blob: e35bcec8fe750f950474973eda1aae16214ad19d [file] [log] [blame]
//===- lib/MC/MCPseudoProbe.cpp - Pseudo probe encoding support ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCPseudoProbe.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/raw_ostream.h"
#include <limits>
#include <memory>
#include <sstream>
#define DEBUG_TYPE "mcpseudoprobe"
using namespace llvm;
using namespace support;
#ifndef NDEBUG
int MCPseudoProbeTable::DdgPrintIndent = 0;
#endif
static const MCExpr *buildSymbolDiff(MCObjectStreamer *MCOS, const MCSymbol *A,
const MCSymbol *B) {
MCContext &Context = MCOS->getContext();
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
const MCExpr *ARef = MCSymbolRefExpr::create(A, Variant, Context);
const MCExpr *BRef = MCSymbolRefExpr::create(B, Variant, Context);
const MCExpr *AddrDelta =
MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context);
return AddrDelta;
}
void MCPseudoProbe::emit(MCObjectStreamer *MCOS,
const MCPseudoProbe *LastProbe) const {
// Emit Index
MCOS->emitULEB128IntValue(Index);
// Emit Type and the flag:
// Type (bit 0 to 3), with bit 4 to 6 for attributes.
// Flag (bit 7, 0 - code address, 1 - address delta). This indicates whether
// the following field is a symbolic code address or an address delta.
assert(Type <= 0xF && "Probe type too big to encode, exceeding 15");
assert(Attributes <= 0x7 &&
"Probe attributes too big to encode, exceeding 7");
uint8_t PackedType = Type | (Attributes << 4);
uint8_t Flag = LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
MCOS->emitInt8(Flag | PackedType);
if (LastProbe) {
// Emit the delta between the address label and LastProbe.
const MCExpr *AddrDelta =
buildSymbolDiff(MCOS, Label, LastProbe->getLabel());
int64_t Delta;
if (AddrDelta->evaluateAsAbsolute(Delta, MCOS->getAssemblerPtr())) {
MCOS->emitSLEB128IntValue(Delta);
} else {
MCOS->insert(new MCPseudoProbeAddrFragment(AddrDelta));
}
} else {
// Emit label as a symbolic code address.
MCOS->emitSymbolValue(
Label, MCOS->getContext().getAsmInfo()->getCodePointerSize());
}
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "Probe: " << Index << "\n";
});
}
void MCPseudoProbeInlineTree::addPseudoProbe(
const MCPseudoProbe &Probe, const MCPseudoProbeInlineStack &InlineStack) {
// The function should not be called on the root.
assert(isRoot() && "Should not be called on root");
// When it comes here, the input look like:
// Probe: GUID of C, ...
// InlineStack: [88, A], [66, B]
// which means, Function A inlines function B at call site with a probe id of
// 88, and B inlines C at probe 66. The tri-tree expects a tree path like {[0,
// A], [88, B], [66, C]} to locate the tree node where the probe should be
// added. Note that the edge [0, A] means A is the top-level function we are
// emitting probes for.
// Make a [0, A] edge.
// An empty inline stack means the function that the probe originates from
// is a top-level function.
InlineSite Top;
if (InlineStack.empty()) {
Top = InlineSite(Probe.getGuid(), 0);
} else {
Top = InlineSite(std::get<0>(InlineStack.front()), 0);
}
auto *Cur = getOrAddNode(Top);
// Make interior edges by walking the inline stack. Once it's done, Cur should
// point to the node that the probe originates from.
if (!InlineStack.empty()) {
auto Iter = InlineStack.begin();
auto Index = std::get<1>(*Iter);
Iter++;
for (; Iter != InlineStack.end(); Iter++) {
// Make an edge by using the previous probe id and current GUID.
Cur = Cur->getOrAddNode(InlineSite(std::get<0>(*Iter), Index));
Index = std::get<1>(*Iter);
}
Cur = Cur->getOrAddNode(InlineSite(Probe.getGuid(), Index));
}
Cur->Probes.push_back(Probe);
}
void MCPseudoProbeInlineTree::emit(MCObjectStreamer *MCOS,
const MCPseudoProbe *&LastProbe) {
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "Group [\n";
MCPseudoProbeTable::DdgPrintIndent += 2;
});
// Emit probes grouped by GUID.
if (Guid != 0) {
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "GUID: " << Guid << "\n";
});
// Emit Guid
MCOS->emitInt64(Guid);
// Emit number of probes in this node
MCOS->emitULEB128IntValue(Probes.size());
// Emit number of direct inlinees
MCOS->emitULEB128IntValue(Children.size());
// Emit probes in this group
for (const auto &Probe : Probes) {
Probe.emit(MCOS, LastProbe);
LastProbe = &Probe;
}
} else {
assert(Probes.empty() && "Root should not have probes");
}
// Emit sorted descendant
// InlineSite is unique for each pair,
// so there will be no ordering of Inlinee based on MCPseudoProbeInlineTree*
std::map<InlineSite, MCPseudoProbeInlineTree *> Inlinees;
for (auto Child = Children.begin(); Child != Children.end(); ++Child)
Inlinees[Child->first] = Child->second.get();
for (const auto &Inlinee : Inlinees) {
if (Guid) {
// Emit probe index
MCOS->emitULEB128IntValue(std::get<1>(Inlinee.first));
LLVM_DEBUG({
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
});
}
// Emit the group
Inlinee.second->emit(MCOS, LastProbe);
}
LLVM_DEBUG({
MCPseudoProbeTable::DdgPrintIndent -= 2;
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
dbgs() << "]\n";
});
}
void MCPseudoProbeSection::emit(MCObjectStreamer *MCOS) {
MCContext &Ctx = MCOS->getContext();
for (auto &ProbeSec : MCProbeDivisions) {
const MCPseudoProbe *LastProbe = nullptr;
if (auto *S =
Ctx.getObjectFileInfo()->getPseudoProbeSection(ProbeSec.first)) {
// Switch to the .pseudoprobe section or a comdat group.
MCOS->SwitchSection(S);
// Emit probes grouped by GUID.
ProbeSec.second.emit(MCOS, LastProbe);
}
}
}
//
// This emits the pseudo probe tables.
//
void MCPseudoProbeTable::emit(MCObjectStreamer *MCOS) {
MCContext &Ctx = MCOS->getContext();
auto &ProbeTable = Ctx.getMCPseudoProbeTable();
// Bail out early so we don't switch to the pseudo_probe section needlessly
// and in doing so create an unnecessary (if empty) section.
auto &ProbeSections = ProbeTable.getProbeSections();
if (ProbeSections.empty())
return;
LLVM_DEBUG(MCPseudoProbeTable::DdgPrintIndent = 0);
// Put out the probe.
ProbeSections.emit(MCOS);
}
static StringRef getProbeFNameForGUID(const GUIDProbeFunctionMap &GUID2FuncMAP,
uint64_t GUID) {
auto It = GUID2FuncMAP.find(GUID);
assert(It != GUID2FuncMAP.end() &&
"Probe function must exist for a valid GUID");
return It->second.FuncName;
}
void MCPseudoProbeFuncDesc::print(raw_ostream &OS) {
OS << "GUID: " << FuncGUID << " Name: " << FuncName << "\n";
OS << "Hash: " << FuncHash << "\n";
}
void MCDecodedPseudoProbe::getInlineContext(
SmallVectorImpl<MCPseduoProbeFrameLocation> &ContextStack,
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
uint32_t Begin = ContextStack.size();
MCDecodedPseudoProbeInlineTree *Cur = InlineTree;
// It will add the string of each node's inline site during iteration.
// Note that it won't include the probe's belonging function(leaf location)
while (Cur->hasInlineSite()) {
StringRef FuncName =
getProbeFNameForGUID(GUID2FuncMAP, std::get<0>(Cur->ISite));
ContextStack.emplace_back(
MCPseduoProbeFrameLocation(FuncName, std::get<1>(Cur->ISite)));
Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
}
// Make the ContextStack in caller-callee order
std::reverse(ContextStack.begin() + Begin, ContextStack.end());
}
std::string MCDecodedPseudoProbe::getInlineContextStr(
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
std::ostringstream OContextStr;
SmallVector<MCPseduoProbeFrameLocation, 16> ContextStack;
getInlineContext(ContextStack, GUID2FuncMAP);
for (auto &Cxt : ContextStack) {
if (OContextStr.str().size())
OContextStr << " @ ";
OContextStr << Cxt.first.str() << ":" << Cxt.second;
}
return OContextStr.str();
}
static const char *PseudoProbeTypeStr[3] = {"Block", "IndirectCall",
"DirectCall"};
void MCDecodedPseudoProbe::print(raw_ostream &OS,
const GUIDProbeFunctionMap &GUID2FuncMAP,
bool ShowName) const {
OS << "FUNC: ";
if (ShowName) {
StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Guid);
OS << FuncName.str() << " ";
} else {
OS << Guid << " ";
}
OS << "Index: " << Index << " ";
OS << "Type: " << PseudoProbeTypeStr[static_cast<uint8_t>(Type)] << " ";
std::string InlineContextStr = getInlineContextStr(GUID2FuncMAP);
if (InlineContextStr.size()) {
OS << "Inlined: @ ";
OS << InlineContextStr;
}
OS << "\n";
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnencodedNumber() {
if (Data + sizeof(T) > End) {
return std::error_code();
}
T Val = endian::readNext<T, little, unaligned>(Data);
return ErrorOr<T>(Val);
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnsignedNumber() {
unsigned NumBytesRead = 0;
uint64_t Val = decodeULEB128(Data, &NumBytesRead);
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
return std::error_code();
}
Data += NumBytesRead;
return ErrorOr<T>(static_cast<T>(Val));
}
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readSignedNumber() {
unsigned NumBytesRead = 0;
int64_t Val = decodeSLEB128(Data, &NumBytesRead);
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
return std::error_code();
}
Data += NumBytesRead;
return ErrorOr<T>(static_cast<T>(Val));
}
ErrorOr<StringRef> MCPseudoProbeDecoder::readString(uint32_t Size) {
StringRef Str(reinterpret_cast<const char *>(Data), Size);
if (Data + Size > End) {
return std::error_code();
}
Data += Size;
return ErrorOr<StringRef>(Str);
}
bool MCPseudoProbeDecoder::buildGUID2FuncDescMap(const uint8_t *Start,
std::size_t Size) {
// The pseudo_probe_desc section has a format like:
// .section .pseudo_probe_desc,"",@progbits
// .quad -5182264717993193164 // GUID
// .quad 4294967295 // Hash
// .uleb 3 // Name size
// .ascii "foo" // Name
// .quad -2624081020897602054
// .quad 174696971957
// .uleb 34
// .ascii "main"
Data = Start;
End = Data + Size;
while (Data < End) {
auto ErrorOrGUID = readUnencodedNumber<uint64_t>();
if (!ErrorOrGUID)
return false;
auto ErrorOrHash = readUnencodedNumber<uint64_t>();
if (!ErrorOrHash)
return false;
auto ErrorOrNameSize = readUnsignedNumber<uint32_t>();
if (!ErrorOrNameSize)
return false;
uint32_t NameSize = std::move(*ErrorOrNameSize);
auto ErrorOrName = readString(NameSize);
if (!ErrorOrName)
return false;
uint64_t GUID = std::move(*ErrorOrGUID);
uint64_t Hash = std::move(*ErrorOrHash);
StringRef Name = std::move(*ErrorOrName);
// Initialize PseudoProbeFuncDesc and populate it into GUID2FuncDescMap
GUID2FuncDescMap.emplace(GUID, MCPseudoProbeFuncDesc(GUID, Hash, Name));
}
assert(Data == End && "Have unprocessed data in pseudo_probe_desc section");
return true;
}
bool MCPseudoProbeDecoder::buildAddress2ProbeMap(const uint8_t *Start,
std::size_t Size) {
// The pseudo_probe section encodes an inline forest and each tree has a
// format like:
// FUNCTION BODY (one for each uninlined function present in the text
// section)
// GUID (uint64)
// GUID of the function
// NPROBES (ULEB128)
// Number of probes originating from this function.
// NUM_INLINED_FUNCTIONS (ULEB128)
// Number of callees inlined into this function, aka number of
// first-level inlinees
// PROBE RECORDS
// A list of NPROBES entries. Each entry contains:
// INDEX (ULEB128)
// TYPE (uint4)
// 0 - block probe, 1 - indirect call, 2 - direct call
// ATTRIBUTE (uint3)
// 1 - tail call, 2 - dangling
// ADDRESS_TYPE (uint1)
// 0 - code address, 1 - address delta
// CODE_ADDRESS (uint64 or ULEB128)
// code address or address delta, depending on Flag
// INLINED FUNCTION RECORDS
// A list of NUM_INLINED_FUNCTIONS entries describing each of the
// inlined callees. Each record contains:
// INLINE SITE
// Index of the callsite probe (ULEB128)
// FUNCTION BODY
// A FUNCTION BODY entry describing the inlined function.
Data = Start;
End = Data + Size;
MCDecodedPseudoProbeInlineTree *Root = &DummyInlineRoot;
MCDecodedPseudoProbeInlineTree *Cur = &DummyInlineRoot;
uint64_t LastAddr = 0;
uint32_t Index = 0;
// A DFS-based decoding
while (Data < End) {
if (Root == Cur) {
// Use a sequential id for top level inliner.
Index = Root->getChildren().size();
} else {
// Read inline site for inlinees
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
if (!ErrorOrIndex)
return false;
Index = std::move(*ErrorOrIndex);
}
// Switch/add to a new tree node(inlinee)
Cur = Cur->getOrAddNode(std::make_tuple(Cur->Guid, Index));
// Read guid
auto ErrorOrCurGuid = readUnencodedNumber<uint64_t>();
if (!ErrorOrCurGuid)
return false;
Cur->Guid = std::move(*ErrorOrCurGuid);
// Read number of probes in the current node.
auto ErrorOrNodeCount = readUnsignedNumber<uint32_t>();
if (!ErrorOrNodeCount)
return false;
uint32_t NodeCount = std::move(*ErrorOrNodeCount);
// Read number of direct inlinees
auto ErrorOrCurChildrenToProcess = readUnsignedNumber<uint32_t>();
if (!ErrorOrCurChildrenToProcess)
return false;
Cur->ChildrenToProcess = std::move(*ErrorOrCurChildrenToProcess);
// Read all probes in this node
for (std::size_t I = 0; I < NodeCount; I++) {
// Read index
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
if (!ErrorOrIndex)
return false;
uint32_t Index = std::move(*ErrorOrIndex);
// Read type | flag.
auto ErrorOrValue = readUnencodedNumber<uint8_t>();
if (!ErrorOrValue)
return false;
uint8_t Value = std::move(*ErrorOrValue);
uint8_t Kind = Value & 0xf;
uint8_t Attr = (Value & 0x70) >> 4;
// Read address
uint64_t Addr = 0;
if (Value & 0x80) {
auto ErrorOrOffset = readSignedNumber<int64_t>();
if (!ErrorOrOffset)
return false;
int64_t Offset = std::move(*ErrorOrOffset);
Addr = LastAddr + Offset;
} else {
auto ErrorOrAddr = readUnencodedNumber<int64_t>();
if (!ErrorOrAddr)
return false;
Addr = std::move(*ErrorOrAddr);
}
// Populate Address2ProbesMap
auto &Probes = Address2ProbesMap[Addr];
Probes.emplace_back(Addr, Cur->Guid, Index, PseudoProbeType(Kind), Attr,
Cur);
Cur->addProbes(&Probes.back());
LastAddr = Addr;
}
// Look for the parent for the next node by subtracting the current
// node count from tree counts along the parent chain. The first node
// in the chain that has a non-zero tree count is the target.
while (Cur != Root) {
if (Cur->ChildrenToProcess == 0) {
Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
if (Cur != Root) {
assert(Cur->ChildrenToProcess > 0 &&
"Should have some unprocessed nodes");
Cur->ChildrenToProcess -= 1;
}
} else {
break;
}
}
}
assert(Data == End && "Have unprocessed data in pseudo_probe section");
assert(Cur == Root &&
" Cur should point to root when the forest is fully built up");
return true;
}
void MCPseudoProbeDecoder::printGUID2FuncDescMap(raw_ostream &OS) {
OS << "Pseudo Probe Desc:\n";
// Make the output deterministic
std::map<uint64_t, MCPseudoProbeFuncDesc> OrderedMap(GUID2FuncDescMap.begin(),
GUID2FuncDescMap.end());
for (auto &I : OrderedMap) {
I.second.print(OS);
}
}
void MCPseudoProbeDecoder::printProbeForAddress(raw_ostream &OS,
uint64_t Address) {
auto It = Address2ProbesMap.find(Address);
if (It != Address2ProbesMap.end()) {
for (auto &Probe : It->second) {
OS << " [Probe]:\t";
Probe.print(OS, GUID2FuncDescMap, true);
}
}
}
void MCPseudoProbeDecoder::printProbesForAllAddresses(raw_ostream &OS) {
std::vector<uint64_t> Addresses;
for (auto Entry : Address2ProbesMap)
Addresses.push_back(Entry.first);
std::sort(Addresses.begin(), Addresses.end());
for (auto K : Addresses) {
OS << "Address:\t";
OS << K;
OS << "\n";
printProbeForAddress(OS, K);
}
}
const MCDecodedPseudoProbe *
MCPseudoProbeDecoder::getCallProbeForAddr(uint64_t Address) const {
auto It = Address2ProbesMap.find(Address);
if (It == Address2ProbesMap.end())
return nullptr;
const auto &Probes = It->second;
const MCDecodedPseudoProbe *CallProbe = nullptr;
for (const auto &Probe : Probes) {
if (Probe.isCall()) {
assert(!CallProbe &&
"There should be only one call probe corresponding to address "
"which is a callsite.");
CallProbe = &Probe;
}
}
return CallProbe;
}
const MCPseudoProbeFuncDesc *
MCPseudoProbeDecoder::getFuncDescForGUID(uint64_t GUID) const {
auto It = GUID2FuncDescMap.find(GUID);
assert(It != GUID2FuncDescMap.end() && "Function descriptor doesn't exist");
return &It->second;
}
void MCPseudoProbeDecoder::getInlineContextForProbe(
const MCDecodedPseudoProbe *Probe,
SmallVectorImpl<MCPseduoProbeFrameLocation> &InlineContextStack,
bool IncludeLeaf) const {
Probe->getInlineContext(InlineContextStack, GUID2FuncDescMap);
if (!IncludeLeaf)
return;
// Note that the context from probe doesn't include leaf frame,
// hence we need to retrieve and prepend leaf if requested.
const auto *FuncDesc = getFuncDescForGUID(Probe->getGuid());
InlineContextStack.emplace_back(
MCPseduoProbeFrameLocation(FuncDesc->FuncName, Probe->getIndex()));
}
const MCPseudoProbeFuncDesc *MCPseudoProbeDecoder::getInlinerDescForProbe(
const MCDecodedPseudoProbe *Probe) const {
MCDecodedPseudoProbeInlineTree *InlinerNode = Probe->getInlineTreeNode();
if (!InlinerNode->hasInlineSite())
return nullptr;
return getFuncDescForGUID(std::get<0>(InlinerNode->ISite));
}