[mlir][spirv] Add support for SPV_ARM_tensors (#144667)

This patch introduces a new custom type `!spirv.arm.tensor<>` to the
MLIR SPIR-V dialect to represent
`OpTypeTensorARM` as defined in the `SPV_ARM_tensors` extension.

The type models a shaped tensor with element type and optional shape,
and implements the
`ShapedType` interface to enable reuse of MLIR's existing shape-aware
infrastructure.

The type supports serialization to and from SPIR-V binary as
`OpTypeTensorARM`, and emits the
required capability (`TensorsARM`) and extension (`SPV_ARM_tensors`)
declarations automatically.

This addition lays the foundation for supporting structured tensor
values natively in SPIR-V and
will enable future support for operations defined in the
`SPV_ARM_tensors` extension, such as
`OpTensorReadARM`, `OpTensorWriteARM`, and `OpTensorQuerySizeARM`.

Reference: https://github.com/KhronosGroup/SPIRV-Registry/pull/342

---------

Signed-off-by: Davide Grohmann <davide.grohmann@arm.com>
Signed-off-by: Mohammadreza Ameri Mahabadian <mohammadreza.amerimahabadian@arm.com>
11 files changed
tree: 43bccf5dafabd468f451fa86b307dcf147dd02e3
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.