| //===-- Operator.cpp - Implement the LLVM operators -----------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the non-inline methods for the LLVM Operator classes. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Type.h" |
| |
| #include "ConstantsContext.h" |
| |
| namespace llvm { |
| bool Operator::hasPoisonGeneratingFlags() const { |
| switch (getOpcode()) { |
| case Instruction::Add: |
| case Instruction::Sub: |
| case Instruction::Mul: |
| case Instruction::Shl: { |
| auto *OBO = cast<OverflowingBinaryOperator>(this); |
| return OBO->hasNoUnsignedWrap() || OBO->hasNoSignedWrap(); |
| } |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::AShr: |
| case Instruction::LShr: |
| return cast<PossiblyExactOperator>(this)->isExact(); |
| case Instruction::GetElementPtr: { |
| auto *GEP = cast<GEPOperator>(this); |
| // Note: inrange exists on constexpr only |
| return GEP->isInBounds() || GEP->getInRangeIndex() != None; |
| } |
| default: |
| return false; |
| } |
| // TODO: FastMathFlags! (On instructions, but not constexpr) |
| } |
| |
| Type *GEPOperator::getSourceElementType() const { |
| if (auto *I = dyn_cast<GetElementPtrInst>(this)) |
| return I->getSourceElementType(); |
| return cast<GetElementPtrConstantExpr>(this)->getSourceElementType(); |
| } |
| |
| Type *GEPOperator::getResultElementType() const { |
| if (auto *I = dyn_cast<GetElementPtrInst>(this)) |
| return I->getResultElementType(); |
| return cast<GetElementPtrConstantExpr>(this)->getResultElementType(); |
| } |
| |
| Align GEPOperator::getMaxPreservedAlignment(const DataLayout &DL) const { |
| /// compute the worse possible offset for every level of the GEP et accumulate |
| /// the minimum alignment into Result. |
| |
| Align Result = Align(llvm::Value::MaximumAlignment); |
| for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); |
| GTI != GTE; ++GTI) { |
| int64_t Offset = 1; |
| ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| |
| if (StructType *STy = GTI.getStructTypeOrNull()) { |
| const StructLayout *SL = DL.getStructLayout(STy); |
| Offset = SL->getElementOffset(OpC->getZExtValue()); |
| } else { |
| assert(GTI.isSequential() && "should be sequencial"); |
| /// If the index isn't know we take 1 because it is the index that will |
| /// give the worse alignment of the offset. |
| int64_t ElemCount = 1; |
| if (OpC) |
| ElemCount = OpC->getZExtValue(); |
| Offset = DL.getTypeAllocSize(GTI.getIndexedType()) * ElemCount; |
| } |
| Result = Align(MinAlign(Offset, Result.value())); |
| } |
| return Result; |
| } |
| |
| bool GEPOperator::accumulateConstantOffset( |
| const DataLayout &DL, APInt &Offset, |
| function_ref<bool(Value &, APInt &)> ExternalAnalysis) const { |
| assert(Offset.getBitWidth() == |
| DL.getIndexSizeInBits(getPointerAddressSpace()) && |
| "The offset bit width does not match DL specification."); |
| SmallVector<const Value *> Index(value_op_begin() + 1, value_op_end()); |
| return GEPOperator::accumulateConstantOffset(getSourceElementType(), Index, |
| DL, Offset, ExternalAnalysis); |
| } |
| |
| bool GEPOperator::accumulateConstantOffset( |
| Type *SourceType, ArrayRef<const Value *> Index, const DataLayout &DL, |
| APInt &Offset, function_ref<bool(Value &, APInt &)> ExternalAnalysis) { |
| bool UsedExternalAnalysis = false; |
| auto AccumulateOffset = [&](APInt Index, uint64_t Size) -> bool { |
| Index = Index.sextOrTrunc(Offset.getBitWidth()); |
| APInt IndexedSize = APInt(Offset.getBitWidth(), Size); |
| // For array or vector indices, scale the index by the size of the type. |
| if (!UsedExternalAnalysis) { |
| Offset += Index * IndexedSize; |
| } else { |
| // External Analysis can return a result higher/lower than the value |
| // represents. We need to detect overflow/underflow. |
| bool Overflow = false; |
| APInt OffsetPlus = Index.smul_ov(IndexedSize, Overflow); |
| if (Overflow) |
| return false; |
| Offset = Offset.sadd_ov(OffsetPlus, Overflow); |
| if (Overflow) |
| return false; |
| } |
| return true; |
| }; |
| auto begin = generic_gep_type_iterator<decltype(Index.begin())>::begin( |
| SourceType, Index.begin()); |
| auto end = generic_gep_type_iterator<decltype(Index.end())>::end(Index.end()); |
| for (auto GTI = begin, GTE = end; GTI != GTE; ++GTI) { |
| // Scalable vectors are multiplied by a runtime constant. |
| bool ScalableType = false; |
| if (isa<ScalableVectorType>(GTI.getIndexedType())) |
| ScalableType = true; |
| |
| Value *V = GTI.getOperand(); |
| StructType *STy = GTI.getStructTypeOrNull(); |
| // Handle ConstantInt if possible. |
| if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { |
| if (ConstOffset->isZero()) |
| continue; |
| // if the type is scalable and the constant is not zero (vscale * n * 0 = |
| // 0) bailout. |
| if (ScalableType) |
| return false; |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (STy) { |
| unsigned ElementIdx = ConstOffset->getZExtValue(); |
| const StructLayout *SL = DL.getStructLayout(STy); |
| // Element offset is in bytes. |
| if (!AccumulateOffset( |
| APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx)), |
| 1)) |
| return false; |
| continue; |
| } |
| if (!AccumulateOffset(ConstOffset->getValue(), |
| DL.getTypeAllocSize(GTI.getIndexedType()))) |
| return false; |
| continue; |
| } |
| |
| // The operand is not constant, check if an external analysis was provided. |
| // External analsis is not applicable to a struct type. |
| if (!ExternalAnalysis || STy || ScalableType) |
| return false; |
| APInt AnalysisIndex; |
| if (!ExternalAnalysis(*V, AnalysisIndex)) |
| return false; |
| UsedExternalAnalysis = true; |
| if (!AccumulateOffset(AnalysisIndex, |
| DL.getTypeAllocSize(GTI.getIndexedType()))) |
| return false; |
| } |
| return true; |
| } |
| |
| bool GEPOperator::collectOffset( |
| const DataLayout &DL, unsigned BitWidth, |
| MapVector<Value *, APInt> &VariableOffsets, |
| APInt &ConstantOffset) const { |
| assert(BitWidth == DL.getIndexSizeInBits(getPointerAddressSpace()) && |
| "The offset bit width does not match DL specification."); |
| |
| auto CollectConstantOffset = [&](APInt Index, uint64_t Size) { |
| Index = Index.sextOrTrunc(BitWidth); |
| APInt IndexedSize = APInt(BitWidth, Size); |
| ConstantOffset += Index * IndexedSize; |
| }; |
| |
| for (gep_type_iterator GTI = gep_type_begin(this), GTE = gep_type_end(this); |
| GTI != GTE; ++GTI) { |
| // Scalable vectors are multiplied by a runtime constant. |
| bool ScalableType = isa<ScalableVectorType>(GTI.getIndexedType()); |
| |
| Value *V = GTI.getOperand(); |
| StructType *STy = GTI.getStructTypeOrNull(); |
| // Handle ConstantInt if possible. |
| if (auto ConstOffset = dyn_cast<ConstantInt>(V)) { |
| if (ConstOffset->isZero()) |
| continue; |
| // If the type is scalable and the constant is not zero (vscale * n * 0 = |
| // 0) bailout. |
| // TODO: If the runtime value is accessible at any point before DWARF |
| // emission, then we could potentially keep a forward reference to it |
| // in the debug value to be filled in later. |
| if (ScalableType) |
| return false; |
| // Handle a struct index, which adds its field offset to the pointer. |
| if (STy) { |
| unsigned ElementIdx = ConstOffset->getZExtValue(); |
| const StructLayout *SL = DL.getStructLayout(STy); |
| // Element offset is in bytes. |
| CollectConstantOffset(APInt(BitWidth, SL->getElementOffset(ElementIdx)), |
| 1); |
| continue; |
| } |
| CollectConstantOffset(ConstOffset->getValue(), |
| DL.getTypeAllocSize(GTI.getIndexedType())); |
| continue; |
| } |
| |
| if (STy || ScalableType) |
| return false; |
| APInt IndexedSize = |
| APInt(BitWidth, DL.getTypeAllocSize(GTI.getIndexedType())); |
| // Insert an initial offset of 0 for V iff none exists already, then |
| // increment the offset by IndexedSize. |
| if (!IndexedSize.isZero()) { |
| VariableOffsets.insert({V, APInt(BitWidth, 0)}); |
| VariableOffsets[V] += IndexedSize; |
| } |
| } |
| return true; |
| } |
| |
| void FastMathFlags::print(raw_ostream &O) const { |
| if (all()) |
| O << " fast"; |
| else { |
| if (allowReassoc()) |
| O << " reassoc"; |
| if (noNaNs()) |
| O << " nnan"; |
| if (noInfs()) |
| O << " ninf"; |
| if (noSignedZeros()) |
| O << " nsz"; |
| if (allowReciprocal()) |
| O << " arcp"; |
| if (allowContract()) |
| O << " contract"; |
| if (approxFunc()) |
| O << " afn"; |
| } |
| } |
| } // namespace llvm |