[lld] Add thunks for hexagon (#111217)

Without thunks, programs will encounter link errors complaining that the
branch target is out of range. Thunks will extend the range of branch
targets, which is a critical need for large programs. Thunks provide
this flexibility at a cost of some modest code size increase.

When configured with the maximal feature set, the hexagon port of the
linux kernel would often encounter these limitations when linking with
`lld`.

The relocations which will be extended by thunks are:

* R_HEX_B22_PCREL, R_HEX_{G,L}D_PLT_B22_PCREL, R_HEX_PLT_B22_PCREL
relocations have a range of ± 8MiB on the baseline
* R_HEX_B15_PCREL: ±65,532 bytes
* R_HEX_B13_PCREL: ±16,380 bytes
* R_HEX_B9_PCREL: ±1,020 bytes

Fixes #149689 

Co-authored-by: Alexey Karyakin <akaryaki@quicinc.com>

---------

Co-authored-by: Alexey Karyakin <akaryaki@quicinc.com>
9 files changed
tree: a076e9023dd243f3eca302f8619731b01344032f
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.