| // Purpose: |
| // Verifies that the debugging experience of loops marked optnone is as expected. |
| |
| // REQUIRES: lldb |
| // UNSUPPORTED: system-windows |
| // UNSUPPORTED: system-darwin |
| |
| // RUN: %dexter --fail-lt 1.0 -w \ |
| // RUN: --builder 'clang' --debugger 'lldb' \ |
| // RUN: --cflags "-O2 -g" -- %s |
| |
| // A simple loop of assignments. |
| // With optimization level > 0 the compiler reorders basic blocks |
| // based on the basic block frequency analysis information. |
| // This also happens with optnone and it shouldn't. |
| // This is not affecting debug info so it is a minor limitation. |
| // Basic block placement based on the block frequency analysis |
| // is normally done to improve i-Cache performances. |
| __attribute__((optnone)) void simple_memcpy_loop(int *dest, const int *src, |
| unsigned nelems) { |
| for (unsigned i = 0; i != nelems; ++i) |
| dest[i] = src[i]; // DexLabel('target_simple_memcpy_loop') |
| } |
| |
| // DexLimitSteps('i', 0, 4, 8, on_line=ref('target_simple_memcpy_loop')) |
| // DexExpectWatchValue('nelems', '16', on_line=ref('target_simple_memcpy_loop')) |
| // DexExpectWatchValue('src[i]', '3', '7', '1', on_line=ref('target_simple_memcpy_loop')) |
| |
| |
| // A trivial loop that could be optimized into a builtin memcpy |
| // which is either expanded into a optimal sequence of mov |
| // instructions or directly into a call to memset@plt |
| __attribute__((optnone)) void trivial_memcpy_loop(int *dest, const int *src) { |
| for (unsigned i = 0; i != 16; ++i) |
| dest[i] = src[i]; // DexLabel('target_trivial_memcpy_loop') |
| } |
| |
| // DexLimitSteps('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop')) |
| // DexExpectWatchValue('i', 3, 7, 9, 14, 15, on_line=ref('target_trivial_memcpy_loop')) |
| // DexExpectWatchValue('dest[i-1] == src[i-1]', 'true', on_line=ref('target_trivial_memcpy_loop')) |
| |
| |
| __attribute__((always_inline)) int foo(int a) { return a + 5; } |
| |
| // A trivial loop of calls to a 'always_inline' function. |
| __attribute__((optnone)) void nonleaf_function_with_loop(int *dest, |
| const int *src) { |
| for (unsigned i = 0; i != 16; ++i) |
| dest[i] = foo(src[i]); // DexLabel('target_nonleaf_function_with_loop') |
| } |
| |
| // DexLimitSteps('i', 1, on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('dest[0]', '8', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('dest[1]', '4', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('dest[2]', '5', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('src[0]', '8', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('src[1]', '4', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('src[2]', '5', on_line=ref('target_nonleaf_function_with_loop')) |
| |
| // DexExpectWatchValue('src[1] == dest[1]', 'true', on_line=ref('target_nonleaf_function_with_loop')) |
| // DexExpectWatchValue('src[2] == dest[2]', 'true', on_line=ref('target_nonleaf_function_with_loop')) |
| |
| |
| // This entire function could be optimized into a |
| // simple movl %esi, %eax. |
| // That is because we can compute the loop trip count |
| // knowing that ind-var 'i' can never be negative. |
| __attribute__((optnone)) int counting_loop(unsigned values) { |
| unsigned i = 0; |
| while (values--) // DexLabel('target_counting_loop') |
| i++; |
| return i; |
| } |
| |
| // DexLimitSteps('i', 8, 16, on_line=ref('target_counting_loop')) |
| // DexExpectWatchValue('i', 8, 16, on_line=ref('target_counting_loop')) |
| |
| |
| // This loop could be rotated. |
| // while(cond){ |
| // .. |
| // cond--; |
| // } |
| // |
| // --> |
| // if(cond) { |
| // do { |
| // ... |
| // cond--; |
| // } while(cond); |
| // } |
| // |
| // the compiler will not try to optimize this function. |
| // However the Machine BB Placement Pass will try |
| // to reorder the basic block that computes the |
| // expression 'count' in order to simplify the control |
| // flow. |
| __attribute__((optnone)) int loop_rotate_test(int *src, unsigned count) { |
| int result = 0; |
| |
| while (count) { |
| result += src[count - 1]; // DexLabel('target_loop_rotate_test') |
| count--; |
| } |
| return result; // DexLabel('target_loop_rotate_test_ret') |
| } |
| |
| // DexLimitSteps('result', 13, on_line=ref('target_loop_rotate_test')) |
| // DexExpectWatchValue('src[count]', 13, on_line=ref('target_loop_rotate_test')) |
| // DexLimitSteps('result', 158, on_line=ref('target_loop_rotate_test_ret')) |
| // DexExpectWatchValue('result', 158, on_line=ref('target_loop_rotate_test_ret')) |
| |
| |
| typedef int *intptr __attribute__((aligned(16))); |
| |
| // This loop can be vectorized if we enable |
| // the loop vectorizer. |
| __attribute__((optnone)) void loop_vectorize_test(intptr dest, intptr src) { |
| unsigned count = 0; |
| |
| int tempArray[16]; |
| |
| while(count != 16) { // DexLabel('target_loop_vectorize_test') |
| tempArray[count] = src[count]; |
| tempArray[count+1] = src[count+1]; // DexLabel('target_loop_vectorize_test_2') |
| tempArray[count+2] = src[count+2]; // DexLabel('target_loop_vectorize_test_3') |
| tempArray[count+3] = src[count+3]; // DexLabel('target_loop_vectorize_test_4') |
| dest[count] = tempArray[count]; // DexLabel('target_loop_vectorize_test_5') |
| dest[count+1] = tempArray[count+1]; // DexLabel('target_loop_vectorize_test_6') |
| dest[count+2] = tempArray[count+2]; // DexLabel('target_loop_vectorize_test_7') |
| dest[count+3] = tempArray[count+3]; // DexLabel('target_loop_vectorize_test_8') |
| count += 4; // DexLabel('target_loop_vectorize_test_9') |
| } |
| } |
| |
| // DexLimitSteps('count', 4, 8, 12, 16, from_line=ref('target_loop_vectorize_test'), to_line=ref('target_loop_vectorize_test_9')) |
| // DexExpectWatchValue('tempArray[count] == src[count]', 'true', on_line=ref('target_loop_vectorize_test_2')) |
| // DexExpectWatchValue('tempArray[count+1] == src[count+1]', 'true', on_line=ref('target_loop_vectorize_test_3')) |
| // DexExpectWatchValue('tempArray[count+2] == src[count+2]', 'true', on_line=ref('target_loop_vectorize_test_4')) |
| // DexExpectWatchValue('tempArray[count+3] == src[count+3]', 'true', on_line=ref('target_loop_vectorize_test_5')) |
| // DexExpectWatchValue('dest[count] == tempArray[count]', 'true', on_line=ref('target_loop_vectorize_test_6')) |
| // DexExpectWatchValue('dest[count+1] == tempArray[count+1]', 'true', on_line=ref('target_loop_vectorize_test_7')) |
| // DexExpectWatchValue('dest[count+2] == tempArray[count+2]', 'true', on_line=ref('target_loop_vectorize_test_8')) |
| // DexExpectWatchValue('dest[count+3] == tempArray[count+3]', 'true', on_line=ref('target_loop_vectorize_test_9')) |
| |
| |
| int main() { |
| int A[] = {3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| int B[] = {13, 14, 15, 16, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; |
| int C[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| |
| simple_memcpy_loop(C, A, 16); |
| trivial_memcpy_loop(B, C); |
| nonleaf_function_with_loop(B, B); |
| int count = counting_loop(16); |
| count += loop_rotate_test(B, 16); |
| loop_vectorize_test(A, B); |
| |
| return A[0] + count; |
| } |
| |