blob: 4149ae92ffe9cdbfb8f5ff8dc36b5ab7e60f635d [file] [log] [blame]
//===----- M68kCollapseMOVEMPass.cpp - Expand MOVEM pass --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// `MOVEM` is an instruction that moves multiple registers a time according to
/// the given mask. Thus sometimes it's pretty expensive.
/// This file contains a pass that collapses sequential MOVEM instructions into
/// a single one.
///
//===----------------------------------------------------------------------===//
#include "M68k.h"
#include "M68kFrameLowering.h"
#include "M68kInstrInfo.h"
#include "M68kMachineFunction.h"
#include "M68kSubtarget.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/MathExtras.h"
using namespace llvm;
#define DEBUG_TYPE "M68k-collapse-movem"
namespace {
enum UpdateType { Ascending, Descending, Intermixed };
/// An abtraction of the MOVEM chain currently processing
class MOVEMState {
MachineBasicBlock::iterator Begin;
MachineBasicBlock::iterator End;
unsigned Base;
int Start;
int Stop;
unsigned Mask;
enum class AccessTy { None, Load, Store };
AccessTy Access;
public:
MOVEMState()
: Begin(nullptr), End(nullptr), Base(0), Start(INT_MIN), Stop(INT_MAX),
Mask(0), Access(AccessTy::None) {}
void setBegin(MachineBasicBlock::iterator &MI) {
assert(Begin == nullptr);
Begin = MI;
}
void setEnd(MachineBasicBlock::iterator &MI) {
assert(End == nullptr);
End = MI;
}
bool hasBase() const { return Base != 0; }
unsigned getBase() const {
assert(Base);
return Base;
}
MachineBasicBlock::iterator begin() {
assert(Begin != nullptr);
return Begin;
}
MachineBasicBlock::iterator end() {
assert(End != nullptr);
return End;
}
unsigned getMask() const { return Mask; }
void setBase(int Value) {
assert(!hasBase());
Base = Value;
}
// You need to call this before Mask update
UpdateType classifyUpdateByMask(unsigned NewMask) const {
assert(NewMask && "Mask needs to select at least one register");
if (NewMask > Mask) {
return Ascending;
} else if (NewMask < Mask) {
return Descending;
}
return Intermixed;
}
bool update(int O, int M) {
UpdateType Type = classifyUpdateByMask(M);
if (Type == Intermixed)
return false;
if (Start == INT_MIN) {
Start = Stop = O;
updateMask(M);
return true;
} else if (Type == Descending && O == Start - 4) {
Start -= 4;
updateMask(M);
return true;
} else if (Type == Ascending && O == Stop + 4) {
Stop += 4;
updateMask(M);
return true;
}
return false;
}
int getFinalOffset() const {
assert(
Start != INT_MIN &&
"MOVEM in control mode should increment the address in each iteration");
return Start;
}
bool updateMask(unsigned Value) {
assert(isUInt<16>(Value) && "Mask must fit 16 bit");
assert(!(Value & Mask) &&
"This is weird, there should be no intersections");
Mask |= Value;
return true;
}
void setLoad() { Access = AccessTy::Load; }
void setStore() { Access = AccessTy::Store; }
bool isLoad() const { return Access == AccessTy::Load; }
bool isStore() const { return Access == AccessTy::Store; }
};
/// This Pass first walks through all the MOVEM instructions
/// that are chained together and record each of the
/// instruction's properties like register mask and data
/// access type into a `MOVEState` instance.
/// Then we perform reduction / collapsing on this `MOVEMState`
/// representation before creating a new `MOVEM` instruction
/// based on the collapsed result, as well as removing
/// redundant `MOVEM` instructions.
class M68kCollapseMOVEM : public MachineFunctionPass {
public:
static char ID;
const M68kSubtarget *STI;
const M68kInstrInfo *TII;
const M68kRegisterInfo *TRI;
const M68kMachineFunctionInfo *MFI;
const M68kFrameLowering *FL;
M68kCollapseMOVEM() : MachineFunctionPass(ID) {}
void Finish(MachineBasicBlock &MBB, MOVEMState &State) {
auto MI = State.begin();
auto End = State.end();
DebugLoc DL = MI->getDebugLoc();
// No need to delete then add a single instruction
if (std::next(MI) == End) {
State = MOVEMState();
return;
}
// Delete all the MOVEM instruction till the end
while (MI != End) {
auto Next = std::next(MI);
MBB.erase(MI);
MI = Next;
}
// Add a unified one
if (State.isLoad()) {
BuildMI(MBB, End, DL, TII->get(M68k::MOVM32mp))
.addImm(State.getMask())
.addImm(State.getFinalOffset())
.addReg(State.getBase());
} else {
BuildMI(MBB, End, DL, TII->get(M68k::MOVM32pm))
.addImm(State.getFinalOffset())
.addReg(State.getBase())
.addImm(State.getMask());
}
State = MOVEMState();
}
bool ProcessMI(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
MOVEMState &State, unsigned Mask, int Offset, unsigned Reg,
bool IsStore = false) {
if (State.hasBase()) {
// If current Type, Reg, Offset and Mask is in proper order then
// merge in the state
MOVEMState Temp = State;
if (State.isStore() == IsStore && State.getBase() == Reg &&
State.update(Offset, Mask)) {
return true;
// Otherwise we Finish processing of the current MOVEM sequance and
// start a new one
} else {
State = Temp;
State.setEnd(MI);
Finish(MBB, State);
return ProcessMI(MBB, MI, State, Mask, Offset, Reg, IsStore);
}
// If this is the first instruction is sequance then initialize the State
} else if (Reg == TRI->getStackRegister() ||
Reg == TRI->getBaseRegister() ||
Reg == TRI->getFrameRegister(*MBB.getParent())) {
State.setBegin(MI);
State.setBase(Reg);
State.update(Offset, Mask);
IsStore ? State.setStore() : State.setLoad();
return true;
}
return false;
}
bool runOnMachineFunction(MachineFunction &MF) override {
STI = &static_cast<const M68kSubtarget &>(MF.getSubtarget());
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
MFI = MF.getInfo<M68kMachineFunctionInfo>();
FL = STI->getFrameLowering();
bool Modified = false;
MOVEMState State;
unsigned Mask = 0;
unsigned Reg = 0;
int Offset = 0;
for (auto &MBB : MF) {
auto MI = MBB.begin(), E = MBB.end();
while (MI != E) {
// Processing might change current instruction, save next first
auto NMI = std::next(MI);
switch (MI->getOpcode()) {
default:
if (State.hasBase()) {
State.setEnd(MI);
Finish(MBB, State);
Modified = true;
}
break;
case M68k::MOVM32jm:
Mask = MI->getOperand(1).getImm();
Reg = MI->getOperand(0).getReg();
Offset = 0;
Modified |= ProcessMI(MBB, MI, State, Mask, Offset, Reg, true);
break;
case M68k::MOVM32pm:
Mask = MI->getOperand(2).getImm();
Reg = MI->getOperand(1).getReg();
Offset = MI->getOperand(0).getImm();
Modified |= ProcessMI(MBB, MI, State, Mask, Offset, Reg, true);
break;
case M68k::MOVM32mj:
Mask = MI->getOperand(0).getImm();
Reg = MI->getOperand(1).getReg();
Offset = 0;
Modified |= ProcessMI(MBB, MI, State, Mask, Offset, Reg, false);
break;
case M68k::MOVM32mp:
Mask = MI->getOperand(0).getImm();
Reg = MI->getOperand(2).getReg();
Offset = MI->getOperand(1).getImm();
Modified |= ProcessMI(MBB, MI, State, Mask, Offset, Reg, false);
break;
}
MI = NMI;
}
if (State.hasBase()) {
State.setEnd(MI);
Finish(MBB, State);
}
}
return Modified;
}
StringRef getPassName() const override { return "M68k MOVEM collapser pass"; }
};
char M68kCollapseMOVEM::ID = 0;
} // anonymous namespace.
/// Returns an instance of the pseudo instruction expansion pass.
FunctionPass *llvm::createM68kCollapseMOVEMPass() {
return new M68kCollapseMOVEM();
}