[lld][WebAssembly] Add an `--initial-heap` option (#75594)

It is beneficial to preallocate a certain number of pages in the linear
memory (i. e. use the "minimum" field of WASM memories) so that fewer
"memory.grow"s are needed at startup.

So far, the way to do that has been to pass the "--initial-memory"
option to the linker. It works, but has the very significant downside of
requiring the user to know the size of static data beforehand, as it
must not exceed the number of bytes passed-in as "--initial-memory".

The new "--initial-heap" option avoids this downside by simply appending
the specified number of pages to static data (and stack), regardless of
how large they already are.

Ref: https://github.com/emscripten-core/emscripten/issues/20888.
6 files changed
tree: 9079f0dce0798d9f624458a790131f2b8d522fe3
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. libc/
  11. libclc/
  12. libcxx/
  13. libcxxabi/
  14. libunwind/
  15. lld/
  16. lldb/
  17. llvm/
  18. llvm-libgcc/
  19. mlir/
  20. openmp/
  21. polly/
  22. pstl/
  23. runtimes/
  24. third-party/
  25. utils/
  26. .arcconfig
  27. .arclint
  28. .clang-format
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitignore
  32. .mailmap
  33. CODE_OF_CONDUCT.md
  34. CONTRIBUTING.md
  35. LICENSE.TXT
  36. README.md
  37. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.