Recommit "[VPlan] Replace disjoint or with add instead of dropping disjoint. (#83821)"

Recommit with a fix for the use-after-free causing the revert.
This reverts the revert commit f872043e055f4163c3c4b1b86ca0354490174987.

Original commit message:

Dropping disjoint from an OR may yield incorrect results, as some
analysis may have converted it to an Add implicitly (e.g. SCEV used for
dependence analysis). Instead, replace it with an equivalent Add.

This is possible as all users of the disjoint OR only access lanes where
the operands are disjoint or poison otherwise.

Note that replacing all disjoint ORs with ADDs instead of dropping the
flags is not strictly necessary. It is only needed for disjoint ORs that
SCEV treated as ADDs, but those are not tracked.

There are other places that may drop poison-generating flags; those
likely need similar treatment.

Fixes https://github.com/llvm/llvm-project/issues/81872

PR: https://github.com/llvm/llvm-project/pull/83821
5 files changed
tree: abd14f98d6e27286e8322e5b44e2a1f9093adeb0
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .clang-format
  27. .clang-tidy
  28. .git-blame-ignore-revs
  29. .gitattributes
  30. .gitignore
  31. .mailmap
  32. CODE_OF_CONDUCT.md
  33. CONTRIBUTING.md
  34. LICENSE.TXT
  35. pyproject.toml
  36. README.md
  37. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.