blob: a9a2266e11960feba60b2f490f84fd32c5fc2d0e [file] [log] [blame]
//===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into forms suitable for efficient execution
// on the target.
//
// This pass performs a strength reduction on array references inside loops that
// have as one or more of their components the loop induction variable, it
// rewrites expressions to take advantage of scaled-index addressing modes
// available on the target, and it performs a variety of other optimizations
// related to loop induction variables.
//
// Terminology note: this code has a lot of handling for "post-increment" or
// "post-inc" users. This is not talking about post-increment addressing modes;
// it is instead talking about code like this:
//
// %i = phi [ 0, %entry ], [ %i.next, %latch ]
// ...
// %i.next = add %i, 1
// %c = icmp eq %i.next, %n
//
// The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
// it's useful to think about these as the same register, with some uses using
// the value of the register before the add and some using it after. In this
// example, the icmp is a post-increment user, since it uses %i.next, which is
// the value of the induction variable after the increment. The other common
// case of post-increment users is users outside the loop.
//
// TODO: More sophistication in the way Formulae are generated and filtered.
//
// TODO: Handle multiple loops at a time.
//
// TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
// of a GlobalValue?
//
// TODO: When truncation is free, truncate ICmp users' operands to make it a
// smaller encoding (on x86 at least).
//
// TODO: When a negated register is used by an add (such as in a list of
// multiple base registers, or as the increment expression in an addrec),
// we may not actually need both reg and (-1 * reg) in registers; the
// negation can be implemented by using a sub instead of an add. The
// lack of support for taking this into consideration when making
// register pressure decisions is partly worked around by the "Special"
// use kind.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopStrengthReduce.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/ScalarEvolutionNormalization.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <iterator>
#include <limits>
#include <map>
#include <numeric>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "loop-reduce"
/// MaxIVUsers is an arbitrary threshold that provides an early opportunity for
/// bail out. This threshold is far beyond the number of users that LSR can
/// conceivably solve, so it should not affect generated code, but catches the
/// worst cases before LSR burns too much compile time and stack space.
static const unsigned MaxIVUsers = 200;
/// Limit the size of expression that SCEV-based salvaging will attempt to
/// translate into a DIExpression.
/// Choose a maximum size such that debuginfo is not excessively increased and
/// the salvaging is not too expensive for the compiler.
static const unsigned MaxSCEVSalvageExpressionSize = 64;
// Temporary flag to cleanup congruent phis after LSR phi expansion.
// It's currently disabled until we can determine whether it's truly useful or
// not. The flag should be removed after the v3.0 release.
// This is now needed for ivchains.
static cl::opt<bool> EnablePhiElim(
"enable-lsr-phielim", cl::Hidden, cl::init(true),
cl::desc("Enable LSR phi elimination"));
// The flag adds instruction count to solutions cost comparision.
static cl::opt<bool> InsnsCost(
"lsr-insns-cost", cl::Hidden, cl::init(true),
cl::desc("Add instruction count to a LSR cost model"));
// Flag to choose how to narrow complex lsr solution
static cl::opt<bool> LSRExpNarrow(
"lsr-exp-narrow", cl::Hidden, cl::init(false),
cl::desc("Narrow LSR complex solution using"
" expectation of registers number"));
// Flag to narrow search space by filtering non-optimal formulae with
// the same ScaledReg and Scale.
static cl::opt<bool> FilterSameScaledReg(
"lsr-filter-same-scaled-reg", cl::Hidden, cl::init(true),
cl::desc("Narrow LSR search space by filtering non-optimal formulae"
" with the same ScaledReg and Scale"));
static cl::opt<TTI::AddressingModeKind> PreferredAddresingMode(
"lsr-preferred-addressing-mode", cl::Hidden, cl::init(TTI::AMK_None),
cl::desc("A flag that overrides the target's preferred addressing mode."),
cl::values(clEnumValN(TTI::AMK_None,
"none",
"Don't prefer any addressing mode"),
clEnumValN(TTI::AMK_PreIndexed,
"preindexed",
"Prefer pre-indexed addressing mode"),
clEnumValN(TTI::AMK_PostIndexed,
"postindexed",
"Prefer post-indexed addressing mode")));
static cl::opt<unsigned> ComplexityLimit(
"lsr-complexity-limit", cl::Hidden,
cl::init(std::numeric_limits<uint16_t>::max()),
cl::desc("LSR search space complexity limit"));
static cl::opt<unsigned> SetupCostDepthLimit(
"lsr-setupcost-depth-limit", cl::Hidden, cl::init(7),
cl::desc("The limit on recursion depth for LSRs setup cost"));
#ifndef NDEBUG
// Stress test IV chain generation.
static cl::opt<bool> StressIVChain(
"stress-ivchain", cl::Hidden, cl::init(false),
cl::desc("Stress test LSR IV chains"));
#else
static bool StressIVChain = false;
#endif
namespace {
struct MemAccessTy {
/// Used in situations where the accessed memory type is unknown.
static const unsigned UnknownAddressSpace =
std::numeric_limits<unsigned>::max();
Type *MemTy = nullptr;
unsigned AddrSpace = UnknownAddressSpace;
MemAccessTy() = default;
MemAccessTy(Type *Ty, unsigned AS) : MemTy(Ty), AddrSpace(AS) {}
bool operator==(MemAccessTy Other) const {
return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
}
bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
static MemAccessTy getUnknown(LLVMContext &Ctx,
unsigned AS = UnknownAddressSpace) {
return MemAccessTy(Type::getVoidTy(Ctx), AS);
}
Type *getType() { return MemTy; }
};
/// This class holds data which is used to order reuse candidates.
class RegSortData {
public:
/// This represents the set of LSRUse indices which reference
/// a particular register.
SmallBitVector UsedByIndices;
void print(raw_ostream &OS) const;
void dump() const;
};
} // end anonymous namespace
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void RegSortData::print(raw_ostream &OS) const {
OS << "[NumUses=" << UsedByIndices.count() << ']';
}
LLVM_DUMP_METHOD void RegSortData::dump() const {
print(errs()); errs() << '\n';
}
#endif
namespace {
/// Map register candidates to information about how they are used.
class RegUseTracker {
using RegUsesTy = DenseMap<const SCEV *, RegSortData>;
RegUsesTy RegUsesMap;
SmallVector<const SCEV *, 16> RegSequence;
public:
void countRegister(const SCEV *Reg, size_t LUIdx);
void dropRegister(const SCEV *Reg, size_t LUIdx);
void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
void clear();
using iterator = SmallVectorImpl<const SCEV *>::iterator;
using const_iterator = SmallVectorImpl<const SCEV *>::const_iterator;
iterator begin() { return RegSequence.begin(); }
iterator end() { return RegSequence.end(); }
const_iterator begin() const { return RegSequence.begin(); }
const_iterator end() const { return RegSequence.end(); }
};
} // end anonymous namespace
void
RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
std::pair<RegUsesTy::iterator, bool> Pair =
RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
RegSortData &RSD = Pair.first->second;
if (Pair.second)
RegSequence.push_back(Reg);
RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
RSD.UsedByIndices.set(LUIdx);
}
void
RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
RegUsesTy::iterator It = RegUsesMap.find(Reg);
assert(It != RegUsesMap.end());
RegSortData &RSD = It->second;
assert(RSD.UsedByIndices.size() > LUIdx);
RSD.UsedByIndices.reset(LUIdx);
}
void
RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
assert(LUIdx <= LastLUIdx);
// Update RegUses. The data structure is not optimized for this purpose;
// we must iterate through it and update each of the bit vectors.
for (auto &Pair : RegUsesMap) {
SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
if (LUIdx < UsedByIndices.size())
UsedByIndices[LUIdx] =
LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : false;
UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
}
}
bool
RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
if (I == RegUsesMap.end())
return false;
const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
int i = UsedByIndices.find_first();
if (i == -1) return false;
if ((size_t)i != LUIdx) return true;
return UsedByIndices.find_next(i) != -1;
}
const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
assert(I != RegUsesMap.end() && "Unknown register!");
return I->second.UsedByIndices;
}
void RegUseTracker::clear() {
RegUsesMap.clear();
RegSequence.clear();
}
namespace {
/// This class holds information that describes a formula for computing
/// satisfying a use. It may include broken-out immediates and scaled registers.
struct Formula {
/// Global base address used for complex addressing.
GlobalValue *BaseGV = nullptr;
/// Base offset for complex addressing.
int64_t BaseOffset = 0;
/// Whether any complex addressing has a base register.
bool HasBaseReg = false;
/// The scale of any complex addressing.
int64_t Scale = 0;
/// The list of "base" registers for this use. When this is non-empty. The
/// canonical representation of a formula is
/// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
/// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
/// 3. The reg containing recurrent expr related with currect loop in the
/// formula should be put in the ScaledReg.
/// #1 enforces that the scaled register is always used when at least two
/// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
/// #2 enforces that 1 * reg is reg.
/// #3 ensures invariant regs with respect to current loop can be combined
/// together in LSR codegen.
/// This invariant can be temporarily broken while building a formula.
/// However, every formula inserted into the LSRInstance must be in canonical
/// form.
SmallVector<const SCEV *, 4> BaseRegs;
/// The 'scaled' register for this use. This should be non-null when Scale is
/// not zero.
const SCEV *ScaledReg = nullptr;
/// An additional constant offset which added near the use. This requires a
/// temporary register, but the offset itself can live in an add immediate
/// field rather than a register.
int64_t UnfoldedOffset = 0;
Formula() = default;
void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
bool isCanonical(const Loop &L) const;
void canonicalize(const Loop &L);
bool unscale();
bool hasZeroEnd() const;
size_t getNumRegs() const;
Type *getType() const;
void deleteBaseReg(const SCEV *&S);
bool referencesReg(const SCEV *S) const;
bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
const RegUseTracker &RegUses) const;
void print(raw_ostream &OS) const;
void dump() const;
};
} // end anonymous namespace
/// Recursion helper for initialMatch.
static void DoInitialMatch(const SCEV *S, Loop *L,
SmallVectorImpl<const SCEV *> &Good,
SmallVectorImpl<const SCEV *> &Bad,
ScalarEvolution &SE) {
// Collect expressions which properly dominate the loop header.
if (SE.properlyDominates(S, L->getHeader())) {
Good.push_back(S);
return;
}
// Look at add operands.
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
for (const SCEV *S : Add->operands())
DoInitialMatch(S, L, Good, Bad, SE);
return;
}
// Look at addrec operands.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
if (!AR->getStart()->isZero() && AR->isAffine()) {
DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
AR->getStepRecurrence(SE),
// FIXME: AR->getNoWrapFlags()
AR->getLoop(), SCEV::FlagAnyWrap),
L, Good, Bad, SE);
return;
}
// Handle a multiplication by -1 (negation) if it didn't fold.
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
if (Mul->getOperand(0)->isAllOnesValue()) {
SmallVector<const SCEV *, 4> Ops(drop_begin(Mul->operands()));
const SCEV *NewMul = SE.getMulExpr(Ops);
SmallVector<const SCEV *, 4> MyGood;
SmallVector<const SCEV *, 4> MyBad;
DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
SE.getEffectiveSCEVType(NewMul->getType())));
for (const SCEV *S : MyGood)
Good.push_back(SE.getMulExpr(NegOne, S));
for (const SCEV *S : MyBad)
Bad.push_back(SE.getMulExpr(NegOne, S));
return;
}
// Ok, we can't do anything interesting. Just stuff the whole thing into a
// register and hope for the best.
Bad.push_back(S);
}
/// Incorporate loop-variant parts of S into this Formula, attempting to keep
/// all loop-invariant and loop-computable values in a single base register.
void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
SmallVector<const SCEV *, 4> Good;
SmallVector<const SCEV *, 4> Bad;
DoInitialMatch(S, L, Good, Bad, SE);
if (!Good.empty()) {
const SCEV *Sum = SE.getAddExpr(Good);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
HasBaseReg = true;
}
if (!Bad.empty()) {
const SCEV *Sum = SE.getAddExpr(Bad);
if (!Sum->isZero())
BaseRegs.push_back(Sum);
HasBaseReg = true;
}
canonicalize(*L);
}
/// Check whether or not this formula satisfies the canonical
/// representation.
/// \see Formula::BaseRegs.
bool Formula::isCanonical(const Loop &L) const {
if (!ScaledReg)
return BaseRegs.size() <= 1;
if (Scale != 1)
return true;
if (Scale == 1 && BaseRegs.empty())
return false;
const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
if (SAR && SAR->getLoop() == &L)
return true;
// If ScaledReg is not a recurrent expr, or it is but its loop is not current
// loop, meanwhile BaseRegs contains a recurrent expr reg related with current
// loop, we want to swap the reg in BaseRegs with ScaledReg.
auto I = find_if(BaseRegs, [&](const SCEV *S) {
return isa<const SCEVAddRecExpr>(S) &&
(cast<SCEVAddRecExpr>(S)->getLoop() == &L);
});
return I == BaseRegs.end();
}
/// Helper method to morph a formula into its canonical representation.
/// \see Formula::BaseRegs.
/// Every formula having more than one base register, must use the ScaledReg
/// field. Otherwise, we would have to do special cases everywhere in LSR
/// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
/// On the other hand, 1*reg should be canonicalized into reg.
void Formula::canonicalize(const Loop &L) {
if (isCanonical(L))
return;
if (BaseRegs.empty()) {
// No base reg? Use scale reg with scale = 1 as such.
assert(ScaledReg && "Expected 1*reg => reg");
assert(Scale == 1 && "Expected 1*reg => reg");
BaseRegs.push_back(ScaledReg);
Scale = 0;
ScaledReg = nullptr;
return;
}
// Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
if (!ScaledReg) {
ScaledReg = BaseRegs.pop_back_val();
Scale = 1;
}
// If ScaledReg is an invariant with respect to L, find the reg from
// BaseRegs containing the recurrent expr related with Loop L. Swap the
// reg with ScaledReg.
const SCEVAddRecExpr *SAR = dyn_cast<const SCEVAddRecExpr>(ScaledReg);
if (!SAR || SAR->getLoop() != &L) {
auto I = find_if(BaseRegs, [&](const SCEV *S) {
return isa<const SCEVAddRecExpr>(S) &&
(cast<SCEVAddRecExpr>(S)->getLoop() == &L);
});
if (I != BaseRegs.end())
std::swap(ScaledReg, *I);
}
assert(isCanonical(L) && "Failed to canonicalize?");
}
/// Get rid of the scale in the formula.
/// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
/// \return true if it was possible to get rid of the scale, false otherwise.
/// \note After this operation the formula may not be in the canonical form.
bool Formula::unscale() {
if (Scale != 1)
return false;
Scale = 0;
BaseRegs.push_back(ScaledReg);
ScaledReg = nullptr;
return true;
}
bool Formula::hasZeroEnd() const {
if (UnfoldedOffset || BaseOffset)
return false;
if (BaseRegs.size() != 1 || ScaledReg)
return false;
return true;
}
/// Return the total number of register operands used by this formula. This does
/// not include register uses implied by non-constant addrec strides.
size_t Formula::getNumRegs() const {
return !!ScaledReg + BaseRegs.size();
}
/// Return the type of this formula, if it has one, or null otherwise. This type
/// is meaningless except for the bit size.
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
BaseGV ? BaseGV->getType() :
nullptr;
}
/// Delete the given base reg from the BaseRegs list.
void Formula::deleteBaseReg(const SCEV *&S) {
if (&S != &BaseRegs.back())
std::swap(S, BaseRegs.back());
BaseRegs.pop_back();
}
/// Test if this formula references the given register.
bool Formula::referencesReg(const SCEV *S) const {
return S == ScaledReg || is_contained(BaseRegs, S);
}
/// Test whether this formula uses registers which are used by uses other than
/// the use with the given index.
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
const RegUseTracker &RegUses) const {
if (ScaledReg)
if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
return true;
for (const SCEV *BaseReg : BaseRegs)
if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
return true;
return false;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Formula::print(raw_ostream &OS) const {
bool First = true;
if (BaseGV) {
if (!First) OS << " + "; else First = false;
BaseGV->printAsOperand(OS, /*PrintType=*/false);
}
if (BaseOffset != 0) {
if (!First) OS << " + "; else First = false;
OS << BaseOffset;
}
for (const SCEV *BaseReg : BaseRegs) {
if (!First) OS << " + "; else First = false;
OS << "reg(" << *BaseReg << ')';
}
if (HasBaseReg && BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: HasBaseReg**";
} else if (!HasBaseReg && !BaseRegs.empty()) {
if (!First) OS << " + "; else First = false;
OS << "**error: !HasBaseReg**";
}
if (Scale != 0) {
if (!First) OS << " + "; else First = false;
OS << Scale << "*reg(";
if (ScaledReg)
OS << *ScaledReg;
else
OS << "<unknown>";
OS << ')';
}
if (UnfoldedOffset != 0) {
if (!First) OS << " + ";
OS << "imm(" << UnfoldedOffset << ')';
}
}
LLVM_DUMP_METHOD void Formula::dump() const {
print(errs()); errs() << '\n';
}
#endif
/// Return true if the given addrec can be sign-extended without changing its
/// value.
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
}
/// Return true if the given add can be sign-extended without changing its
/// value.
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
}
/// Return true if the given mul can be sign-extended without changing its
/// value.
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(),
SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
}
/// Return an expression for LHS /s RHS, if it can be determined and if the
/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
/// is true, expressions like (X * Y) /s Y are simplified to X, ignoring that
/// the multiplication may overflow, which is useful when the result will be
/// used in a context where the most significant bits are ignored.
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE,
bool IgnoreSignificantBits = false) {
// Handle the trivial case, which works for any SCEV type.
if (LHS == RHS)
return SE.getConstant(LHS->getType(), 1);
// Handle a few RHS special cases.
const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
if (RC) {
const APInt &RA = RC->getAPInt();
// Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
// some folding.
if (RA.isAllOnes()) {
if (LHS->getType()->isPointerTy())
return nullptr;
return SE.getMulExpr(LHS, RC);
}
// Handle x /s 1 as x.
if (RA == 1)
return LHS;
}
// Check for a division of a constant by a constant.
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
if (!RC)
return nullptr;
const APInt &LA = C->getAPInt();
const APInt &RA = RC->getAPInt();
if (LA.srem(RA) != 0)
return nullptr;
return SE.getConstant(LA.sdiv(RA));
}
// Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
if ((IgnoreSignificantBits || isAddRecSExtable(AR, SE)) && AR->isAffine()) {
const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
IgnoreSignificantBits);
if (!Step) return nullptr;
const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
IgnoreSignificantBits);
if (!Start) return nullptr;
// FlagNW is independent of the start value, step direction, and is
// preserved with smaller magnitude steps.
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
}
return nullptr;
}
// Distribute the sdiv over add operands, if the add doesn't overflow.
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
SmallVector<const SCEV *, 8> Ops;
for (const SCEV *S : Add->operands()) {
const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
if (!Op) return nullptr;
Ops.push_back(Op);
}
return SE.getAddExpr(Ops);
}
return nullptr;
}
// Check for a multiply operand that we can pull RHS out of.
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
// Handle special case C1*X*Y /s C2*X*Y.
if (const SCEVMulExpr *MulRHS = dyn_cast<SCEVMulExpr>(RHS)) {
if (IgnoreSignificantBits || isMulSExtable(MulRHS, SE)) {
const SCEVConstant *LC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
const SCEVConstant *RC =
dyn_cast<SCEVConstant>(MulRHS->getOperand(0));
if (LC && RC) {
SmallVector<const SCEV *, 4> LOps(drop_begin(Mul->operands()));
SmallVector<const SCEV *, 4> ROps(drop_begin(MulRHS->operands()));
if (LOps == ROps)
return getExactSDiv(LC, RC, SE, IgnoreSignificantBits);
}
}
}
SmallVector<const SCEV *, 4> Ops;
bool Found = false;
for (const SCEV *S : Mul->operands()) {
if (!Found)
if (const SCEV *Q = getExactSDiv(S, RHS, SE,
IgnoreSignificantBits)) {
S = Q;
Found = true;
}
Ops.push_back(S);
}
return Found ? SE.getMulExpr(Ops) : nullptr;
}
return nullptr;
}
// Otherwise we don't know.
return nullptr;
}
/// If S involves the addition of a constant integer value, return that integer
/// value, and mutate S to point to a new SCEV with that value excluded.
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
if (C->getAPInt().getMinSignedBits() <= 64) {
S = SE.getConstant(C->getType(), 0);
return C->getValue()->getSExtValue();
}
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
SmallVector<const SCEV *, 8> NewOps(Add->operands());
int64_t Result = ExtractImmediate(NewOps.front(), SE);
if (Result != 0)
S = SE.getAddExpr(NewOps);
return Result;
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
SmallVector<const SCEV *, 8> NewOps(AR->operands());
int64_t Result = ExtractImmediate(NewOps.front(), SE);
if (Result != 0)
S = SE.getAddRecExpr(NewOps, AR->getLoop(),
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
SCEV::FlagAnyWrap);
return Result;
}
return 0;
}
/// If S involves the addition of a GlobalValue address, return that symbol, and
/// mutate S to point to a new SCEV with that value excluded.
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
S = SE.getConstant(GV->getType(), 0);
return GV;
}
} else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
SmallVector<const SCEV *, 8> NewOps(Add->operands());
GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
if (Result)
S = SE.getAddExpr(NewOps);
return Result;
} else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
SmallVector<const SCEV *, 8> NewOps(AR->operands());
GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
if (Result)
S = SE.getAddRecExpr(NewOps, AR->getLoop(),
// FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
SCEV::FlagAnyWrap);
return Result;
}
return nullptr;
}
/// Returns true if the specified instruction is using the specified value as an
/// address.
static bool isAddressUse(const TargetTransformInfo &TTI,
Instruction *Inst, Value *OperandVal) {
bool isAddress = isa<LoadInst>(Inst);
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
if (SI->getPointerOperand() == OperandVal)
isAddress = true;
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
// Addressing modes can also be folded into prefetches and a variety
// of intrinsics.
switch (II->getIntrinsicID()) {
case Intrinsic::memset:
case Intrinsic::prefetch:
case Intrinsic::masked_load:
if (II->getArgOperand(0) == OperandVal)
isAddress = true;
break;
case Intrinsic::masked_store:
if (II->getArgOperand(1) == OperandVal)
isAddress = true;
break;
case Intrinsic::memmove:
case Intrinsic::memcpy:
if (II->getArgOperand(0) == OperandVal ||
II->getArgOperand(1) == OperandVal)
isAddress = true;
break;
default: {
MemIntrinsicInfo IntrInfo;
if (TTI.getTgtMemIntrinsic(II, IntrInfo)) {
if (IntrInfo.PtrVal == OperandVal)
isAddress = true;
}
}
}
} else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
if (RMW->getPointerOperand() == OperandVal)
isAddress = true;
} else if (AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
if (CmpX->getPointerOperand() == OperandVal)
isAddress = true;
}
return isAddress;
}
/// Return the type of the memory being accessed.
static MemAccessTy getAccessType(const TargetTransformInfo &TTI,
Instruction *Inst, Value *OperandVal) {
MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
AccessTy.MemTy = SI->getOperand(0)->getType();
AccessTy.AddrSpace = SI->getPointerAddressSpace();
} else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
AccessTy.AddrSpace = LI->getPointerAddressSpace();
} else if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(Inst)) {
AccessTy.AddrSpace = RMW->getPointerAddressSpace();
} else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(Inst)) {
AccessTy.AddrSpace = CmpX->getPointerAddressSpace();
} else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
switch (II->getIntrinsicID()) {
case Intrinsic::prefetch:
case Intrinsic::memset:
AccessTy.AddrSpace = II->getArgOperand(0)->getType()->getPointerAddressSpace();
AccessTy.MemTy = OperandVal->getType();
break;
case Intrinsic::memmove:
case Intrinsic::memcpy:
AccessTy.AddrSpace = OperandVal->getType()->getPointerAddressSpace();
AccessTy.MemTy = OperandVal->getType();
break;
case Intrinsic::masked_load:
AccessTy.AddrSpace =
II->getArgOperand(0)->getType()->getPointerAddressSpace();
break;
case Intrinsic::masked_store:
AccessTy.MemTy = II->getOperand(0)->getType();
AccessTy.AddrSpace =
II->getArgOperand(1)->getType()->getPointerAddressSpace();
break;
default: {
MemIntrinsicInfo IntrInfo;
if (TTI.getTgtMemIntrinsic(II, IntrInfo) && IntrInfo.PtrVal) {
AccessTy.AddrSpace
= IntrInfo.PtrVal->getType()->getPointerAddressSpace();
}
break;
}
}
}
// All pointers have the same requirements, so canonicalize them to an
// arbitrary pointer type to minimize variation.
if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
PTy->getAddressSpace());
return AccessTy;
}
/// Return true if this AddRec is already a phi in its loop.
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
for (PHINode &PN : AR->getLoop()->getHeader()->phis()) {
if (SE.isSCEVable(PN.getType()) &&
(SE.getEffectiveSCEVType(PN.getType()) ==
SE.getEffectiveSCEVType(AR->getType())) &&
SE.getSCEV(&PN) == AR)
return true;
}
return false;
}
/// Check if expanding this expression is likely to incur significant cost. This
/// is tricky because SCEV doesn't track which expressions are actually computed
/// by the current IR.
///
/// We currently allow expansion of IV increments that involve adds,
/// multiplication by constants, and AddRecs from existing phis.
///
/// TODO: Allow UDivExpr if we can find an existing IV increment that is an
/// obvious multiple of the UDivExpr.
static bool isHighCostExpansion(const SCEV *S,
SmallPtrSetImpl<const SCEV*> &Processed,
ScalarEvolution &SE) {
// Zero/One operand expressions
switch (S->getSCEVType()) {
case scUnknown:
case scConstant:
return false;
case scTruncate:
return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
Processed, SE);
case scZeroExtend:
return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
Processed, SE);
case scSignExtend:
return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
Processed, SE);
default:
break;
}
if (!Processed.insert(S).second)
return false;
if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
for (const SCEV *S : Add->operands()) {
if (isHighCostExpansion(S, Processed, SE))
return true;
}
return false;
}
if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
if (Mul->getNumOperands() == 2) {
// Multiplication by a constant is ok
if (isa<SCEVConstant>(Mul->getOperand(0)))
return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
// If we have the value of one operand, check if an existing
// multiplication already generates this expression.
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
Value *UVal = U->getValue();
for (User *UR : UVal->users()) {
// If U is a constant, it may be used by a ConstantExpr.
Instruction *UI = dyn_cast<Instruction>(UR);
if (UI && UI->getOpcode() == Instruction::Mul &&
SE.isSCEVable(UI->getType())) {
return SE.getSCEV(UI) == Mul;
}
}
}
}
}
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
if (isExistingPhi(AR, SE))
return false;
}
// Fow now, consider any other type of expression (div/mul/min/max) high cost.
return true;
}
namespace {
class LSRUse;
} // end anonymous namespace
/// Check if the addressing mode defined by \p F is completely
/// folded in \p LU at isel time.
/// This includes address-mode folding and special icmp tricks.
/// This function returns true if \p LU can accommodate what \p F
/// defines and up to 1 base + 1 scaled + offset.
/// In other words, if \p F has several base registers, this function may
/// still return true. Therefore, users still need to account for
/// additional base registers and/or unfolded offsets to derive an
/// accurate cost model.
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
const LSRUse &LU, const Formula &F);
// Get the cost of the scaling factor used in F for LU.
static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
const LSRUse &LU, const Formula &F,
const Loop &L);
namespace {
/// This class is used to measure and compare candidate formulae.
class Cost {
const Loop *L = nullptr;
ScalarEvolution *SE = nullptr;
const TargetTransformInfo *TTI = nullptr;
TargetTransformInfo::LSRCost C;
TTI::AddressingModeKind AMK = TTI::AMK_None;
public:
Cost() = delete;
Cost(const Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI,
TTI::AddressingModeKind AMK) :
L(L), SE(&SE), TTI(&TTI), AMK(AMK) {
C.Insns = 0;
C.NumRegs = 0;
C.AddRecCost = 0;
C.NumIVMuls = 0;
C.NumBaseAdds = 0;
C.ImmCost = 0;
C.SetupCost = 0;
C.ScaleCost = 0;
}
bool isLess(Cost &Other);
void Lose();
#ifndef NDEBUG
// Once any of the metrics loses, they must all remain losers.
bool isValid() {
return ((C.Insns | C.NumRegs | C.AddRecCost | C.NumIVMuls | C.NumBaseAdds
| C.ImmCost | C.SetupCost | C.ScaleCost) != ~0u)
|| ((C.Insns & C.NumRegs & C.AddRecCost & C.NumIVMuls & C.NumBaseAdds
& C.ImmCost & C.SetupCost & C.ScaleCost) == ~0u);
}
#endif
bool isLoser() {
assert(isValid() && "invalid cost");
return C.NumRegs == ~0u;
}
void RateFormula(const Formula &F,
SmallPtrSetImpl<const SCEV *> &Regs,
const DenseSet<const SCEV *> &VisitedRegs,
const LSRUse &LU,
SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
void print(raw_ostream &OS) const;
void dump() const;
private:
void RateRegister(const Formula &F, const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs);
void RatePrimaryRegister(const Formula &F, const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
SmallPtrSetImpl<const SCEV *> *LoserRegs);
};
/// An operand value in an instruction which is to be replaced with some
/// equivalent, possibly strength-reduced, replacement.
struct LSRFixup {
/// The instruction which will be updated.
Instruction *UserInst = nullptr;
/// The operand of the instruction which will be replaced. The operand may be
/// used more than once; every instance will be replaced.
Value *OperandValToReplace = nullptr;
/// If this user is to use the post-incremented value of an induction
/// variable, this set is non-empty and holds the loops associated with the
/// induction variable.
PostIncLoopSet PostIncLoops;
/// A constant offset to be added to the LSRUse expression. This allows
/// multiple fixups to share the same LSRUse with different offsets, for
/// example in an unrolled loop.
int64_t Offset = 0;
LSRFixup() = default;
bool isUseFullyOutsideLoop(const Loop *L) const;
void print(raw_ostream &OS) const;
void dump() const;
};
/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
/// SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
static SmallVector<const SCEV *, 4> getEmptyKey() {
SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-1));
return V;
}
static SmallVector<const SCEV *, 4> getTombstoneKey() {
SmallVector<const SCEV *, 4> V;
V.push_back(reinterpret_cast<const SCEV *>(-2));
return V;
}
static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
}
static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
const SmallVector<const SCEV *, 4> &RHS) {
return LHS == RHS;
}
};
/// This class holds the state that LSR keeps for each use in IVUsers, as well
/// as uses invented by LSR itself. It includes information about what kinds of
/// things can be folded into the user, information about the user itself, and
/// information about how the use may be satisfied. TODO: Represent multiple
/// users of the same expression in common?
class LSRUse {
DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
public:
/// An enum for a kind of use, indicating what types of scaled and immediate
/// operands it might support.
enum KindType {
Basic, ///< A normal use, with no folding.
Special, ///< A special case of basic, allowing -1 scales.
Address, ///< An address use; folding according to TargetLowering
ICmpZero ///< An equality icmp with both operands folded into one.
// TODO: Add a generic icmp too?
};
using SCEVUseKindPair = PointerIntPair<const SCEV *, 2, KindType>;
KindType Kind;
MemAccessTy AccessTy;
/// The list of operands which are to be replaced.
SmallVector<LSRFixup, 8> Fixups;
/// Keep track of the min and max offsets of the fixups.
int64_t MinOffset = std::numeric_limits<int64_t>::max();
int64_t MaxOffset = std::numeric_limits<int64_t>::min();
/// This records whether all of the fixups using this LSRUse are outside of
/// the loop, in which case some special-case heuristics may be used.
bool AllFixupsOutsideLoop = true;
/// RigidFormula is set to true to guarantee that this use will be associated
/// with a single formula--the one that initially matched. Some SCEV
/// expressions cannot be expanded. This allows LSR to consider the registers
/// used by those expressions without the need to expand them later after
/// changing the formula.
bool RigidFormula = false;
/// This records the widest use type for any fixup using this
/// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
/// fixup widths to be equivalent, because the narrower one may be relying on
/// the implicit truncation to truncate away bogus bits.
Type *WidestFixupType = nullptr;
/// A list of ways to build a value that can satisfy this user. After the
/// list is populated, one of these is selected heuristically and used to
/// formulate a replacement for OperandValToReplace in UserInst.
SmallVector<Formula, 12> Formulae;
/// The set of register candidates used by all formulae in this LSRUse.
SmallPtrSet<const SCEV *, 4> Regs;
LSRUse(KindType K, MemAccessTy AT) : Kind(K), AccessTy(AT) {}
LSRFixup &getNewFixup() {
Fixups.push_back(LSRFixup());
return Fixups.back();
}
void pushFixup(LSRFixup &f) {
Fixups.push_back(f);
if (f.Offset > MaxOffset)
MaxOffset = f.Offset;
if (f.Offset < MinOffset)
MinOffset = f.Offset;
}
bool HasFormulaWithSameRegs(const Formula &F) const;
float getNotSelectedProbability(const SCEV *Reg) const;
bool InsertFormula(const Formula &F, const Loop &L);
void DeleteFormula(Formula &F);
void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
void print(raw_ostream &OS) const;
void dump() const;
};
} // end anonymous namespace
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
Instruction *Fixup = nullptr);
static unsigned getSetupCost(const SCEV *Reg, unsigned Depth) {
if (isa<SCEVUnknown>(Reg) || isa<SCEVConstant>(Reg))
return 1;
if (Depth == 0)
return 0;
if (const auto *S = dyn_cast<SCEVAddRecExpr>(Reg))
return getSetupCost(S->getStart(), Depth - 1);
if (auto S = dyn_cast<SCEVIntegralCastExpr>(Reg))
return getSetupCost(S->getOperand(), Depth - 1);
if (auto S = dyn_cast<SCEVNAryExpr>(Reg))
return std::accumulate(S->op_begin(), S->op_end(), 0,
[&](unsigned i, const SCEV *Reg) {
return i + getSetupCost(Reg, Depth - 1);
});
if (auto S = dyn_cast<SCEVUDivExpr>(Reg))
return getSetupCost(S->getLHS(), Depth - 1) +
getSetupCost(S->getRHS(), Depth - 1);
return 0;
}
/// Tally up interesting quantities from the given register.
void Cost::RateRegister(const Formula &F, const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs) {
if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
// If this is an addrec for another loop, it should be an invariant
// with respect to L since L is the innermost loop (at least
// for now LSR only handles innermost loops).
if (AR->getLoop() != L) {
// If the AddRec exists, consider it's register free and leave it alone.
if (isExistingPhi(AR, *SE) && AMK != TTI::AMK_PostIndexed)
return;
// It is bad to allow LSR for current loop to add induction variables
// for its sibling loops.
if (!AR->getLoop()->contains(L)) {
Lose();
return;
}
// Otherwise, it will be an invariant with respect to Loop L.
++C.NumRegs;
return;
}
unsigned LoopCost = 1;
if (TTI->isIndexedLoadLegal(TTI->MIM_PostInc, AR->getType()) ||
TTI->isIndexedStoreLegal(TTI->MIM_PostInc, AR->getType())) {
// If the step size matches the base offset, we could use pre-indexed
// addressing.
if (AMK == TTI::AMK_PreIndexed) {
if (auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)))
if (Step->getAPInt() == F.BaseOffset)
LoopCost = 0;
} else if (AMK == TTI::AMK_PostIndexed) {
const SCEV *LoopStep = AR->getStepRecurrence(*SE);
if (isa<SCEVConstant>(LoopStep)) {
const SCEV *LoopStart = AR->getStart();
if (!isa<SCEVConstant>(LoopStart) &&
SE->isLoopInvariant(LoopStart, L))
LoopCost = 0;
}
}
}
C.AddRecCost += LoopCost;
// Add the step value register, if it needs one.
// TODO: The non-affine case isn't precisely modeled here.
if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
if (!Regs.count(AR->getOperand(1))) {
RateRegister(F, AR->getOperand(1), Regs);
if (isLoser())
return;
}
}
}
++C.NumRegs;
// Rough heuristic; favor registers which don't require extra setup
// instructions in the preheader.
C.SetupCost += getSetupCost(Reg, SetupCostDepthLimit);
// Ensure we don't, even with the recusion limit, produce invalid costs.
C.SetupCost = std::min<unsigned>(C.SetupCost, 1 << 16);
C.NumIVMuls += isa<SCEVMulExpr>(Reg) &&
SE->hasComputableLoopEvolution(Reg, L);
}
/// Record this register in the set. If we haven't seen it before, rate
/// it. Optional LoserRegs provides a way to declare any formula that refers to
/// one of those regs an instant loser.
void Cost::RatePrimaryRegister(const Formula &F, const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
SmallPtrSetImpl<const SCEV *> *LoserRegs) {
if (LoserRegs && LoserRegs->count(Reg)) {
Lose();
return;
}
if (Regs.insert(Reg).second) {
RateRegister(F, Reg, Regs);
if (LoserRegs && isLoser())
LoserRegs->insert(Reg);
}
}
void Cost::RateFormula(const Formula &F,
SmallPtrSetImpl<const SCEV *> &Regs,
const DenseSet<const SCEV *> &VisitedRegs,
const LSRUse &LU,
SmallPtrSetImpl<const SCEV *> *LoserRegs) {
assert(F.isCanonical(*L) && "Cost is accurate only for canonical formula");
// Tally up the registers.
unsigned PrevAddRecCost = C.AddRecCost;
unsigned PrevNumRegs = C.NumRegs;
unsigned PrevNumBaseAdds = C.NumBaseAdds;
if (const SCEV *ScaledReg = F.ScaledReg) {
if (VisitedRegs.count(ScaledReg)) {
Lose();
return;
}
RatePrimaryRegister(F, ScaledReg, Regs, LoserRegs);
if (isLoser())
return;
}
for (const SCEV *BaseReg : F.BaseRegs) {
if (VisitedRegs.count(BaseReg)) {
Lose();
return;
}
RatePrimaryRegister(F, BaseReg, Regs, LoserRegs);
if (isLoser())
return;
}
// Determine how many (unfolded) adds we'll need inside the loop.
size_t NumBaseParts = F.getNumRegs();
if (NumBaseParts > 1)
// Do not count the base and a possible second register if the target
// allows to fold 2 registers.
C.NumBaseAdds +=
NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(*TTI, LU, F)));
C.NumBaseAdds += (F.UnfoldedOffset != 0);
// Accumulate non-free scaling amounts.
C.ScaleCost += *getScalingFactorCost(*TTI, LU, F, *L).getValue();
// Tally up the non-zero immediates.
for (const LSRFixup &Fixup : LU.Fixups) {
int64_t O = Fixup.Offset;
int64_t Offset = (uint64_t)O + F.BaseOffset;
if (F.BaseGV)
C.ImmCost += 64; // Handle symbolic values conservatively.
// TODO: This should probably be the pointer size.
else if (Offset != 0)
C.ImmCost += APInt(64, Offset, true).getMinSignedBits();
// Check with target if this offset with this instruction is
// specifically not supported.
if (LU.Kind == LSRUse::Address && Offset != 0 &&
!isAMCompletelyFolded(*TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
Offset, F.HasBaseReg, F.Scale, Fixup.UserInst))
C.NumBaseAdds++;
}
// If we don't count instruction cost exit here.
if (!InsnsCost) {
assert(isValid() && "invalid cost");
return;
}
// Treat every new register that exceeds TTI.getNumberOfRegisters() - 1 as
// additional instruction (at least fill).
// TODO: Need distinguish register class?
unsigned TTIRegNum = TTI->getNumberOfRegisters(
TTI->getRegisterClassForType(false, F.getType())) - 1;
if (C.NumRegs > TTIRegNum) {
// Cost already exceeded TTIRegNum, then only newly added register can add
// new instructions.
if (PrevNumRegs > TTIRegNum)
C.Insns += (C.NumRegs - PrevNumRegs);
else
C.Insns += (C.NumRegs - TTIRegNum);
}
// If ICmpZero formula ends with not 0, it could not be replaced by
// just add or sub. We'll need to compare final result of AddRec.
// That means we'll need an additional instruction. But if the target can
// macro-fuse a compare with a branch, don't count this extra instruction.
// For -10 + {0, +, 1}:
// i = i + 1;
// cmp i, 10
//
// For {-10, +, 1}:
// i = i + 1;
if (LU.Kind == LSRUse::ICmpZero && !F.hasZeroEnd() &&
!TTI->canMacroFuseCmp())
C.Insns++;
// Each new AddRec adds 1 instruction to calculation.
C.Insns += (C.AddRecCost - PrevAddRecCost);
// BaseAdds adds instructions for unfolded registers.
if (LU.Kind != LSRUse::ICmpZero)
C.Insns += C.NumBaseAdds - PrevNumBaseAdds;
assert(isValid() && "invalid cost");
}
/// Set this cost to a losing value.
void Cost::Lose() {
C.Insns = std::numeric_limits<unsigned>::max();
C.NumRegs = std::numeric_limits<unsigned>::max();
C.AddRecCost = std::numeric_limits<unsigned>::max();
C.NumIVMuls = std::numeric_limits<unsigned>::max();
C.NumBaseAdds = std::numeric_limits<unsigned>::max();
C.ImmCost = std::numeric_limits<unsigned>::max();
C.SetupCost = std::numeric_limits<unsigned>::max();
C.ScaleCost = std::numeric_limits<unsigned>::max();
}
/// Choose the lower cost.
bool Cost::isLess(Cost &Other) {
if (InsnsCost.getNumOccurrences() > 0 && InsnsCost &&
C.Insns != Other.C.Insns)
return C.Insns < Other.C.Insns;
return TTI->isLSRCostLess(C, Other.C);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void Cost::print(raw_ostream &OS) const {
if (InsnsCost)
OS << C.Insns << " instruction" << (C.Insns == 1 ? " " : "s ");
OS << C.NumRegs << " reg" << (C.NumRegs == 1 ? "" : "s");
if (C.AddRecCost != 0)
OS << ", with addrec cost " << C.AddRecCost;
if (C.NumIVMuls != 0)
OS << ", plus " << C.NumIVMuls << " IV mul"
<< (C.NumIVMuls == 1 ? "" : "s");
if (C.NumBaseAdds != 0)
OS << ", plus " << C.NumBaseAdds << " base add"
<< (C.NumBaseAdds == 1 ? "" : "s");
if (C.ScaleCost != 0)
OS << ", plus " << C.ScaleCost << " scale cost";
if (C.ImmCost != 0)
OS << ", plus " << C.ImmCost << " imm cost";
if (C.SetupCost != 0)
OS << ", plus " << C.SetupCost << " setup cost";
}
LLVM_DUMP_METHOD void Cost::dump() const {
print(errs()); errs() << '\n';
}
#endif
/// Test whether this fixup always uses its value outside of the given loop.
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
// PHI nodes use their value in their incoming blocks.
if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == OperandValToReplace &&
L->contains(PN->getIncomingBlock(i)))
return false;
return true;
}
return !L->contains(UserInst);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LSRFixup::print(raw_ostream &OS) const {
OS << "UserInst=";
// Store is common and interesting enough to be worth special-casing.
if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
OS << "store ";
Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
} else if (UserInst->getType()->isVoidTy())
OS << UserInst->getOpcodeName();
else
UserInst->printAsOperand(OS, /*PrintType=*/false);
OS << ", OperandValToReplace=";
OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
for (const Loop *PIL : PostIncLoops) {
OS << ", PostIncLoop=";
PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
}
if (Offset != 0)
OS << ", Offset=" << Offset;
}
LLVM_DUMP_METHOD void LSRFixup::dump() const {
print(errs()); errs() << '\n';
}
#endif
/// Test whether this use as a formula which has the same registers as the given
/// formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
llvm::sort(Key);
return Uniquifier.count(Key);
}
/// The function returns a probability of selecting formula without Reg.
float LSRUse::getNotSelectedProbability(const SCEV *Reg) const {
unsigned FNum = 0;
for (const Formula &F : Formulae)
if (F.referencesReg(Reg))
FNum++;
return ((float)(Formulae.size() - FNum)) / Formulae.size();
}
/// If the given formula has not yet been inserted, add it to the list, and
/// return true. Return false otherwise. The formula must be in canonical form.
bool LSRUse::InsertFormula(const Formula &F, const Loop &L) {
assert(F.isCanonical(L) && "Invalid canonical representation");
if (!Formulae.empty() && RigidFormula)
return false;
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
// Unstable sort by host order ok, because this is only used for uniquifying.
llvm::sort(Key);
if (!Uniquifier.insert(Key).second)
return false;
// Using a register to hold the value of 0 is not profitable.
assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
"Zero allocated in a scaled register!");
#ifndef NDEBUG
for (const SCEV *BaseReg : F.BaseRegs)
assert(!BaseReg->isZero() && "Zero allocated in a base register!");
#endif
// Add the formula to the list.
Formulae.push_back(F);
// Record registers now being used by this use.
Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
if (F.ScaledReg)
Regs.insert(F.ScaledReg);
return true;
}
/// Remove the given formula from this use's list.
void LSRUse::DeleteFormula(Formula &F) {
if (&F != &Formulae.back())
std::swap(F, Formulae.back());
Formulae.pop_back();
}
/// Recompute the Regs field, and update RegUses.
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
// Now that we've filtered out some formulae, recompute the Regs set.
SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
Regs.clear();
for (const Formula &F : Formulae) {
if (F.ScaledReg) Regs.insert(F.ScaledReg);
Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
}
// Update the RegTracker.
for (const SCEV *S : OldRegs)
if (!Regs.count(S))
RegUses.dropRegister(S, LUIdx);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void LSRUse::print(raw_ostream &OS) const {
OS << "LSR Use: Kind=";
switch (Kind) {
case Basic: OS << "Basic"; break;
case Special: OS << "Special"; break;
case ICmpZero: OS << "ICmpZero"; break;
case Address:
OS << "Address of ";
if (AccessTy.MemTy->isPointerTy())
OS << "pointer"; // the full pointer type could be really verbose
else {
OS << *AccessTy.MemTy;
}
OS << " in addrspace(" << AccessTy.AddrSpace << ')';
}
OS << ", Offsets={";
bool NeedComma = false;
for (const LSRFixup &Fixup : Fixups) {
if (NeedComma) OS << ',';
OS << Fixup.Offset;
NeedComma = true;
}
OS << '}';
if (AllFixupsOutsideLoop)
OS << ", all-fixups-outside-loop";
if (WidestFixupType)
OS << ", widest fixup type: " << *WidestFixupType;
}
LLVM_DUMP_METHOD void LSRUse::dump() const {
print(errs()); errs() << '\n';
}
#endif
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale,
Instruction *Fixup/*= nullptr*/) {
switch (Kind) {
case LSRUse::Address:
return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
HasBaseReg, Scale, AccessTy.AddrSpace, Fixup);
case LSRUse::ICmpZero:
// There's not even a target hook for querying whether it would be legal to
// fold a GV into an ICmp.
if (BaseGV)
return false;
// ICmp only has two operands; don't allow more than two non-trivial parts.
if (Scale != 0 && HasBaseReg && BaseOffset != 0)
return false;
// ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
// putting the scaled register in the other operand of the icmp.
if (Scale != 0 && Scale != -1)
return false;
// If we have low-level target information, ask the target if it can fold an
// integer immediate on an icmp.
if (BaseOffset != 0) {
// We have one of:
// ICmpZero BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
// ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
// Offs is the ICmp immediate.
if (Scale == 0)
// The cast does the right thing with
// std::numeric_limits<int64_t>::min().
BaseOffset = -(uint64_t)BaseOffset;
return TTI.isLegalICmpImmediate(BaseOffset);
}
// ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
return true;
case LSRUse::Basic:
// Only handle single-register values.
return !BaseGV && Scale == 0 && BaseOffset == 0;
case LSRUse::Special:
// Special case Basic to handle -1 scales.
return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
int64_t MinOffset, int64_t MaxOffset,
LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg, int64_t Scale) {
// Check for overflow.
if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
(MinOffset > 0))
return false;
MinOffset = (uint64_t)BaseOffset + MinOffset;
if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
(MaxOffset > 0))
return false;
MaxOffset = (uint64_t)BaseOffset + MaxOffset;
return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
HasBaseReg, Scale) &&
isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
HasBaseReg, Scale);
}
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
int64_t MinOffset, int64_t MaxOffset,
LSRUse::KindType Kind, MemAccessTy AccessTy,
const Formula &F, const Loop &L) {
// For the purpose of isAMCompletelyFolded either having a canonical formula
// or a scale not equal to zero is correct.
// Problems may arise from non canonical formulae having a scale == 0.
// Strictly speaking it would best to just rely on canonical formulae.
// However, when we generate the scaled formulae, we first check that the
// scaling factor is profitable before computing the actual ScaledReg for
// compile time sake.
assert((F.isCanonical(L) || F.Scale != 0));
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
}
/// Test whether we know how to expand the current formula.
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
int64_t MaxOffset, LSRUse::KindType Kind,
MemAccessTy AccessTy, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
// We know how to expand completely foldable formulae.
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
BaseOffset, HasBaseReg, Scale) ||
// Or formulae that use a base register produced by a sum of base
// registers.
(Scale == 1 &&
isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
BaseGV, BaseOffset, true, 0));
}
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
int64_t MaxOffset, LSRUse::KindType Kind,
MemAccessTy AccessTy, const Formula &F) {
return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
F.BaseOffset, F.HasBaseReg, F.Scale);
}
static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
const LSRUse &LU, const Formula &F) {
// Target may want to look at the user instructions.
if (LU.Kind == LSRUse::Address && TTI.LSRWithInstrQueries()) {
for (const LSRFixup &Fixup : LU.Fixups)
if (!isAMCompletelyFolded(TTI, LSRUse::Address, LU.AccessTy, F.BaseGV,
(F.BaseOffset + Fixup.Offset), F.HasBaseReg,
F.Scale, Fixup.UserInst))
return false;
return true;
}
return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
F.Scale);
}
static InstructionCost getScalingFactorCost(const TargetTransformInfo &TTI,
const LSRUse &LU, const Formula &F,
const Loop &L) {
if (!F.Scale)
return 0;
// If the use is not completely folded in that instruction, we will have to
// pay an extra cost only for scale != 1.
if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
LU.AccessTy, F, L))
return F.Scale != 1;
switch (LU.Kind) {
case LSRUse::Address: {
// Check the scaling factor cost with both the min and max offsets.
InstructionCost ScaleCostMinOffset = TTI.getScalingFactorCost(
LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
F.Scale, LU.AccessTy.AddrSpace);
InstructionCost ScaleCostMaxOffset = TTI.getScalingFactorCost(
LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
F.Scale, LU.AccessTy.AddrSpace);
assert(ScaleCostMinOffset.isValid() && ScaleCostMaxOffset.isValid() &&
"Legal addressing mode has an illegal cost!");
return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
}
case LSRUse::ICmpZero:
case LSRUse::Basic:
case LSRUse::Special:
// The use is completely folded, i.e., everything is folded into the
// instruction.
return 0;
}
llvm_unreachable("Invalid LSRUse Kind!");
}
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
LSRUse::KindType Kind, MemAccessTy AccessTy,
GlobalValue *BaseGV, int64_t BaseOffset,
bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
// Canonicalize a scale of 1 to a base register if the formula doesn't
// already have a base register.
if (!HasBaseReg && Scale == 1) {
Scale = 0;
HasBaseReg = true;
}
return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
HasBaseReg, Scale);
}
static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
ScalarEvolution &SE, int64_t MinOffset,
int64_t MaxOffset, LSRUse::KindType Kind,
MemAccessTy AccessTy, const SCEV *S,
bool HasBaseReg) {
// Fast-path: zero is always foldable.
if (S->isZero()) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
int64_t BaseOffset = ExtractImmediate(S, SE);
GlobalValue *BaseGV = ExtractSymbol(S, SE);
// If there's anything else involved, it's not foldable.
if (!S->isZero()) return false;
// Fast-path: zero is always foldable.
if (BaseOffset == 0 && !BaseGV) return true;
// Conservatively, create an address with an immediate and a
// base and a scale.
int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
BaseOffset, HasBaseReg, Scale);
}
namespace {
/// An individual increment in a Chain of IV increments. Relate an IV user to
/// an expression that computes the IV it uses from the IV used by the previous
/// link in the Chain.
///
/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
/// original IVOperand. The head of the chain's IVOperand is only valid during
/// chain collection, before LSR replaces IV users. During chain generation,
/// IncExpr can be used to find the new IVOperand that computes the same
/// expression.
struct IVInc {
Instruction *UserInst;
Value* IVOperand;
const SCEV *IncExpr;
IVInc(Instruction *U, Value *O, const SCEV *E)
: UserInst(U), IVOperand(O), IncExpr(E) {}
};
// The list of IV increments in program order. We typically add the head of a
// chain without finding subsequent links.
struct IVChain {
SmallVector<IVInc, 1> Incs;
const SCEV *ExprBase = nullptr;
IVChain() = default;
IVChain(const IVInc &Head, const SCEV *Base)
: Incs(1, Head), ExprBase(Base) {}
using const_iterator = SmallVectorImpl<IVInc>::const_iterator;
// Return the first increment in the chain.
const_iterator begin() const {
assert(!Incs.empty());
return std::next(Incs.begin());
}
const_iterator end() const {
return Incs.end();
}
// Returns true if this chain contains any increments.
bool hasIncs() const { return Incs.size() >= 2; }
// Add an IVInc to the end of this chain.
void add(const IVInc &X) { Incs.push_back(X); }
// Returns the last UserInst in the chain.
Instruction *tailUserInst() const { return Incs.back().UserInst; }
// Returns true if IncExpr can be profitably added to this chain.
bool isProfitableIncrement(const SCEV *OperExpr,
const SCEV *IncExpr,
ScalarEvolution&);
};
/// Helper for CollectChains to track multiple IV increment uses. Distinguish
/// between FarUsers that definitely cross IV increments and NearUsers that may
/// be used between IV increments.
struct ChainUsers {
SmallPtrSet<Instruction*, 4> FarUsers;
SmallPtrSet<Instruction*, 4> NearUsers;
};
/// This class holds state for the main loop strength reduction logic.
class LSRInstance {
IVUsers &IU;
ScalarEvolution &SE;
DominatorTree &DT;
LoopInfo &LI;
AssumptionCache &AC;
TargetLibraryInfo &TLI;
const TargetTransformInfo &TTI;
Loop *const L;
MemorySSAUpdater *MSSAU;
TTI::AddressingModeKind AMK;
bool Changed = false;
/// This is the insert position that the current loop's induction variable
/// increment should be placed. In simple loops, this is the latch block's
/// terminator. But in more complicated cases, this is a position which will
/// dominate all the in-loop post-increment users.
Instruction *IVIncInsertPos = nullptr;
/// Interesting factors between use strides.
///
/// We explicitly use a SetVector which contains a SmallSet, instead of the
/// default, a SmallDenseSet, because we need to use the full range of
/// int64_ts, and there's currently no good way of doing that with
/// SmallDenseSet.
SetVector<int64_t, SmallVector<int64_t, 8>, SmallSet<int64_t, 8>> Factors;
/// Interesting use types, to facilitate truncation reuse.
SmallSetVector<Type *, 4> Types;
/// The list of interesting uses.
mutable SmallVector<LSRUse, 16> Uses;
/// Track which uses use which register candidates.
RegUseTracker RegUses;
// Limit the number of chains to avoid quadratic behavior. We don't expect to
// have more than a few IV increment chains in a loop. Missing a Chain falls
// back to normal LSR behavior for those uses.
static const unsigned MaxChains = 8;
/// IV users can form a chain of IV increments.
SmallVector<IVChain, MaxChains> IVChainVec;
/// IV users that belong to profitable IVChains.
SmallPtrSet<Use*, MaxChains> IVIncSet;
/// Induction variables that were generated and inserted by the SCEV Expander.
SmallVector<llvm::WeakVH, 2> ScalarEvolutionIVs;
void OptimizeShadowIV();
bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
void OptimizeLoopTermCond();
void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
SmallVectorImpl<ChainUsers> &ChainUsersVec);
void FinalizeChain(IVChain &Chain);
void CollectChains();
void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
SmallVectorImpl<WeakTrackingVH> &DeadInsts);
void CollectInterestingTypesAndFactors();
void CollectFixupsAndInitialFormulae();
// Support for sharing of LSRUses between LSRFixups.
using UseMapTy = DenseMap<LSRUse::SCEVUseKindPair, size_t>;
UseMapTy UseMap;
bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
LSRUse::KindType Kind, MemAccessTy AccessTy);
std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
MemAccessTy AccessTy);
void DeleteUse(LSRUse &LU, size_t LUIdx);
LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
void CountRegisters(const Formula &F, size_t LUIdx);
bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
void CollectLoopInvariantFixupsAndFormulae();
void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
unsigned Depth = 0);
void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
const Formula &Base, unsigned Depth,
size_t Idx, bool IsScaledReg = false);
void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
const Formula &Base, size_t Idx,
bool IsScaledReg = false);
void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
const Formula &Base,
const SmallVectorImpl<int64_t> &Worklist,
size_t Idx, bool IsScaledReg = false);
void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
void GenerateCrossUseConstantOffsets();
void GenerateAllReuseFormulae();
void FilterOutUndesirableDedicatedRegisters();
size_t EstimateSearchSpaceComplexity() const;
void NarrowSearchSpaceByDetectingSupersets();
void NarrowSearchSpaceByCollapsingUnrolledCode();
void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
void NarrowSearchSpaceByFilterFormulaWithSameScaledReg();
void NarrowSearchSpaceByFilterPostInc();
void NarrowSearchSpaceByDeletingCostlyFormulas();
void NarrowSearchSpaceByPickingWinnerRegs();
void NarrowSearchSpaceUsingHeuristics();
void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
Cost &SolutionCost,
SmallVectorImpl<const Formula *> &Workspace,
const Cost &CurCost,
const SmallPtrSet<const SCEV *, 16> &CurRegs,
DenseSet<const SCEV *> &VisitedRegs) const;
void Solve(SmallVectorImpl<const Formula *> &Solution) const;
BasicBlock::iterator
HoistInsertPosition(BasicBlock::iterator IP,
const SmallVectorImpl<Instruction *> &Inputs) const;
BasicBlock::iterator
AdjustInsertPositionForExpand(BasicBlock::iterator IP,
const LSRFixup &LF,
const LSRUse &LU,
SCEVExpander &Rewriter) const;
Value *Expand(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
BasicBlock::iterator IP, SCEVExpander &Rewriter,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
void RewriteForPHI(PHINode *PN, const LSRUse &LU, const LSRFixup &LF,
const Formula &F, SCEVExpander &Rewriter,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
void Rewrite(const LSRUse &LU, const LSRFixup &LF, const Formula &F,
SCEVExpander &Rewriter,
SmallVectorImpl<WeakTrackingVH> &DeadInsts) const;
void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
public:
LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
LoopInfo &LI, const TargetTransformInfo &TTI, AssumptionCache &AC,
TargetLibraryInfo &TLI, MemorySSAUpdater *MSSAU);
bool getChanged() const { return Changed; }
const SmallVectorImpl<WeakVH> &getScalarEvolutionIVs() const {
return ScalarEvolutionIVs;
}
void print_factors_and_types(raw_ostream &OS) const;
void print_fixups(raw_ostream &OS) const;
void print_uses(raw_ostream &OS) const;
void print(raw_ostream &OS) const;
void dump() const;
};
} // end anonymous namespace
/// If IV is used in a int-to-float cast inside the loop then try to eliminate
/// the cast operation.
void LSRInstance::OptimizeShadowIV() {
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return;
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
UI != E; /* empty */) {
IVUsers::const_iterator CandidateUI = UI;
++UI;
Instruction *ShadowUse = CandidateUI->getUser();
Type *DestTy = nullptr;
bool IsSigned = false;
/* If shadow use is a int->float cast then insert a second IV
to eliminate this cast.
for (unsigned i = 0; i < n; ++i)
foo((double)i);
is transformed into
double d = 0.0;
for (unsigned i = 0; i < n; ++i, ++d)
foo(d);
*/
if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
IsSigned = false;
DestTy = UCast->getDestTy();
}
else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
IsSigned = true;
DestTy = SCast->getDestTy();
}
if (!DestTy) continue;
// If target does not support DestTy natively then do not apply
// this transformation.
if (!TTI.isTypeLegal(DestTy)) continue;
PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
if (!PH) continue;
if (PH->getNumIncomingValues() != 2) continue;
// If the calculation in integers overflows, the result in FP type will
// differ. So we only can do this transformation if we are guaranteed to not
// deal with overflowing values
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(PH));
if (!AR) continue;
if (IsSigned && !AR->hasNoSignedWrap()) continue;
if (!IsSigned && !AR->hasNoUnsignedWrap()) continue;
Type *SrcTy = PH->getType();
int Mantissa = DestTy->getFPMantissaWidth();
if (Mantissa == -1) continue;
if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
continue;
unsigned Entry, Latch;
if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
Entry = 0;
Latch = 1;
} else {
Entry = 1;
Latch = 0;
}
ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
if (!Init) continue;
Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
(double)Init->getSExtValue() :
(double)Init->getZExtValue());
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
if (!Incr) continue;
if (Incr->getOpcode() != Instruction::Add
&& Incr->getOpcode() != Instruction::Sub)
continue;
/* Initialize new IV, double d = 0.0 in above example. */
ConstantInt *C = nullptr;
if (Incr->getOperand(0) == PH)
C = dyn_cast<ConstantInt>(Incr->getOperand(1));
else if (Incr->getOperand(1) == PH)
C = dyn_cast<ConstantInt>(Incr->getOperand(0));
else
continue;
if (!C) continue;
// Ignore negative constants, as the code below doesn't handle them
// correctly. TODO: Remove this restriction.
if (!C->getValue().isStrictlyPositive()) continue;
/* Add new PHINode. */
PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
/* create new increment. '++d' in above example. */
Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
BinaryOperator *NewIncr =
BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
Instruction::FAdd : Instruction::FSub,
NewPH, CFP, "IV.S.next.", Incr);
NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
/* Remove cast operation */
ShadowUse->replaceAllUsesWith(NewPH);
ShadowUse->eraseFromParent();
Changed = true;
break;
}
}
/// If Cond has an operand that is an expression of an IV, set the IV user and
/// stride information and return true, otherwise return false.
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
for (IVStrideUse &U : IU)
if (U.getUser() == Cond) {
// NOTE: we could handle setcc instructions with multiple uses here, but
// InstCombine does it as well for simple uses, it's not clear that it
// occurs enough in real life to handle.
CondUse = &U;
return true;
}
return false;
}
/// Rewrite the loop's terminating condition if it uses a max computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
///
/// i = 0;
/// do {
/// p[i] = 0.0;
/// } while (++i < n);
///
/// the trip count isn't just 'n', because 'n' might not be positive. And
/// unfortunately this can come up even for loops where the user didn't use
/// a C do-while loop. For example, seemingly well-behaved top-test loops
/// will commonly be lowered like this:
///
/// if (n > 0) {
/// i = 0;
/// do {
/// p[i] = 0.0;
/// } while (++i < n);
/// }
///
/// and then it's possible for subsequent optimization to obscure the if
/// test in such a way that indvars can't find it.
///
/// When indvars can't find the if test in loops like this, it creates a
/// max expression, which allows it to give the loop a canonical
/// induction variable:
///
/// i = 0;
/// max = n < 1 ? 1 : n;
/// do {
/// p[i] = 0.0;
/// } while (++i != max);
///
/// Canonical induction variables are necessary because the loop passes
/// are designed around them. The most obvious example of this is the
/// LoopInfo analysis, which doesn't remember trip count values. It
/// expects to be able to rediscover the trip count each time it is
/// needed, and it does this using a simple analysis that only succeeds if
/// the loop has a canonical induction variable.
///
/// However, when it comes time to generate code, the maximum operation
/// can be quite costly, especially if it's inside of an outer loop.
///
/// This function solves this problem by detecting this type of loop and
/// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
/// the instructions for the maximum computation.
ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
// Check that the loop matches the pattern we're looking for.
if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
Cond->getPredicate() != CmpInst::ICMP_NE)
return Cond;
SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
if (!Sel || !Sel->hasOneUse()) return Cond;
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
return Cond;
const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
// Add one to the backedge-taken count to get the trip count.
const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
if (IterationCount != SE.getSCEV(Sel)) return Cond;
// Check for a max calculation that matches the pattern. There's no check
// for ICMP_ULE here because the comparison would be with zero, which
// isn't interesting.
CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
const SCEVNAryExpr *Max = nullptr;
if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
Pred = ICmpInst::ICMP_SLE;
Max = S;
} else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
Pred = ICmpInst::ICMP_SLT;
Max = S;
} else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
Pred = ICmpInst::ICMP_ULT;
Max = U;
} else {
// No match; bail.
return Cond;
}
// To handle a max with more than two operands, this optimization would
// require additional checking and setup.
if (Max->getNumOperands() != 2)
return Cond;
const SCEV *MaxLHS = Max->getOperand(0);
const SCEV *MaxRHS = Max->getOperand(1);
// ScalarEvolution canonicalizes constants to the left. For < and >, look
// for a comparison with 1. For <= and >=, a comparison with zero.
if (!MaxLHS ||
(ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
return Cond;
// Check the relevant induction variable for conformance to
// the pattern.
const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
if (!AR || !AR->isAffine() ||
AR->getStart() != One ||
AR->getStepRecurrence(SE) != One)
return Cond;
assert(AR->getLoop() == L &&
"Loop condition operand is an addrec in a different loop!");
// Check the right operand of the select, and remember it, as it will
// be used in the new comparison instruction.
Value *NewRHS = nullptr;
if (ICmpInst::isTrueWhenEqual(Pred)) {
// Look for n+1, and grab n.
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
NewRHS = BO->getOperand(0);
if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
NewRHS = BO->getOperand(0);
if (!NewRHS)
return Cond;
} else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
NewRHS = Sel->getOperand(1);
else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
NewRHS = Sel->getOperand(2);
else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
NewRHS = SU->getValue();
else
// Max doesn't match expected pattern.
return Cond;
// Determine the new comparison opcode. It may be signed or unsigned,
// and the original comparison may be either equality or inequality.
if (Cond->getPredicate() == CmpInst::ICMP_EQ)
Pred = CmpInst::getInversePredicate(Pred);
// Ok, everything looks ok to change the condition into an SLT or SGE and
// delete the max calculation.
ICmpInst *NewCond =
new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
// Delete the max calculation instructions.
NewCond->setDebugLoc(Cond->getDebugLoc());
Cond->replaceAllUsesWith(NewCond);
CondUse->setUser(NewCond);
Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
Cond->eraseFromParent();
Sel->eraseFromParent();
if (Cmp->use_empty())
Cmp->eraseFromParent();
return NewCond;
}
/// Change loop terminating condition to use the postinc iv when possible.
void
LSRInstance::OptimizeLoopTermCond() {
SmallPtrSet<Instruction *, 4> PostIncs;
// We need a different set of heuristics for rotated and non-rotated loops.
// If a loop is rotated then the latch is also the backedge, so inserting
// post-inc expressions just before the latch is ideal. To reduce live ranges
// it also makes sense to rewrite terminating conditions to use post-inc
// expressions.
//
// If the loop is not rotated then the latch is not a backedge; the latch
// check is done in the loop head. Adding post-inc expressions before the
// latch will cause overlapping live-ranges of pre-inc and post-inc expressions
// in the loop body. In this case we do *not* want to use post-inc expressions
// in the latch check, and we want to insert post-inc expressions before
// the backedge.
BasicBlock *LatchBlock = L->getLoopLatch();
SmallVector<BasicBlock*, 8> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
if (llvm::all_of(ExitingBlocks, [&LatchBlock](const BasicBlock *BB) {
return LatchBlock != BB;
})) {
// The backedge doesn't exit the loop; treat this as a head-tested loop.
IVIncInsertPos = LatchBlock->getTerminator();
return;
}
// Otherwise treat this as a rotated loop.
for (BasicBlock *ExitingBlock : ExitingBlocks) {
// Get the terminating condition for the loop if possible. If we
// can, we want to change it to use a post-incremented version of its
// induction variable, to allow coalescing the live ranges for the IV into
// one register value.
BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (!TermBr)
continue;
// FIXME: Overly conservative, termination condition could be an 'or' etc..
if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
continue;
// Search IVUsesByStride to find Cond's IVUse if there is one.
IVStrideUse *CondUse = nullptr;
ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
if (!FindIVUserForCond(Cond, CondUse))
continue;
// If the trip count is computed in terms of a max (due to ScalarEvolution
// being unable to find a sufficient guard, for example), change the loop
// comparison to use SLT or ULT instead of NE.
// One consequence of doing this now is that it disrupts the count-down
// optimization. That's not always a bad thing though, because in such
// cases it may still be worthwhile to avoid a max.
Cond = OptimizeMax(Cond, CondUse);
// If this exiting block dominates the latch block, it may also use
// the post-inc value if it won't be shared with other uses.
// Check for dominance.
if (!DT.dominates(ExitingBlock, LatchBlock))
continue;
// Conservatively avoid trying to use the post-inc value in non-latch
// exits if there may be pre-inc users in intervening blocks.
if (LatchBlock != ExitingBlock)
for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
// Test if the use is reachable from the exiting block. This dominator
// query is a conservative approximation of reachability.
if (&*UI != CondUse &&
!DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
// Conservatively assume there may be reuse if the quotient of their
// strides could be a legal scale.
const SCEV *A = IU.getStride(*CondUse, L);
const SCEV *B = IU.getStride(*UI, L);
if (!A || !B) continue;
if (SE.getTypeSizeInBits(A->getType()) !=
SE.getTypeSizeInBits(B->getType())) {
if (SE.getTypeSizeInBits(A->getType()) >
SE.getTypeSizeInBits(B->getType()))
B = SE.getSignExtendExpr(B, A->getType());
else
A = SE.getSignExtendExpr(A, B->getType());
}
if (const SCEVConstant *D =
dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
const ConstantInt *C = D->getValue();
// Stride of one or negative one can have reuse with non-addresses.
if (C->isOne() || C->isMinusOne())
goto decline_post_inc;
// Avoid weird situations.
if (C->getValue().getMinSignedBits() >= 64 ||
C->getValue().isMinSignedValue())
goto decline_post_inc;
// Check for possible scaled-address reuse.
if (isAddressUse(TTI, UI->getUser(), UI->getOperandValToReplace())) {
MemAccessTy AccessTy = getAccessType(
TTI, UI->getUser(), UI->getOperandValToReplace());
int64_t Scale = C->getSExtValue();
if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
/*BaseOffset=*/0,
/*HasBaseReg=*/false, Scale,
AccessTy.AddrSpace))
goto decline_post_inc;
Scale = -Scale;
if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
/*BaseOffset=*/0,
/*HasBaseReg=*/false, Scale,
AccessTy.AddrSpace))
goto decline_post_inc;
}
}
}
LLVM_DEBUG(dbgs() << " Change loop exiting icmp to use postinc iv: "
<< *Cond << '\n');
// It's possible for the setcc instruction to be anywhere in the loop, and
// possible for it to have multiple users. If it is not immediately before
// the exiting block branch, move it.
if (Cond->getNextNonDebugInstruction() != TermBr) {
if (Cond->hasOneUse()) {
Cond->moveBefore(TermBr);
} else {
// Clone the terminating condition and insert into the loopend.
ICmpInst *OldCond = Cond;
Cond = cast<ICmpInst>(Cond->clone());
Cond->setName(L->getHeader()->getName() + ".termcond");
ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
// Clone the IVUse, as the old use still exists!
CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
TermBr->replaceUsesOfWith(OldCond, Cond);
}
}
// If we get to here, we know that we can transform the setcc instruction to
// use the post-incremented version of the IV, allowing us to coalesce the
// live ranges for the IV correctly.
CondUse->transformToPostInc(L);
Changed = true;
PostIncs.insert(Cond);
decline_post_inc:;
}
// Determine an insertion point for the loop induction variable increment. It
// must dominate all the post-inc comparisons we just set up, and it must
// dominate the loop latch edge.
IVIncInsertPos = L->getLoopLatch()->getTerminator();
for (Instruction *Inst : PostIncs) {
BasicBlock *BB =
DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
Inst->getParent());
if (BB == Inst->getParent())
IVIncInsertPos = Inst;
else if (BB != IVIncInsertPos->getParent())
IVIncInsertPos = BB->getTerminator();
}
}
/// Determine if the given use can accommodate a fixup at the given offset and
/// other details. If so, update the use and return true.
bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
bool HasBaseReg, LSRUse::KindType Kind,
MemAccessTy AccessTy) {
int64_t NewMinOffset = LU.MinOffset;
int64_t NewMaxOffset = LU.MaxOffset;
MemAccessTy NewAccessTy = AccessTy;
// Check for a mismatched kind. It's tempting to collapse mismatched kinds to
// something conservative, however this can pessimize in the case that one of
// the uses will have all its uses outside the loop, for example.
if (LU.Kind != Kind)
return false;
// Check for a mismatched access type, and fall back conservatively as needed.
// TODO: Be less conservative when the type is similar and can use the same
// addressing modes.
if (Kind == LSRUse::Address) {
if (AccessTy.MemTy != LU.AccessTy.MemTy) {
NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext(),
AccessTy.AddrSpace);
}
}
// Conservatively assume HasBaseReg is true for now.
if (NewOffset < LU.MinOffset) {
if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
LU.MaxOffset - NewOffset, HasBaseReg))
return false;
NewMinOffset = NewOffset;
} else if (NewOffset > LU.MaxOffset) {
if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
NewOffset - LU.MinOffset, HasBaseReg))
return false;
NewMaxOffset = NewOffset;
}
// Update the use.
LU.MinOffset = NewMinOffset;
LU.MaxOffset = NewMaxOffset;
LU.AccessTy = NewAccessTy;
return true;
}
/// Return an LSRUse index and an offset value for a fixup which needs the given
/// expression, with the given kind and optional access type. Either reuse an
/// existing use or create a new one, as needed.
std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
LSRUse::KindType Kind,
MemAccessTy AccessTy) {
const SCEV *Copy = Expr;
int64_t Offset = ExtractImmediate(Expr, SE);
// Basic uses can't accept any offset, for example.
if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
Offset, /*HasBaseReg=*/ true)) {
Expr = Copy;
Offset = 0;
}
std::pair<UseMapTy::iterator, bool> P =
UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
if (!P.second) {
// A use already existed with this base.
size_t LUIdx = P.first->second;
LSRUse &LU = Uses[LUIdx];
if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
// Reuse this use.
return std::make_pair(LUIdx, Offset);
}
// Create a new use.
size_t LUIdx = Uses.size();
P.first->second = LUIdx;
Uses.push_back(LSRUse(Kind, AccessTy));
LSRUse &LU = Uses[LUIdx];
LU.MinOffset = Offset;
LU.MaxOffset = Offset;
return std::make_pair(LUIdx, Offset);
}
/// Delete the given use from the Uses list.
void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
if (&LU != &Uses.back())
std::swap(LU, Uses.back());
Uses.pop_back();
// Update RegUses.
RegUses.swapAndDropUse(LUIdx, Uses.size());
}
/// Look for a use distinct from OrigLU which is has a formula that has the same
/// registers as the given formula.
LSRUse *
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
const LSRUse &OrigLU) {
// Search all uses for the formula. This could be more clever.
for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
LSRUse &LU = Uses[LUIdx];
// Check whether this use is close enough to OrigLU, to see whether it's