blob: 34742394a291ed14b7f7b72d1a5578b0647e8c7f [file] [log] [blame]
//===-- RISCVLegalizerInfo.cpp ----------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for RISC-V.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "RISCVLegalizerInfo.h"
#include "MCTargetDesc/RISCVMatInt.h"
#include "RISCVMachineFunctionInfo.h"
#include "RISCVSubtarget.h"
#include "llvm/CodeGen/GlobalISel/GIMatchTableExecutor.h"
#include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
using namespace llvm;
using namespace LegalityPredicates;
using namespace LegalizeMutations;
// Is this type supported by scalar FP arithmetic operations given the current
// subtarget.
static LegalityPredicate typeIsScalarFPArith(unsigned TypeIdx,
const RISCVSubtarget &ST) {
return [=, &ST](const LegalityQuery &Query) {
return Query.Types[TypeIdx].isScalar() &&
((ST.hasStdExtZfh() && Query.Types[TypeIdx].getSizeInBits() == 16) ||
(ST.hasStdExtF() && Query.Types[TypeIdx].getSizeInBits() == 32) ||
(ST.hasStdExtD() && Query.Types[TypeIdx].getSizeInBits() == 64));
};
}
static LegalityPredicate
typeIsLegalIntOrFPVec(unsigned TypeIdx,
std::initializer_list<LLT> IntOrFPVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getScalarSizeInBits() != 64 ||
ST.hasVInstructionsI64()) &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, IntOrFPVecTys), P);
}
static LegalityPredicate
typeIsLegalBoolVec(unsigned TypeIdx, std::initializer_list<LLT> BoolVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64);
};
return all(typeInSet(TypeIdx, BoolVecTys), P);
}
static LegalityPredicate typeIsLegalPtrVec(unsigned TypeIdx,
std::initializer_list<LLT> PtrVecTys,
const RISCVSubtarget &ST) {
LegalityPredicate P = [=, &ST](const LegalityQuery &Query) {
return ST.hasVInstructions() &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 1 ||
ST.getELen() == 64) &&
(Query.Types[TypeIdx].getElementCount().getKnownMinValue() != 16 ||
Query.Types[TypeIdx].getScalarSizeInBits() == 32);
};
return all(typeInSet(TypeIdx, PtrVecTys), P);
}
RISCVLegalizerInfo::RISCVLegalizerInfo(const RISCVSubtarget &ST)
: STI(ST), XLen(STI.getXLen()), sXLen(LLT::scalar(XLen)) {
const LLT sDoubleXLen = LLT::scalar(2 * XLen);
const LLT p0 = LLT::pointer(0, XLen);
const LLT s1 = LLT::scalar(1);
const LLT s8 = LLT::scalar(8);
const LLT s16 = LLT::scalar(16);
const LLT s32 = LLT::scalar(32);
const LLT s64 = LLT::scalar(64);
const LLT s128 = LLT::scalar(128);
const LLT nxv1s1 = LLT::scalable_vector(1, s1);
const LLT nxv2s1 = LLT::scalable_vector(2, s1);
const LLT nxv4s1 = LLT::scalable_vector(4, s1);
const LLT nxv8s1 = LLT::scalable_vector(8, s1);
const LLT nxv16s1 = LLT::scalable_vector(16, s1);
const LLT nxv32s1 = LLT::scalable_vector(32, s1);
const LLT nxv64s1 = LLT::scalable_vector(64, s1);
const LLT nxv1s8 = LLT::scalable_vector(1, s8);
const LLT nxv2s8 = LLT::scalable_vector(2, s8);
const LLT nxv4s8 = LLT::scalable_vector(4, s8);
const LLT nxv8s8 = LLT::scalable_vector(8, s8);
const LLT nxv16s8 = LLT::scalable_vector(16, s8);
const LLT nxv32s8 = LLT::scalable_vector(32, s8);
const LLT nxv64s8 = LLT::scalable_vector(64, s8);
const LLT nxv1s16 = LLT::scalable_vector(1, s16);
const LLT nxv2s16 = LLT::scalable_vector(2, s16);
const LLT nxv4s16 = LLT::scalable_vector(4, s16);
const LLT nxv8s16 = LLT::scalable_vector(8, s16);
const LLT nxv16s16 = LLT::scalable_vector(16, s16);
const LLT nxv32s16 = LLT::scalable_vector(32, s16);
const LLT nxv1s32 = LLT::scalable_vector(1, s32);
const LLT nxv2s32 = LLT::scalable_vector(2, s32);
const LLT nxv4s32 = LLT::scalable_vector(4, s32);
const LLT nxv8s32 = LLT::scalable_vector(8, s32);
const LLT nxv16s32 = LLT::scalable_vector(16, s32);
const LLT nxv1s64 = LLT::scalable_vector(1, s64);
const LLT nxv2s64 = LLT::scalable_vector(2, s64);
const LLT nxv4s64 = LLT::scalable_vector(4, s64);
const LLT nxv8s64 = LLT::scalable_vector(8, s64);
const LLT nxv1p0 = LLT::scalable_vector(1, p0);
const LLT nxv2p0 = LLT::scalable_vector(2, p0);
const LLT nxv4p0 = LLT::scalable_vector(4, p0);
const LLT nxv8p0 = LLT::scalable_vector(8, p0);
const LLT nxv16p0 = LLT::scalable_vector(16, p0);
using namespace TargetOpcode;
auto BoolVecTys = {nxv1s1, nxv2s1, nxv4s1, nxv8s1, nxv16s1, nxv32s1, nxv64s1};
auto IntOrFPVecTys = {nxv1s8, nxv2s8, nxv4s8, nxv8s8, nxv16s8, nxv32s8,
nxv64s8, nxv1s16, nxv2s16, nxv4s16, nxv8s16, nxv16s16,
nxv32s16, nxv1s32, nxv2s32, nxv4s32, nxv8s32, nxv16s32,
nxv1s64, nxv2s64, nxv4s64, nxv8s64};
auto PtrVecTys = {nxv1p0, nxv2p0, nxv4p0, nxv8p0, nxv16p0};
getActionDefinitionsBuilder({G_ADD, G_SUB, G_AND, G_OR, G_XOR})
.legalFor({s32, sXLen})
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(
{G_UADDE, G_UADDO, G_USUBE, G_USUBO}).lower();
getActionDefinitionsBuilder({G_SADDO, G_SSUBO}).minScalar(0, sXLen).lower();
// TODO: Use Vector Single-Width Saturating Instructions for vector types.
getActionDefinitionsBuilder({G_UADDSAT, G_SADDSAT, G_USUBSAT, G_SSUBSAT})
.lower();
getActionDefinitionsBuilder({G_ASHR, G_LSHR, G_SHL})
.legalFor({{s32, s32}, {sXLen, sXLen}})
.widenScalarToNextPow2(0)
.clampScalar(1, s32, sXLen)
.clampScalar(0, s32, sXLen)
.minScalarSameAs(1, 0)
.maxScalarSameAs(1, 0);
auto &ExtActions =
getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)));
if (ST.is64Bit()) {
ExtActions.legalFor({{sXLen, s32}});
getActionDefinitionsBuilder(G_SEXT_INREG)
.customFor({s32, sXLen})
.maxScalar(0, sXLen)
.lower();
} else {
getActionDefinitionsBuilder(G_SEXT_INREG)
.customFor({s32})
.maxScalar(0, sXLen)
.lower();
}
ExtActions.customIf(typeIsLegalBoolVec(1, BoolVecTys, ST))
.maxScalar(0, sXLen);
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
auto &MergeUnmergeActions = getActionDefinitionsBuilder(Op);
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
if (XLen == 32 && ST.hasStdExtD()) {
MergeUnmergeActions.legalIf(
all(typeIs(BigTyIdx, s64), typeIs(LitTyIdx, s32)));
}
MergeUnmergeActions.widenScalarToNextPow2(LitTyIdx, XLen)
.widenScalarToNextPow2(BigTyIdx, XLen)
.clampScalar(LitTyIdx, sXLen, sXLen)
.clampScalar(BigTyIdx, sXLen, sXLen);
}
getActionDefinitionsBuilder({G_FSHL, G_FSHR}).lower();
getActionDefinitionsBuilder({G_ROTL, G_ROTR})
.legalFor(ST.hasStdExtZbb() || ST.hasStdExtZbkb(),
{{s32, s32}, {sXLen, sXLen}})
.lower();
getActionDefinitionsBuilder(G_BITREVERSE).maxScalar(0, sXLen).lower();
getActionDefinitionsBuilder(G_BITCAST).legalIf(
all(LegalityPredicates::any(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(0, BoolVecTys, ST)),
LegalityPredicates::any(typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST))));
auto &BSWAPActions = getActionDefinitionsBuilder(G_BSWAP);
if (ST.hasStdExtZbb() || ST.hasStdExtZbkb())
BSWAPActions.legalFor({sXLen}).clampScalar(0, sXLen, sXLen);
else
BSWAPActions.maxScalar(0, sXLen).lower();
auto &CountZerosActions = getActionDefinitionsBuilder({G_CTLZ, G_CTTZ});
auto &CountZerosUndefActions =
getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF});
if (ST.hasStdExtZbb()) {
CountZerosActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CountZerosActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
CountZerosUndefActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0);
}
CountZerosUndefActions.lower();
auto &CTPOPActions = getActionDefinitionsBuilder(G_CTPOP);
if (ST.hasStdExtZbb()) {
CTPOPActions.legalFor({{s32, s32}, {sXLen, sXLen}})
.clampScalar(0, s32, sXLen)
.widenScalarToNextPow2(0)
.scalarSameSizeAs(1, 0);
} else {
CTPOPActions.maxScalar(0, sXLen).scalarSameSizeAs(1, 0).lower();
}
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({s32, p0})
.customFor(ST.is64Bit(), {s64})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
// TODO: transform illegal vector types into legal vector type
getActionDefinitionsBuilder(
{G_IMPLICIT_DEF, G_CONSTANT_FOLD_BARRIER, G_FREEZE})
.legalFor({s32, sXLen, p0})
.legalIf(typeIsLegalBoolVec(0, BoolVecTys, ST))
.legalIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST))
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
getActionDefinitionsBuilder(G_ICMP)
.legalFor({{sXLen, sXLen}, {sXLen, p0}})
.legalIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)))
.widenScalarOrEltToNextPow2OrMinSize(1, 8)
.clampScalar(1, sXLen, sXLen)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_SELECT)
.legalFor({{s32, sXLen}, {p0, sXLen}})
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)))
.legalFor(XLen == 64 || ST.hasStdExtD(), {{s64, sXLen}})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, (XLen == 64 || ST.hasStdExtD()) ? s64 : s32)
.clampScalar(1, sXLen, sXLen);
auto &LoadActions = getActionDefinitionsBuilder(G_LOAD);
auto &StoreActions = getActionDefinitionsBuilder(G_STORE);
auto &ExtLoadActions = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD});
// Return the alignment needed for scalar memory ops. If unaligned scalar mem
// is supported, we only require byte alignment. Otherwise, we need the memory
// op to be natively aligned.
auto getScalarMemAlign = [&ST](unsigned Size) {
return ST.enableUnalignedScalarMem() ? 8 : Size;
};
LoadActions.legalForTypesWithMemDesc(
{{s32, p0, s8, getScalarMemAlign(8)},
{s32, p0, s16, getScalarMemAlign(16)},
{s32, p0, s32, getScalarMemAlign(32)},
{p0, p0, sXLen, getScalarMemAlign(XLen)}});
StoreActions.legalForTypesWithMemDesc(
{{s32, p0, s8, getScalarMemAlign(8)},
{s32, p0, s16, getScalarMemAlign(16)},
{s32, p0, s32, getScalarMemAlign(32)},
{p0, p0, sXLen, getScalarMemAlign(XLen)}});
ExtLoadActions.legalForTypesWithMemDesc(
{{s32, p0, s8, getScalarMemAlign(8)},
{s32, p0, s16, getScalarMemAlign(16)}});
if (XLen == 64) {
LoadActions.legalForTypesWithMemDesc(
{{s64, p0, s8, getScalarMemAlign(8)},
{s64, p0, s16, getScalarMemAlign(16)},
{s64, p0, s32, getScalarMemAlign(32)},
{s64, p0, s64, getScalarMemAlign(64)}});
StoreActions.legalForTypesWithMemDesc(
{{s64, p0, s8, getScalarMemAlign(8)},
{s64, p0, s16, getScalarMemAlign(16)},
{s64, p0, s32, getScalarMemAlign(32)},
{s64, p0, s64, getScalarMemAlign(64)}});
ExtLoadActions.legalForTypesWithMemDesc(
{{s64, p0, s8, getScalarMemAlign(8)},
{s64, p0, s16, getScalarMemAlign(16)},
{s64, p0, s32, getScalarMemAlign(32)}});
} else if (ST.hasStdExtD()) {
LoadActions.legalForTypesWithMemDesc(
{{s64, p0, s64, getScalarMemAlign(64)}});
StoreActions.legalForTypesWithMemDesc(
{{s64, p0, s64, getScalarMemAlign(64)}});
}
// Vector loads/stores.
if (ST.hasVInstructions()) {
LoadActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
{nxv4s8, p0, nxv4s8, 8},
{nxv8s8, p0, nxv8s8, 8},
{nxv16s8, p0, nxv16s8, 8},
{nxv32s8, p0, nxv32s8, 8},
{nxv64s8, p0, nxv64s8, 8},
{nxv2s16, p0, nxv2s16, 16},
{nxv4s16, p0, nxv4s16, 16},
{nxv8s16, p0, nxv8s16, 16},
{nxv16s16, p0, nxv16s16, 16},
{nxv32s16, p0, nxv32s16, 16},
{nxv2s32, p0, nxv2s32, 32},
{nxv4s32, p0, nxv4s32, 32},
{nxv8s32, p0, nxv8s32, 32},
{nxv16s32, p0, nxv16s32, 32}});
StoreActions.legalForTypesWithMemDesc({{nxv2s8, p0, nxv2s8, 8},
{nxv4s8, p0, nxv4s8, 8},
{nxv8s8, p0, nxv8s8, 8},
{nxv16s8, p0, nxv16s8, 8},
{nxv32s8, p0, nxv32s8, 8},
{nxv64s8, p0, nxv64s8, 8},
{nxv2s16, p0, nxv2s16, 16},
{nxv4s16, p0, nxv4s16, 16},
{nxv8s16, p0, nxv8s16, 16},
{nxv16s16, p0, nxv16s16, 16},
{nxv32s16, p0, nxv32s16, 16},
{nxv2s32, p0, nxv2s32, 32},
{nxv4s32, p0, nxv4s32, 32},
{nxv8s32, p0, nxv8s32, 32},
{nxv16s32, p0, nxv16s32, 32}});
if (ST.getELen() == 64) {
LoadActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
{nxv1s16, p0, nxv1s16, 16},
{nxv1s32, p0, nxv1s32, 32}});
StoreActions.legalForTypesWithMemDesc({{nxv1s8, p0, nxv1s8, 8},
{nxv1s16, p0, nxv1s16, 16},
{nxv1s32, p0, nxv1s32, 32}});
}
if (ST.hasVInstructionsI64()) {
LoadActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
{nxv2s64, p0, nxv2s64, 64},
{nxv4s64, p0, nxv4s64, 64},
{nxv8s64, p0, nxv8s64, 64}});
StoreActions.legalForTypesWithMemDesc({{nxv1s64, p0, nxv1s64, 64},
{nxv2s64, p0, nxv2s64, 64},
{nxv4s64, p0, nxv4s64, 64},
{nxv8s64, p0, nxv8s64, 64}});
}
// we will take the custom lowering logic if we have scalable vector types
// with non-standard alignments
LoadActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
StoreActions.customIf(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST));
// Pointers require that XLen sized elements are legal.
if (XLen <= ST.getELen()) {
LoadActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
StoreActions.customIf(typeIsLegalPtrVec(0, PtrVecTys, ST));
}
}
LoadActions.widenScalarToNextPow2(0, /* MinSize = */ 8)
.lowerIfMemSizeNotByteSizePow2()
.clampScalar(0, s32, sXLen)
.lower();
StoreActions
.clampScalar(0, s32, sXLen)
.lowerIfMemSizeNotByteSizePow2()
.lower();
ExtLoadActions.widenScalarToNextPow2(0).clampScalar(0, s32, sXLen).lower();
getActionDefinitionsBuilder({G_PTR_ADD, G_PTRMASK}).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_PTRTOINT)
.legalFor({{sXLen, p0}})
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder(G_INTTOPTR)
.legalFor({{p0, sXLen}})
.clampScalar(1, sXLen, sXLen);
getActionDefinitionsBuilder(G_BRCOND).legalFor({sXLen}).minScalar(0, sXLen);
getActionDefinitionsBuilder(G_BRJT).legalFor({{p0, sXLen}});
getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0});
getActionDefinitionsBuilder(G_PHI)
.legalFor({p0, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sXLen);
getActionDefinitionsBuilder({G_GLOBAL_VALUE, G_JUMP_TABLE, G_CONSTANT_POOL})
.legalFor({p0});
if (ST.hasStdExtZmmul()) {
getActionDefinitionsBuilder(G_MUL)
.legalFor({s32, sXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, s32, sXLen);
// clang-format off
getActionDefinitionsBuilder({G_SMULH, G_UMULH})
.legalFor({sXLen})
.lower();
// clang-format on
getActionDefinitionsBuilder({G_SMULO, G_UMULO}).minScalar(0, sXLen).lower();
} else {
getActionDefinitionsBuilder(G_MUL)
.libcallFor({sXLen, sDoubleXLen})
.widenScalarToNextPow2(0)
.clampScalar(0, sXLen, sDoubleXLen);
getActionDefinitionsBuilder({G_SMULH, G_UMULH}).lowerFor({sXLen});
getActionDefinitionsBuilder({G_SMULO, G_UMULO})
.minScalar(0, sXLen)
// Widen sXLen to sDoubleXLen so we can use a single libcall to get
// the low bits for the mul result and high bits to do the overflow
// check.
.widenScalarIf(typeIs(0, sXLen),
LegalizeMutations::changeTo(0, sDoubleXLen))
.lower();
}
if (ST.hasStdExtM()) {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.legalFor({s32, sXLen})
.libcallFor({sDoubleXLen})
.clampScalar(0, s32, sDoubleXLen)
.widenScalarToNextPow2(0);
} else {
getActionDefinitionsBuilder({G_UDIV, G_SDIV, G_UREM, G_SREM})
.libcallFor({sXLen, sDoubleXLen})
.clampScalar(0, sXLen, sDoubleXLen)
.widenScalarToNextPow2(0);
}
// TODO: Use libcall for sDoubleXLen.
getActionDefinitionsBuilder({G_UDIVREM, G_SDIVREM}).lower();
getActionDefinitionsBuilder(G_ABS)
.customFor(ST.hasStdExtZbb(), {sXLen})
.minScalar(ST.hasStdExtZbb(), 0, sXLen)
.lower();
getActionDefinitionsBuilder({G_UMAX, G_UMIN, G_SMAX, G_SMIN})
.legalFor(ST.hasStdExtZbb(), {sXLen})
.minScalar(ST.hasStdExtZbb(), 0, sXLen)
.lower();
getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0});
getActionDefinitionsBuilder({G_MEMCPY, G_MEMMOVE, G_MEMSET}).libcall();
getActionDefinitionsBuilder({G_DYN_STACKALLOC, G_STACKSAVE, G_STACKRESTORE})
.lower();
// FP Operations
getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMUL, G_FDIV, G_FMA, G_FNEG,
G_FABS, G_FSQRT, G_FMAXNUM, G_FMINNUM})
.legalIf(typeIsScalarFPArith(0, ST));
getActionDefinitionsBuilder(G_FREM)
.libcallFor({s32, s64})
.minScalar(0, s32)
.scalarize(0);
getActionDefinitionsBuilder(G_FCOPYSIGN)
.legalIf(all(typeIsScalarFPArith(0, ST), typeIsScalarFPArith(1, ST)));
// FIXME: Use Zfhmin.
getActionDefinitionsBuilder(G_FPTRUNC).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s32)(Query) &&
typeIs(1, s64)(Query)) ||
(ST.hasStdExtZfh() && typeIs(0, s16)(Query) &&
typeIs(1, s32)(Query)) ||
(ST.hasStdExtZfh() && ST.hasStdExtD() && typeIs(0, s16)(Query) &&
typeIs(1, s64)(Query));
});
getActionDefinitionsBuilder(G_FPEXT).legalIf(
[=, &ST](const LegalityQuery &Query) -> bool {
return (ST.hasStdExtD() && typeIs(0, s64)(Query) &&
typeIs(1, s32)(Query)) ||
(ST.hasStdExtZfh() && typeIs(0, s32)(Query) &&
typeIs(1, s16)(Query)) ||
(ST.hasStdExtZfh() && ST.hasStdExtD() && typeIs(0, s64)(Query) &&
typeIs(1, s16)(Query));
});
getActionDefinitionsBuilder(G_FCMP)
.legalIf(all(typeIs(0, sXLen), typeIsScalarFPArith(1, ST)))
.clampScalar(0, sXLen, sXLen);
// TODO: Support vector version of G_IS_FPCLASS.
getActionDefinitionsBuilder(G_IS_FPCLASS)
.customIf(all(typeIs(0, s1), typeIsScalarFPArith(1, ST)));
getActionDefinitionsBuilder(G_FCONSTANT)
.legalIf(typeIsScalarFPArith(0, ST))
.lowerFor({s32, s64});
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalIf(all(typeInSet(0, {s32, sXLen}), typeIsScalarFPArith(1, ST)))
.widenScalarToNextPow2(0)
.minScalar(0, s32)
.libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
.libcallFor(ST.is64Bit(), {{s128, s32}, {s128, s64}});
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalIf(all(typeIsScalarFPArith(0, ST), typeInSet(1, {s32, sXLen})))
.widenScalarToNextPow2(1)
.minScalar(1, s32)
.libcallFor({{s32, s32}, {s64, s32}, {s32, s64}, {s64, s64}})
.libcallFor(ST.is64Bit(), {{s32, s128}, {s64, s128}});
// FIXME: We can do custom inline expansion like SelectionDAG.
// FIXME: Legal with Zfa.
getActionDefinitionsBuilder({G_FCEIL, G_FFLOOR, G_FRINT, G_FNEARBYINT,
G_INTRINSIC_TRUNC, G_INTRINSIC_ROUND,
G_INTRINSIC_ROUNDEVEN})
.libcallFor({s32, s64});
getActionDefinitionsBuilder(G_VASTART).customFor({p0});
// va_list must be a pointer, but most sized types are pretty easy to handle
// as the destination.
getActionDefinitionsBuilder(G_VAARG)
// TODO: Implement narrowScalar and widenScalar for G_VAARG for types
// other than sXLen.
.clampScalar(0, sXLen, sXLen)
.lowerForCartesianProduct({sXLen, p0}, {p0});
getActionDefinitionsBuilder(G_VSCALE)
.clampScalar(0, sXLen, sXLen)
.customFor({sXLen});
auto &SplatActions =
getActionDefinitionsBuilder(G_SPLAT_VECTOR)
.legalIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIs(1, sXLen)))
.customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST), typeIs(1, s1)));
// Handle case of s64 element vectors on RV32. If the subtarget does not have
// f64, then try to lower it to G_SPLAT_VECTOR_SPLIT_64_VL. If the subtarget
// does have f64, then we don't know whether the type is an f64 or an i64,
// so mark the G_SPLAT_VECTOR as legal and decide later what to do with it,
// depending on how the instructions it consumes are legalized. They are not
// legalized yet since legalization is in reverse postorder, so we cannot
// make the decision at this moment.
if (XLen == 32) {
if (ST.hasVInstructionsF64() && ST.hasStdExtD())
SplatActions.legalIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
else if (ST.hasVInstructionsI64())
SplatActions.customIf(all(
typeInSet(0, {nxv1s64, nxv2s64, nxv4s64, nxv8s64}), typeIs(1, s64)));
}
SplatActions.clampScalar(1, sXLen, sXLen);
LegalityPredicate ExtractSubvecBitcastPred = [=](const LegalityQuery &Query) {
LLT DstTy = Query.Types[0];
LLT SrcTy = Query.Types[1];
return DstTy.getElementType() == LLT::scalar(1) &&
DstTy.getElementCount().getKnownMinValue() >= 8 &&
SrcTy.getElementCount().getKnownMinValue() >= 8;
};
getActionDefinitionsBuilder(G_EXTRACT_SUBVECTOR)
// We don't have the ability to slide mask vectors down indexed by their
// i1 elements; the smallest we can do is i8. Often we are able to bitcast
// to equivalent i8 vectors.
.bitcastIf(
all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST), ExtractSubvecBitcastPred),
[=](const LegalityQuery &Query) {
LLT CastTy = LLT::vector(
Query.Types[0].getElementCount().divideCoefficientBy(8), 8);
return std::pair(0, CastTy);
})
.customIf(LegalityPredicates::any(
all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)),
all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST))));
getActionDefinitionsBuilder(G_INSERT_SUBVECTOR)
.customIf(all(typeIsLegalBoolVec(0, BoolVecTys, ST),
typeIsLegalBoolVec(1, BoolVecTys, ST)))
.customIf(all(typeIsLegalIntOrFPVec(0, IntOrFPVecTys, ST),
typeIsLegalIntOrFPVec(1, IntOrFPVecTys, ST)));
getLegacyLegalizerInfo().computeTables();
}
bool RISCVLegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
MachineInstr &MI) const {
Intrinsic::ID IntrinsicID = cast<GIntrinsic>(MI).getIntrinsicID();
switch (IntrinsicID) {
default:
return false;
case Intrinsic::vacopy: {
// vacopy arguments must be legal because of the intrinsic signature.
// No need to check here.
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getMF();
const DataLayout &DL = MIRBuilder.getDataLayout();
LLVMContext &Ctx = MF.getFunction().getContext();
Register DstLst = MI.getOperand(1).getReg();
LLT PtrTy = MRI.getType(DstLst);
// Load the source va_list
Align Alignment = DL.getABITypeAlign(getTypeForLLT(PtrTy, Ctx));
MachineMemOperand *LoadMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOLoad, PtrTy, Alignment);
auto Tmp = MIRBuilder.buildLoad(PtrTy, MI.getOperand(2), *LoadMMO);
// Store the result in the destination va_list
MachineMemOperand *StoreMMO = MF.getMachineMemOperand(
MachinePointerInfo(), MachineMemOperand::MOStore, PtrTy, Alignment);
MIRBuilder.buildStore(Tmp, DstLst, *StoreMMO);
MI.eraseFromParent();
return true;
}
}
}
bool RISCVLegalizerInfo::legalizeVAStart(MachineInstr &MI,
MachineIRBuilder &MIRBuilder) const {
// Stores the address of the VarArgsFrameIndex slot into the memory location
assert(MI.getOpcode() == TargetOpcode::G_VASTART);
MachineFunction *MF = MI.getParent()->getParent();
RISCVMachineFunctionInfo *FuncInfo = MF->getInfo<RISCVMachineFunctionInfo>();
int FI = FuncInfo->getVarArgsFrameIndex();
LLT AddrTy = MIRBuilder.getMRI()->getType(MI.getOperand(0).getReg());
auto FINAddr = MIRBuilder.buildFrameIndex(AddrTy, FI);
assert(MI.hasOneMemOperand());
MIRBuilder.buildStore(FINAddr, MI.getOperand(0).getReg(),
*MI.memoperands()[0]);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::shouldBeInConstantPool(const APInt &APImm,
bool ShouldOptForSize) const {
assert(APImm.getBitWidth() == 32 || APImm.getBitWidth() == 64);
int64_t Imm = APImm.getSExtValue();
// All simm32 constants should be handled by isel.
// NOTE: The getMaxBuildIntsCost call below should return a value >= 2 making
// this check redundant, but small immediates are common so this check
// should have better compile time.
if (isInt<32>(Imm))
return false;
// We only need to cost the immediate, if constant pool lowering is enabled.
if (!STI.useConstantPoolForLargeInts())
return false;
RISCVMatInt::InstSeq Seq = RISCVMatInt::generateInstSeq(Imm, STI);
if (Seq.size() <= STI.getMaxBuildIntsCost())
return false;
// Optimizations below are disabled for opt size. If we're optimizing for
// size, use a constant pool.
if (ShouldOptForSize)
return true;
//
// Special case. See if we can build the constant as (ADD (SLLI X, C), X) do
// that if it will avoid a constant pool.
// It will require an extra temporary register though.
// If we have Zba we can use (ADD_UW X, (SLLI X, 32)) to handle cases where
// low and high 32 bits are the same and bit 31 and 63 are set.
unsigned ShiftAmt, AddOpc;
RISCVMatInt::InstSeq SeqLo =
RISCVMatInt::generateTwoRegInstSeq(Imm, STI, ShiftAmt, AddOpc);
return !(!SeqLo.empty() && (SeqLo.size() + 2) <= STI.getMaxBuildIntsCost());
}
bool RISCVLegalizerInfo::legalizeVScale(MachineInstr &MI,
MachineIRBuilder &MIB) const {
const LLT XLenTy(STI.getXLenVT());
Register Dst = MI.getOperand(0).getReg();
// We define our scalable vector types for lmul=1 to use a 64 bit known
// minimum size. e.g. <vscale x 2 x i32>. VLENB is in bytes so we calculate
// vscale as VLENB / 8.
static_assert(RISCV::RVVBitsPerBlock == 64, "Unexpected bits per block!");
if (STI.getRealMinVLen() < RISCV::RVVBitsPerBlock)
// Support for VLEN==32 is incomplete.
return false;
// We assume VLENB is a multiple of 8. We manually choose the best shift
// here because SimplifyDemandedBits isn't always able to simplify it.
uint64_t Val = MI.getOperand(1).getCImm()->getZExtValue();
if (isPowerOf2_64(Val)) {
uint64_t Log2 = Log2_64(Val);
if (Log2 < 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildLShr(Dst, VLENB, MIB.buildConstant(XLenTy, 3 - Log2));
} else if (Log2 > 3) {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildShl(Dst, VLENB, MIB.buildConstant(XLenTy, Log2 - 3));
} else {
MIB.buildInstr(RISCV::G_READ_VLENB, {Dst}, {});
}
} else if ((Val % 8) == 0) {
// If the multiplier is a multiple of 8, scale it down to avoid needing
// to shift the VLENB value.
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
MIB.buildMul(Dst, VLENB, MIB.buildConstant(XLenTy, Val / 8));
} else {
auto VLENB = MIB.buildInstr(RISCV::G_READ_VLENB, {XLenTy}, {});
auto VScale = MIB.buildLShr(XLenTy, VLENB, MIB.buildConstant(XLenTy, 3));
MIB.buildMul(Dst, VScale, MIB.buildConstant(XLenTy, Val));
}
MI.eraseFromParent();
return true;
}
// Custom-lower extensions from mask vectors by using a vselect either with 1
// for zero/any-extension or -1 for sign-extension:
// (vXiN = (s|z)ext vXi1:vmask) -> (vXiN = vselect vmask, (-1 or 1), 0)
// Note that any-extension is lowered identically to zero-extension.
bool RISCVLegalizerInfo::legalizeExt(MachineInstr &MI,
MachineIRBuilder &MIB) const {
unsigned Opc = MI.getOpcode();
assert(Opc == TargetOpcode::G_ZEXT || Opc == TargetOpcode::G_SEXT ||
Opc == TargetOpcode::G_ANYEXT);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
int64_t ExtTrueVal = Opc == TargetOpcode::G_SEXT ? -1 : 1;
LLT DstEltTy = DstTy.getElementType();
auto SplatZero = MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, 0));
auto SplatTrue =
MIB.buildSplatVector(DstTy, MIB.buildConstant(DstEltTy, ExtTrueVal));
MIB.buildSelect(Dst, Src, SplatTrue, SplatZero);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeLoadStore(MachineInstr &MI,
LegalizerHelper &Helper,
MachineIRBuilder &MIB) const {
assert((isa<GLoad>(MI) || isa<GStore>(MI)) &&
"Machine instructions must be Load/Store.");
MachineRegisterInfo &MRI = *MIB.getMRI();
MachineFunction *MF = MI.getMF();
const DataLayout &DL = MIB.getDataLayout();
LLVMContext &Ctx = MF->getFunction().getContext();
Register DstReg = MI.getOperand(0).getReg();
LLT DataTy = MRI.getType(DstReg);
if (!DataTy.isVector())
return false;
if (!MI.hasOneMemOperand())
return false;
MachineMemOperand *MMO = *MI.memoperands_begin();
const auto *TLI = STI.getTargetLowering();
EVT VT = EVT::getEVT(getTypeForLLT(DataTy, Ctx));
if (TLI->allowsMemoryAccessForAlignment(Ctx, DL, VT, *MMO))
return true;
unsigned EltSizeBits = DataTy.getScalarSizeInBits();
assert((EltSizeBits == 16 || EltSizeBits == 32 || EltSizeBits == 64) &&
"Unexpected unaligned RVV load type");
// Calculate the new vector type with i8 elements
unsigned NumElements =
DataTy.getElementCount().getKnownMinValue() * (EltSizeBits / 8);
LLT NewDataTy = LLT::scalable_vector(NumElements, 8);
Helper.bitcast(MI, 0, NewDataTy);
return true;
}
/// Return the type of the mask type suitable for masking the provided
/// vector type. This is simply an i1 element type vector of the same
/// (possibly scalable) length.
static LLT getMaskTypeFor(LLT VecTy) {
assert(VecTy.isVector());
ElementCount EC = VecTy.getElementCount();
return LLT::vector(EC, LLT::scalar(1));
}
/// Creates an all ones mask suitable for masking a vector of type VecTy with
/// vector length VL.
static MachineInstrBuilder buildAllOnesMask(LLT VecTy, const SrcOp &VL,
MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
LLT MaskTy = getMaskTypeFor(VecTy);
return MIB.buildInstr(RISCV::G_VMSET_VL, {MaskTy}, {VL});
}
/// Gets the two common "VL" operands: an all-ones mask and the vector length.
/// VecTy is a scalable vector type.
static std::pair<MachineInstrBuilder, MachineInstrBuilder>
buildDefaultVLOps(LLT VecTy, MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
assert(VecTy.isScalableVector() && "Expecting scalable container type");
const RISCVSubtarget &STI = MIB.getMF().getSubtarget<RISCVSubtarget>();
LLT XLenTy(STI.getXLenVT());
auto VL = MIB.buildConstant(XLenTy, -1);
auto Mask = buildAllOnesMask(VecTy, VL, MIB, MRI);
return {Mask, VL};
}
static MachineInstrBuilder
buildSplatPartsS64WithVL(const DstOp &Dst, const SrcOp &Passthru, Register Lo,
Register Hi, const SrcOp &VL, MachineIRBuilder &MIB,
MachineRegisterInfo &MRI) {
// TODO: If the Hi bits of the splat are undefined, then it's fine to just
// splat Lo even if it might be sign extended. I don't think we have
// introduced a case where we're build a s64 where the upper bits are undef
// yet.
// Fall back to a stack store and stride x0 vector load.
// TODO: need to lower G_SPLAT_VECTOR_SPLIT_I64. This is done in
// preprocessDAG in SDAG.
return MIB.buildInstr(RISCV::G_SPLAT_VECTOR_SPLIT_I64_VL, {Dst},
{Passthru, Lo, Hi, VL});
}
static MachineInstrBuilder
buildSplatSplitS64WithVL(const DstOp &Dst, const SrcOp &Passthru,
const SrcOp &Scalar, const SrcOp &VL,
MachineIRBuilder &MIB, MachineRegisterInfo &MRI) {
assert(Scalar.getLLTTy(MRI) == LLT::scalar(64) && "Unexpected VecTy!");
auto Unmerge = MIB.buildUnmerge(LLT::scalar(32), Scalar);
return buildSplatPartsS64WithVL(Dst, Passthru, Unmerge.getReg(0),
Unmerge.getReg(1), VL, MIB, MRI);
}
// Lower splats of s1 types to G_ICMP. For each mask vector type, we have a
// legal equivalently-sized i8 type, so we can use that as a go-between.
// Splats of s1 types that have constant value can be legalized as VMSET_VL or
// VMCLR_VL.
bool RISCVLegalizerInfo::legalizeSplatVector(MachineInstr &MI,
MachineIRBuilder &MIB) const {
assert(MI.getOpcode() == TargetOpcode::G_SPLAT_VECTOR);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = MI.getOperand(0).getReg();
Register SplatVal = MI.getOperand(1).getReg();
LLT VecTy = MRI.getType(Dst);
LLT XLenTy(STI.getXLenVT());
// Handle case of s64 element vectors on rv32
if (XLenTy.getSizeInBits() == 32 &&
VecTy.getElementType().getSizeInBits() == 64) {
auto [_, VL] = buildDefaultVLOps(MRI.getType(Dst), MIB, MRI);
buildSplatSplitS64WithVL(Dst, MIB.buildUndef(VecTy), SplatVal, VL, MIB,
MRI);
MI.eraseFromParent();
return true;
}
// All-zeros or all-ones splats are handled specially.
MachineInstr &SplatValMI = *MRI.getVRegDef(SplatVal);
if (isAllOnesOrAllOnesSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMSET_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
if (isNullOrNullSplat(SplatValMI, MRI)) {
auto VL = buildDefaultVLOps(VecTy, MIB, MRI).second;
MIB.buildInstr(RISCV::G_VMCLR_VL, {Dst}, {VL});
MI.eraseFromParent();
return true;
}
// Handle non-constant mask splat (i.e. not sure if it's all zeros or all
// ones) by promoting it to an s8 splat.
LLT InterEltTy = LLT::scalar(8);
LLT InterTy = VecTy.changeElementType(InterEltTy);
auto ZExtSplatVal = MIB.buildZExt(InterEltTy, SplatVal);
auto And =
MIB.buildAnd(InterEltTy, ZExtSplatVal, MIB.buildConstant(InterEltTy, 1));
auto LHS = MIB.buildSplatVector(InterTy, And);
auto ZeroSplat =
MIB.buildSplatVector(InterTy, MIB.buildConstant(InterEltTy, 0));
MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, LHS, ZeroSplat);
MI.eraseFromParent();
return true;
}
static LLT getLMUL1Ty(LLT VecTy) {
assert(VecTy.getElementType().getSizeInBits() <= 64 &&
"Unexpected vector LLT");
return LLT::scalable_vector(RISCV::RVVBitsPerBlock /
VecTy.getElementType().getSizeInBits(),
VecTy.getElementType());
}
bool RISCVLegalizerInfo::legalizeExtractSubvector(MachineInstr &MI,
MachineIRBuilder &MIB) const {
GExtractSubvector &ES = cast<GExtractSubvector>(MI);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = ES.getReg(0);
Register Src = ES.getSrcVec();
uint64_t Idx = ES.getIndexImm();
// With an index of 0 this is a cast-like subvector, which can be performed
// with subregister operations.
if (Idx == 0)
return true;
LLT LitTy = MRI.getType(Dst);
LLT BigTy = MRI.getType(Src);
if (LitTy.getElementType() == LLT::scalar(1)) {
// We can't slide this mask vector up indexed by its i1 elements.
// This poses a problem when we wish to insert a scalable vector which
// can't be re-expressed as a larger type. Just choose the slow path and
// extend to a larger type, then truncate back down.
LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
LLT ExtLitTy = LitTy.changeElementType(LLT::scalar(8));
auto BigZExt = MIB.buildZExt(ExtBigTy, Src);
auto ExtractZExt = MIB.buildExtractSubvector(ExtLitTy, BigZExt, Idx);
auto SplatZero = MIB.buildSplatVector(
ExtLitTy, MIB.buildConstant(ExtLitTy.getElementType(), 0));
MIB.buildICmp(CmpInst::Predicate::ICMP_NE, Dst, ExtractZExt, SplatZero);
MI.eraseFromParent();
return true;
}
// extract_subvector scales the index by vscale if the subvector is scalable,
// and decomposeSubvectorInsertExtractToSubRegs takes this into account.
const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
MVT LitTyMVT = getMVTForLLT(LitTy);
auto Decompose =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
getMVTForLLT(BigTy), LitTyMVT, Idx, TRI);
unsigned RemIdx = Decompose.second;
// If the Idx has been completely eliminated then this is a subvector extract
// which naturally aligns to a vector register. These can easily be handled
// using subregister manipulation.
if (RemIdx == 0)
return true;
// Else LitTy is M1 or smaller and may need to be slid down: if LitTy
// was > M1 then the index would need to be a multiple of VLMAX, and so would
// divide exactly.
assert(
RISCVVType::decodeVLMUL(RISCVTargetLowering::getLMUL(LitTyMVT)).second ||
RISCVTargetLowering::getLMUL(LitTyMVT) == RISCVII::VLMUL::LMUL_1);
// If the vector type is an LMUL-group type, extract a subvector equal to the
// nearest full vector register type.
LLT InterLitTy = BigTy;
Register Vec = Src;
if (TypeSize::isKnownGT(BigTy.getSizeInBits(),
getLMUL1Ty(BigTy).getSizeInBits())) {
// If BigTy has an LMUL > 1, then LitTy should have a smaller LMUL, and
// we should have successfully decomposed the extract into a subregister.
assert(Decompose.first != RISCV::NoSubRegister);
InterLitTy = getLMUL1Ty(BigTy);
// SDAG builds a TargetExtractSubreg. We cannot create a a Copy with SubReg
// specified on the source Register (the equivalent) since generic virtual
// register does not allow subregister index.
Vec = MIB.buildExtractSubvector(InterLitTy, Src, Idx - RemIdx).getReg(0);
}
// Slide this vector register down by the desired number of elements in order
// to place the desired subvector starting at element 0.
const LLT XLenTy(STI.getXLenVT());
auto SlidedownAmt = MIB.buildVScale(XLenTy, RemIdx);
auto [Mask, VL] = buildDefaultVLOps(LitTy, MIB, MRI);
uint64_t Policy = RISCVII::TAIL_AGNOSTIC | RISCVII::MASK_AGNOSTIC;
auto Slidedown = MIB.buildInstr(
RISCV::G_VSLIDEDOWN_VL, {InterLitTy},
{MIB.buildUndef(InterLitTy), Vec, SlidedownAmt, Mask, VL, Policy});
// Now the vector is in the right position, extract our final subvector. This
// should resolve to a COPY.
MIB.buildExtractSubvector(Dst, Slidedown, 0);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeInsertSubvector(MachineInstr &MI,
LegalizerHelper &Helper,
MachineIRBuilder &MIB) const {
GInsertSubvector &IS = cast<GInsertSubvector>(MI);
MachineRegisterInfo &MRI = *MIB.getMRI();
Register Dst = IS.getReg(0);
Register BigVec = IS.getBigVec();
Register LitVec = IS.getSubVec();
uint64_t Idx = IS.getIndexImm();
LLT BigTy = MRI.getType(BigVec);
LLT LitTy = MRI.getType(LitVec);
if (Idx == 0 ||
MRI.getVRegDef(BigVec)->getOpcode() == TargetOpcode::G_IMPLICIT_DEF)
return true;
// We don't have the ability to slide mask vectors up indexed by their i1
// elements; the smallest we can do is i8. Often we are able to bitcast to
// equivalent i8 vectors. Otherwise, we can must zeroextend to equivalent i8
// vectors and truncate down after the insert.
if (LitTy.getElementType() == LLT::scalar(1)) {
auto BigTyMinElts = BigTy.getElementCount().getKnownMinValue();
auto LitTyMinElts = LitTy.getElementCount().getKnownMinValue();
if (BigTyMinElts >= 8 && LitTyMinElts >= 8)
return Helper.bitcast(
IS, 0,
LLT::vector(BigTy.getElementCount().divideCoefficientBy(8), 8));
// We can't slide this mask vector up indexed by its i1 elements.
// This poses a problem when we wish to insert a scalable vector which
// can't be re-expressed as a larger type. Just choose the slow path and
// extend to a larger type, then truncate back down.
LLT ExtBigTy = BigTy.changeElementType(LLT::scalar(8));
return Helper.widenScalar(IS, 0, ExtBigTy);
}
const RISCVRegisterInfo *TRI = STI.getRegisterInfo();
unsigned SubRegIdx, RemIdx;
std::tie(SubRegIdx, RemIdx) =
RISCVTargetLowering::decomposeSubvectorInsertExtractToSubRegs(
getMVTForLLT(BigTy), getMVTForLLT(LitTy), Idx, TRI);
TypeSize VecRegSize = TypeSize::getScalable(RISCV::RVVBitsPerBlock);
assert(isPowerOf2_64(
STI.expandVScale(LitTy.getSizeInBits()).getKnownMinValue()));
bool ExactlyVecRegSized =
STI.expandVScale(LitTy.getSizeInBits())
.isKnownMultipleOf(STI.expandVScale(VecRegSize));
// If the Idx has been completely eliminated and this subvector's size is a
// vector register or a multiple thereof, or the surrounding elements are
// undef, then this is a subvector insert which naturally aligns to a vector
// register. These can easily be handled using subregister manipulation.
if (RemIdx == 0 && ExactlyVecRegSized)
return true;
// If the subvector is smaller than a vector register, then the insertion
// must preserve the undisturbed elements of the register. We do this by
// lowering to an EXTRACT_SUBVECTOR grabbing the nearest LMUL=1 vector type
// (which resolves to a subregister copy), performing a VSLIDEUP to place the
// subvector within the vector register, and an INSERT_SUBVECTOR of that
// LMUL=1 type back into the larger vector (resolving to another subregister
// operation). See below for how our VSLIDEUP works. We go via a LMUL=1 type
// to avoid allocating a large register group to hold our subvector.
// VSLIDEUP works by leaving elements 0<i<OFFSET undisturbed, elements
// OFFSET<=i<VL set to the "subvector" and vl<=i<VLMAX set to the tail policy
// (in our case undisturbed). This means we can set up a subvector insertion
// where OFFSET is the insertion offset, and the VL is the OFFSET plus the
// size of the subvector.
const LLT XLenTy(STI.getXLenVT());
LLT InterLitTy = BigTy;
Register AlignedExtract = BigVec;
unsigned AlignedIdx = Idx - RemIdx;
if (TypeSize::isKnownGT(BigTy.getSizeInBits(),
getLMUL1Ty(BigTy).getSizeInBits())) {
InterLitTy = getLMUL1Ty(BigTy);
// Extract a subvector equal to the nearest full vector register type. This
// should resolve to a G_EXTRACT on a subreg.
AlignedExtract =
MIB.buildExtractSubvector(InterLitTy, BigVec, AlignedIdx).getReg(0);
}
auto Insert = MIB.buildInsertSubvector(InterLitTy, MIB.buildUndef(InterLitTy),
LitVec, 0);
auto [Mask, _] = buildDefaultVLOps(BigTy, MIB, MRI);
auto VL = MIB.buildVScale(XLenTy, LitTy.getElementCount().getKnownMinValue());
// If we're inserting into the lowest elements, use a tail undisturbed
// vmv.v.v.
MachineInstrBuilder Inserted;
bool NeedInsertSubvec =
TypeSize::isKnownGT(BigTy.getSizeInBits(), InterLitTy.getSizeInBits());
Register InsertedDst =
NeedInsertSubvec ? MRI.createGenericVirtualRegister(InterLitTy) : Dst;
if (RemIdx == 0) {
Inserted = MIB.buildInstr(RISCV::G_VMV_V_V_VL, {InsertedDst},
{AlignedExtract, Insert, VL});
} else {
auto SlideupAmt = MIB.buildVScale(XLenTy, RemIdx);
// Construct the vector length corresponding to RemIdx + length(LitTy).
VL = MIB.buildAdd(XLenTy, SlideupAmt, VL);
// Use tail agnostic policy if we're inserting over InterLitTy's tail.
ElementCount EndIndex =
ElementCount::getScalable(RemIdx) + LitTy.getElementCount();
uint64_t Policy = RISCVII::TAIL_UNDISTURBED_MASK_UNDISTURBED;
if (STI.expandVScale(EndIndex) ==
STI.expandVScale(InterLitTy.getElementCount()))
Policy = RISCVII::TAIL_AGNOSTIC;
Inserted =
MIB.buildInstr(RISCV::G_VSLIDEUP_VL, {InsertedDst},
{AlignedExtract, Insert, SlideupAmt, Mask, VL, Policy});
}
// If required, insert this subvector back into the correct vector register.
// This should resolve to an INSERT_SUBREG instruction.
if (NeedInsertSubvec)
MIB.buildInsertSubvector(Dst, BigVec, Inserted, AlignedIdx);
MI.eraseFromParent();
return true;
}
bool RISCVLegalizerInfo::legalizeCustom(
LegalizerHelper &Helper, MachineInstr &MI,
LostDebugLocObserver &LocObserver) const {
MachineIRBuilder &MIRBuilder = Helper.MIRBuilder;
MachineRegisterInfo &MRI = *MIRBuilder.getMRI();
MachineFunction &MF = *MI.getParent()->getParent();
switch (MI.getOpcode()) {
default:
// No idea what to do.
return false;
case TargetOpcode::G_ABS:
return Helper.lowerAbsToMaxNeg(MI);
// TODO: G_FCONSTANT
case TargetOpcode::G_CONSTANT: {
const Function &F = MF.getFunction();
// TODO: if PSI and BFI are present, add " ||
// llvm::shouldOptForSize(*CurMBB, PSI, BFI)".
bool ShouldOptForSize = F.hasOptSize() || F.hasMinSize();
const ConstantInt *ConstVal = MI.getOperand(1).getCImm();
if (!shouldBeInConstantPool(ConstVal->getValue(), ShouldOptForSize))
return true;
return Helper.lowerConstant(MI);
}
case TargetOpcode::G_SEXT_INREG: {
LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
int64_t SizeInBits = MI.getOperand(2).getImm();
// Source size of 32 is sext.w.
if (DstTy.getSizeInBits() == 64 && SizeInBits == 32)
return true;
if (STI.hasStdExtZbb() && (SizeInBits == 8 || SizeInBits == 16))
return true;
return Helper.lower(MI, 0, /* Unused hint type */ LLT()) ==
LegalizerHelper::Legalized;
}
case TargetOpcode::G_IS_FPCLASS: {
Register GISFPCLASS = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const MachineOperand &ImmOp = MI.getOperand(2);
MachineIRBuilder MIB(MI);
// Turn LLVM IR's floating point classes to that in RISC-V,
// by simply rotating the 10-bit immediate right by two bits.
APInt GFpClassImm(10, static_cast<uint64_t>(ImmOp.getImm()));
auto FClassMask = MIB.buildConstant(sXLen, GFpClassImm.rotr(2).zext(XLen));
auto ConstZero = MIB.buildConstant(sXLen, 0);
auto GFClass = MIB.buildInstr(RISCV::G_FCLASS, {sXLen}, {Src});
auto And = MIB.buildAnd(sXLen, GFClass, FClassMask);
MIB.buildICmp(CmpInst::ICMP_NE, GISFPCLASS, And, ConstZero);
MI.eraseFromParent();
return true;
}
case TargetOpcode::G_VASTART:
return legalizeVAStart(MI, MIRBuilder);
case TargetOpcode::G_VSCALE:
return legalizeVScale(MI, MIRBuilder);
case TargetOpcode::G_ZEXT:
case TargetOpcode::G_SEXT:
case TargetOpcode::G_ANYEXT:
return legalizeExt(MI, MIRBuilder);
case TargetOpcode::G_SPLAT_VECTOR:
return legalizeSplatVector(MI, MIRBuilder);
case TargetOpcode::G_EXTRACT_SUBVECTOR:
return legalizeExtractSubvector(MI, MIRBuilder);
case TargetOpcode::G_INSERT_SUBVECTOR:
return legalizeInsertSubvector(MI, Helper, MIRBuilder);
case TargetOpcode::G_LOAD:
case TargetOpcode::G_STORE:
return legalizeLoadStore(MI, Helper, MIRBuilder);
}
llvm_unreachable("expected switch to return");
}