.getCastInsts().empty() &&
"there is a CastDef, but no casts for ID");
// Only the first Cast instruction in the Casts vector is of interest.
// The rest of the Casts (if exist) have no uses outside the
// induction update chain itself.
if (Lane < UINT_MAX)
State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane));
else
State.set(CastDef, VectorLoopVal, Part);
}
void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start,
TruncInst *Trunc, VPValue *Def,
VPValue *CastDef,
VPTransformState &State) {
assert((IV->getType()->isIntegerTy() || IV != OldInduction) &&
"Primary induction variable must have an integer type");
auto II = Legal->getInductionVars().find(IV);
assert(II != Legal->getInductionVars().end() && "IV is not an induction");
auto ID = II->second;
assert(IV->getType() == ID.getStartValue()->getType() && "Types must match");
// The value from the original loop to which we are mapping the new induction
// variable.
Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV;
auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout();
// Generate code for the induction step. Note that induction steps are
// required to be loop-invariant
auto CreateStepValue = [&](const SCEV *Step) -> Value * {
assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) &&
"Induction step should be loop invariant");
if (PSE.getSE()->isSCEVable(IV->getType())) {
SCEVExpander Exp(*PSE.getSE(), DL, "induction");
return Exp.expandCodeFor(Step, Step->getType(),
LoopVectorPreHeader->getTerminator());
}
return cast<SCEVUnknown>(Step)->getValue();
};
// The scalar value to broadcast. This is derived from the canonical
// induction variable. If a truncation type is given, truncate the canonical
// induction variable and step. Otherwise, derive these values from the
// induction descriptor.
auto CreateScalarIV = [&](Value *&Step) -> Value * {
Value *ScalarIV = Induction;
if (IV != OldInduction) {
ScalarIV = IV->getType()->isIntegerTy()
? Builder.CreateSExtOrTrunc(Induction, IV->getType())
: Builder.CreateCast(Instruction::SIToFP, Induction,
IV->getType());
ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID);
ScalarIV->setName("offset.idx");
}
if (Trunc) {
auto *TruncType = cast<IntegerType>(Trunc->getType());
assert(Step->getType()->isIntegerTy() &&
"Truncation requires an integer step");
ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType);
Step = Builder.CreateTrunc(Step, TruncType);
}
return ScalarIV;
};
// Create the vector values from the scalar IV, in the absence of creating a
// vector IV.
auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) {
Value *Broadcasted = getBroadcastInstrs(ScalarIV);
for (unsigned Part = 0; Part < UF; ++Part) {
assert(!VF.isScalable() && "scalable vectors not yet supported.");
Value *StartIdx;
if (Step->getType()->isFloatingPointTy())
StartIdx = getRuntimeVFAsFloat(Builder, Step->getType(), VF * Part);
else
StartIdx = getRuntimeVF(Builder, Step->getType(), VF * Part);
Value *EntryPart =
getStepVector(Broadcasted, StartIdx, Step, ID.getInductionOpcode());
State.set(Def, EntryPart, Part);
if (Trunc)
addMetadata(EntryPart, Trunc);
recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef,
State, Part);
}
};
// Fast-math-flags propagate from the original induction instruction.
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
if (ID.getInductionBinOp() && isa<FPMathOperator>(ID.getInductionBinOp()))
Builder.setFastMathFlags(ID.getInductionBinOp()->getFastMathFlags());
// Now do the actual transformations, and start with creating the step value.
Value *Step = CreateStepValue(ID.getStep());
if (VF.isZero() || VF.isScalar()) {
Value *ScalarIV = CreateScalarIV(Step);
CreateSplatIV(ScalarIV, Step);
return;
}
// Determine if we want a scalar version of the induction variable. This is
// true if the induction variable itself is not widened, or if it has at
// least one user in the loop that is not widened.
auto NeedsScalarIV = needsScalarInduction(EntryVal);
if (!NeedsScalarIV) {
createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
State);
return;
}
// Try to create a new independent vector induction variable. If we can't
// create the phi node, we will splat the scalar induction variable in each
// loop iteration.
if (!shouldScalarizeInstruction(EntryVal)) {
createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef,
State);
Value *ScalarIV = CreateScalarIV(Step);
// Create scalar steps that can be used by instructions we will later
// scalarize. Note that the addition of the scalar steps will not increase
// the number of instructions in the loop in the common case prior to
// InstCombine. We will be trading one vector extract for each scalar step.
buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
return;
}
// All IV users are scalar instructions, so only emit a scalar IV, not a
// vectorised IV. Except when we tail-fold, then the splat IV feeds the
// predicate used by the masked loads/stores.
Value *ScalarIV = CreateScalarIV(Step);
if (!Cost->isScalarEpilogueAllowed())
CreateSplatIV(ScalarIV, Step);
buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State);
}
Value *InnerLoopVectorizer::getStepVector(Value *Val, Value *StartIdx,
Value *Step,
Instruction::BinaryOps BinOp) {
// Create and check the types.
auto *ValVTy = cast<VectorType>(Val->getType());
ElementCount VLen = ValVTy->getElementCount();
Type *STy = Val->getType()->getScalarType();
assert((STy->isIntegerTy() || STy->isFloatingPointTy()) &&
"Induction Step must be an integer or FP");
assert(Step->getType() == STy && "Step has wrong type");
SmallVector<Constant *, 8> Indices;
// Create a vector of consecutive numbers from zero to VF.
VectorType *InitVecValVTy = ValVTy;
Type *InitVecValSTy = STy;
if (STy->isFloatingPointTy()) {
InitVecValSTy =
IntegerType::get(STy->getContext(), STy->getScalarSizeInBits());
InitVecValVTy = VectorType::get(InitVecValSTy, VLen);
}
Value *InitVec = Builder.CreateStepVector(InitVecValVTy);
// Splat the StartIdx
Value *StartIdxSplat = Builder.CreateVectorSplat(VLen, StartIdx);
if (STy->isIntegerTy()) {
InitVec = Builder.CreateAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
assert(Step->getType() == Val->getType() && "Invalid step vec");
// FIXME: The newly created binary instructions should contain nsw/nuw flags,
// which can be found from the original scalar operations.
Step = Builder.CreateMul(InitVec, Step);
return Builder.CreateAdd(Val, Step, "induction");
}
// Floating point induction.
assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) &&
"Binary Opcode should be specified for FP induction");
InitVec = Builder.CreateUIToFP(InitVec, ValVTy);
InitVec = Builder.CreateFAdd(InitVec, StartIdxSplat);
Step = Builder.CreateVectorSplat(VLen, Step);
Value *MulOp = Builder.CreateFMul(InitVec, Step);
return Builder.CreateBinOp(BinOp, Val, MulOp, "induction");
}
void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step,
Instruction *EntryVal,
const InductionDescriptor &ID,
VPValue *Def, VPValue *CastDef,
VPTransformState &State) {
// We shouldn't have to build scalar steps if we aren't vectorizing.
assert(VF.isVector() && "VF should be greater than one");
// Get the value type and ensure it and the step have the same integer type.
Type *ScalarIVTy = ScalarIV->getType()->getScalarType();
assert(ScalarIVTy == Step->getType() &&
"Val and Step should have the same type");
// We build scalar steps for both integer and floating-point induction
// variables. Here, we determine the kind of arithmetic we will perform.
Instruction::BinaryOps AddOp;
Instruction::BinaryOps MulOp;
if (ScalarIVTy->isIntegerTy()) {
AddOp = Instruction::Add;
MulOp = Instruction::Mul;
} else {
AddOp = ID.getInductionOpcode();
MulOp = Instruction::FMul;
}
// Determine the number of scalars we need to generate for each unroll
// iteration. If EntryVal is uniform, we only need to generate the first
// lane. Otherwise, we generate all VF values.
bool IsUniform =
Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF);
unsigned Lanes = IsUniform ? 1 : VF.getKnownMinValue();
// Compute the scalar steps and save the results in State.
Type *IntStepTy = IntegerType::get(ScalarIVTy->getContext(),
ScalarIVTy->getScalarSizeInBits());
Type *VecIVTy = nullptr;
Value *UnitStepVec = nullptr, *SplatStep = nullptr, *SplatIV = nullptr;
if (!IsUniform && VF.isScalable()) {
VecIVTy = VectorType::get(ScalarIVTy, VF);
UnitStepVec = Builder.CreateStepVector(VectorType::get(IntStepTy, VF));
SplatStep = Builder.CreateVectorSplat(VF, Step);
SplatIV = Builder.CreateVectorSplat(VF, ScalarIV);
}
for (unsigned Part = 0; Part < UF; ++Part) {
Value *StartIdx0 = createStepForVF(Builder, IntStepTy, VF, Part);
if (!IsUniform && VF.isScalable()) {
auto *SplatStartIdx = Builder.CreateVectorSplat(VF, StartIdx0);
auto *InitVec = Builder.CreateAdd(SplatStartIdx, UnitStepVec);
if (ScalarIVTy->isFloatingPointTy())
InitVec = Builder.CreateSIToFP(InitVec, VecIVTy);
auto *Mul = Builder.CreateBinOp(MulOp, InitVec, SplatStep);
auto *Add = Builder.CreateBinOp(AddOp, SplatIV, Mul);
State.set(Def, Add, Part);
recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
Part);
// It's useful to record the lane values too for the known minimum number
// of elements so we do those below. This improves the code quality when
// trying to extract the first element, for example.
}
if (ScalarIVTy->isFloatingPointTy())
StartIdx0 = Builder.CreateSIToFP(StartIdx0, ScalarIVTy);
for (unsigned Lane = 0; Lane < Lanes; ++Lane) {
Value *StartIdx = Builder.CreateBinOp(
AddOp, StartIdx0, getSignedIntOrFpConstant(ScalarIVTy, Lane));
// The step returned by `createStepForVF` is a runtime-evaluated value
// when VF is scalable. Otherwise, it should be folded into a Constant.
assert((VF.isScalable() || isa<Constant>(StartIdx)) &&
"Expected StartIdx to be folded to a constant when VF is not "
"scalable");
auto *Mul = Builder.CreateBinOp(MulOp, StartIdx, Step);
auto *Add = Builder.CreateBinOp(AddOp, ScalarIV, Mul);
State.set(Def, Add, VPIteration(Part, Lane));
recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State,
Part, Lane);
}
}
}
void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def,
const VPIteration &Instance,
VPTransformState &State) {
Value *ScalarInst = State.get(Def, Instance);
Value *VectorValue = State.get(Def, Instance.Part);
VectorValue = Builder.CreateInsertElement(
VectorValue, ScalarInst,
Instance.Lane.getAsRuntimeExpr(State.Builder, VF));
State.set(Def, VectorValue, Instance.Part);
}
Value *InnerLoopVectorizer::reverseVector(Value *Vec) {
assert(Vec->getType()->isVectorTy() && "Invalid type");
return Builder.CreateVectorReverse(Vec, "reverse");
}
// Return whether we allow using masked interleave-groups (for dealing with
// strided loads/stores that reside in predicated blocks, or for dealing
// with gaps).
static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) {
// If an override option has been passed in for interleaved accesses, use it.
if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0)
return EnableMaskedInterleavedMemAccesses;
return TTI.enableMaskedInterleavedAccessVectorization();
}
// Try to vectorize the interleave group that \p Instr belongs to.
//
// E.g. Translate following interleaved load group (factor = 3):
// for (i = 0; i < N; i+=3) {
// R = Pic[i]; // Member of index 0
// G = Pic[i+1]; // Member of index 1
// B = Pic[i+2]; // Member of index 2
// ... // do something to R, G, B
// }
// To:
// %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B
// %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements
// %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements
// %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements
//
// Or translate following interleaved store group (factor = 3):
// for (i = 0; i < N; i+=3) {
// ... do something to R, G, B
// Pic[i] = R; // Member of index 0
// Pic[i+1] = G; // Member of index 1
// Pic[i+2] = B; // Member of index 2
// }
// To:
// %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7>
// %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u>
// %interleaved.vec = shuffle %R_G.vec, %B_U.vec,
// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements
// store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B
void InnerLoopVectorizer::vectorizeInterleaveGroup(
const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs,
VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues,
VPValue *BlockInMask) {
Instruction *Instr = Group->getInsertPos();
const DataLayout &DL = Instr->getModule()->getDataLayout();
// Prepare for the vector type of the interleaved load/store.
Type *ScalarTy = getLoadStoreType(Instr);
unsigned InterleaveFactor = Group->getFactor();
assert(!VF.isScalable() && "scalable vectors not yet supported.");
auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor);
// Prepare for the new pointers.
SmallVector<Value *, 2> AddrParts;
unsigned Index = Group->getIndex(Instr);
// TODO: extend the masked interleaved-group support to reversed access.
assert((!BlockInMask || !Group->isReverse()) &&
"Reversed masked interleave-group not supported.");
// If the group is reverse, adjust the index to refer to the last vector lane
// instead of the first. We adjust the index from the first vector lane,
// rather than directly getting the pointer for lane VF - 1, because the
// pointer operand of the interleaved access is supposed to be uniform. For
// uniform instructions, we're only required to generate a value for the
// first vector lane in each unroll iteration.
if (Group->isReverse())
Index += (VF.getKnownMinValue() - 1) * Group->getFactor();
for (unsigned Part = 0; Part < UF; Part++) {
Value *Addr