| //===- SCFToOpenMP.cpp - Structured Control Flow to OpenMP conversion -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements a pass to convert scf.parallel operations into OpenMP |
| // parallel loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Conversion/SCFToOpenMP/SCFToOpenMP.h" |
| #include "../PassDetail.h" |
| #include "mlir/Analysis/LoopAnalysis.h" |
| #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" |
| #include "mlir/Dialect/LLVMIR/LLVMDialect.h" |
| #include "mlir/Dialect/OpenMP/OpenMPDialect.h" |
| #include "mlir/Dialect/SCF/SCF.h" |
| #include "mlir/Dialect/StandardOps/IR/Ops.h" |
| #include "mlir/IR/ImplicitLocOpBuilder.h" |
| #include "mlir/IR/SymbolTable.h" |
| #include "mlir/Transforms/DialectConversion.h" |
| |
| using namespace mlir; |
| |
| /// Matches a block containing a "simple" reduction. The expected shape of the |
| /// block is as follows. |
| /// |
| /// ^bb(%arg0, %arg1): |
| /// %0 = OpTy(%arg0, %arg1) |
| /// scf.reduce.return %0 |
| template <typename... OpTy> |
| static bool matchSimpleReduction(Block &block) { |
| if (block.empty() || llvm::hasSingleElement(block) || |
| std::next(block.begin(), 2) != block.end()) |
| return false; |
| |
| if (block.getNumArguments() != 2) |
| return false; |
| |
| SmallVector<Operation *, 4> combinerOps; |
| Value reducedVal = matchReduction({block.getArguments()[1]}, |
| /*redPos=*/0, combinerOps); |
| |
| if (!reducedVal || !reducedVal.isa<BlockArgument>() || |
| combinerOps.size() != 1) |
| return false; |
| |
| return isa<OpTy...>(combinerOps[0]) && |
| isa<scf::ReduceReturnOp>(block.back()) && |
| block.front().getOperands() == block.getArguments(); |
| } |
| |
| /// Matches a block containing a select-based min/max reduction. The types of |
| /// select and compare operations are provided as template arguments. The |
| /// comparison predicates suitable for min and max are provided as function |
| /// arguments. If a reduction is matched, `ifMin` will be set if the reduction |
| /// compute the minimum and unset if it computes the maximum, otherwise it |
| /// remains unmodified. The expected shape of the block is as follows. |
| /// |
| /// ^bb(%arg0, %arg1): |
| /// %0 = CompareOpTy(<one-of-predicates>, %arg0, %arg1) |
| /// %1 = SelectOpTy(%0, %arg0, %arg1) // %arg0, %arg1 may be swapped here. |
| /// scf.reduce.return %1 |
| template < |
| typename CompareOpTy, typename SelectOpTy, |
| typename Predicate = decltype(std::declval<CompareOpTy>().predicate())> |
| static bool |
| matchSelectReduction(Block &block, ArrayRef<Predicate> lessThanPredicates, |
| ArrayRef<Predicate> greaterThanPredicates, bool &isMin) { |
| static_assert(llvm::is_one_of<SelectOpTy, SelectOp, LLVM::SelectOp>::value, |
| "only std and llvm select ops are supported"); |
| |
| // Expect exactly three operations in the block. |
| if (block.empty() || llvm::hasSingleElement(block) || |
| std::next(block.begin(), 2) == block.end() || |
| std::next(block.begin(), 3) != block.end()) |
| return false; |
| |
| // Check op kinds. |
| auto compare = dyn_cast<CompareOpTy>(block.front()); |
| auto select = dyn_cast<SelectOpTy>(block.front().getNextNode()); |
| auto terminator = dyn_cast<scf::ReduceReturnOp>(block.back()); |
| if (!compare || !select || !terminator) |
| return false; |
| |
| // Block arguments must be compared. |
| if (compare->getOperands() != block.getArguments()) |
| return false; |
| |
| // Detect whether the comparison is less-than or greater-than, otherwise bail. |
| bool isLess; |
| if (llvm::find(lessThanPredicates, compare.getPredicate()) != |
| lessThanPredicates.end()) { |
| isLess = true; |
| } else if (llvm::find(greaterThanPredicates, compare.getPredicate()) != |
| greaterThanPredicates.end()) { |
| isLess = false; |
| } else { |
| return false; |
| } |
| |
| if (select.getCondition() != compare.getResult()) |
| return false; |
| |
| // Detect if the operands are swapped between cmpf and select. Match the |
| // comparison type with the requested type or with the opposite of the |
| // requested type if the operands are swapped. Use generic accessors because |
| // std and LLVM versions of select have different operand names but identical |
| // positions. |
| constexpr unsigned kTrueValue = 1; |
| constexpr unsigned kFalseValue = 2; |
| bool sameOperands = select.getOperand(kTrueValue) == compare.getLhs() && |
| select.getOperand(kFalseValue) == compare.getRhs(); |
| bool swappedOperands = select.getOperand(kTrueValue) == compare.getRhs() && |
| select.getOperand(kFalseValue) == compare.getLhs(); |
| if (!sameOperands && !swappedOperands) |
| return false; |
| |
| if (select.getResult() != terminator.result()) |
| return false; |
| |
| // The reduction is a min if it uses less-than predicates with same operands |
| // or greather-than predicates with swapped operands. Similarly for max. |
| isMin = (isLess && sameOperands) || (!isLess && swappedOperands); |
| return isMin || (isLess & swappedOperands) || (!isLess && sameOperands); |
| } |
| |
| /// Returns the float semantics for the given float type. |
| static const llvm::fltSemantics &fltSemanticsForType(FloatType type) { |
| if (type.isF16()) |
| return llvm::APFloat::IEEEhalf(); |
| if (type.isF32()) |
| return llvm::APFloat::IEEEsingle(); |
| if (type.isF64()) |
| return llvm::APFloat::IEEEdouble(); |
| if (type.isF128()) |
| return llvm::APFloat::IEEEquad(); |
| if (type.isBF16()) |
| return llvm::APFloat::BFloat(); |
| if (type.isF80()) |
| return llvm::APFloat::x87DoubleExtended(); |
| llvm_unreachable("unknown float type"); |
| } |
| |
| /// Returns an attribute with the minimum (if `min` is set) or the maximum value |
| /// (otherwise) for the given float type. |
| static Attribute minMaxValueForFloat(Type type, bool min) { |
| auto fltType = type.cast<FloatType>(); |
| return FloatAttr::get( |
| type, llvm::APFloat::getLargest(fltSemanticsForType(fltType), min)); |
| } |
| |
| /// Returns an attribute with the signed integer minimum (if `min` is set) or |
| /// the maximum value (otherwise) for the given integer type, regardless of its |
| /// signedness semantics (only the width is considered). |
| static Attribute minMaxValueForSignedInt(Type type, bool min) { |
| auto intType = type.cast<IntegerType>(); |
| unsigned bitwidth = intType.getWidth(); |
| return IntegerAttr::get(type, min ? llvm::APInt::getSignedMinValue(bitwidth) |
| : llvm::APInt::getSignedMaxValue(bitwidth)); |
| } |
| |
| /// Returns an attribute with the unsigned integer minimum (if `min` is set) or |
| /// the maximum value (otherwise) for the given integer type, regardless of its |
| /// signedness semantics (only the width is considered). |
| static Attribute minMaxValueForUnsignedInt(Type type, bool min) { |
| auto intType = type.cast<IntegerType>(); |
| unsigned bitwidth = intType.getWidth(); |
| return IntegerAttr::get(type, min ? llvm::APInt::getNullValue(bitwidth) |
| : llvm::APInt::getAllOnesValue(bitwidth)); |
| } |
| |
| /// Creates an OpenMP reduction declaration and inserts it into the provided |
| /// symbol table. The declaration has a constant initializer with the neutral |
| /// value `initValue`, and the reduction combiner carried over from `reduce`. |
| static omp::ReductionDeclareOp createDecl(PatternRewriter &builder, |
| SymbolTable &symbolTable, |
| scf::ReduceOp reduce, |
| Attribute initValue) { |
| OpBuilder::InsertionGuard guard(builder); |
| auto decl = builder.create<omp::ReductionDeclareOp>( |
| reduce.getLoc(), "__scf_reduction", reduce.operand().getType()); |
| symbolTable.insert(decl); |
| |
| Type type = reduce.operand().getType(); |
| builder.createBlock(&decl.initializerRegion(), decl.initializerRegion().end(), |
| {type}); |
| builder.setInsertionPointToEnd(&decl.initializerRegion().back()); |
| Value init = |
| builder.create<LLVM::ConstantOp>(reduce.getLoc(), type, initValue); |
| builder.create<omp::YieldOp>(reduce.getLoc(), init); |
| |
| Operation *terminator = &reduce.getRegion().front().back(); |
| assert(isa<scf::ReduceReturnOp>(terminator) && |
| "expected reduce op to be terminated by redure return"); |
| builder.setInsertionPoint(terminator); |
| builder.replaceOpWithNewOp<omp::YieldOp>(terminator, |
| terminator->getOperands()); |
| builder.inlineRegionBefore(reduce.getRegion(), decl.reductionRegion(), |
| decl.reductionRegion().end()); |
| return decl; |
| } |
| |
| /// Adds an atomic reduction combiner to the given OpenMP reduction declaration |
| /// using llvm.atomicrmw of the given kind. |
| static omp::ReductionDeclareOp addAtomicRMW(OpBuilder &builder, |
| LLVM::AtomicBinOp atomicKind, |
| omp::ReductionDeclareOp decl, |
| scf::ReduceOp reduce) { |
| OpBuilder::InsertionGuard guard(builder); |
| Type type = reduce.operand().getType(); |
| Type ptrType = LLVM::LLVMPointerType::get(type); |
| builder.createBlock(&decl.atomicReductionRegion(), |
| decl.atomicReductionRegion().end(), {ptrType, ptrType}); |
| Block *atomicBlock = &decl.atomicReductionRegion().back(); |
| builder.setInsertionPointToEnd(atomicBlock); |
| Value loaded = builder.create<LLVM::LoadOp>(reduce.getLoc(), |
| atomicBlock->getArgument(1)); |
| builder.create<LLVM::AtomicRMWOp>(reduce.getLoc(), type, atomicKind, |
| atomicBlock->getArgument(0), loaded, |
| LLVM::AtomicOrdering::monotonic); |
| builder.create<omp::YieldOp>(reduce.getLoc(), ArrayRef<Value>()); |
| return decl; |
| } |
| |
| /// Creates an OpenMP reduction declaration that corresponds to the given SCF |
| /// reduction and returns it. Recognizes common reductions in order to identify |
| /// the neutral value, necessary for the OpenMP declaration. If the reduction |
| /// cannot be recognized, returns null. |
| static omp::ReductionDeclareOp declareReduction(PatternRewriter &builder, |
| scf::ReduceOp reduce) { |
| Operation *container = SymbolTable::getNearestSymbolTable(reduce); |
| SymbolTable symbolTable(container); |
| |
| // Insert reduction declarations in the symbol-table ancestor before the |
| // ancestor of the current insertion point. |
| Operation *insertionPoint = reduce; |
| while (insertionPoint->getParentOp() != container) |
| insertionPoint = insertionPoint->getParentOp(); |
| OpBuilder::InsertionGuard guard(builder); |
| builder.setInsertionPoint(insertionPoint); |
| |
| assert(llvm::hasSingleElement(reduce.getRegion()) && |
| "expected reduction region to have a single element"); |
| |
| // Match simple binary reductions that can be expressed with atomicrmw. |
| Type type = reduce.operand().getType(); |
| Block &reduction = reduce.getRegion().front(); |
| if (matchSimpleReduction<arith::AddFOp, LLVM::FAddOp>(reduction)) { |
| omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce, |
| builder.getFloatAttr(type, 0.0)); |
| return addAtomicRMW(builder, LLVM::AtomicBinOp::fadd, decl, reduce); |
| } |
| if (matchSimpleReduction<arith::AddIOp, LLVM::AddOp>(reduction)) { |
| omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce, |
| builder.getIntegerAttr(type, 0)); |
| return addAtomicRMW(builder, LLVM::AtomicBinOp::add, decl, reduce); |
| } |
| if (matchSimpleReduction<arith::OrIOp, LLVM::OrOp>(reduction)) { |
| omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce, |
| builder.getIntegerAttr(type, 0)); |
| return addAtomicRMW(builder, LLVM::AtomicBinOp::_or, decl, reduce); |
| } |
| if (matchSimpleReduction<arith::XOrIOp, LLVM::XOrOp>(reduction)) { |
| omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce, |
| builder.getIntegerAttr(type, 0)); |
| return addAtomicRMW(builder, LLVM::AtomicBinOp::_xor, decl, reduce); |
| } |
| if (matchSimpleReduction<arith::AndIOp, LLVM::AndOp>(reduction)) { |
| omp::ReductionDeclareOp decl = createDecl( |
| builder, symbolTable, reduce, |
| builder.getIntegerAttr( |
| type, llvm::APInt::getAllOnesValue(type.getIntOrFloatBitWidth()))); |
| return addAtomicRMW(builder, LLVM::AtomicBinOp::_and, decl, reduce); |
| } |
| |
| // Match simple binary reductions that cannot be expressed with atomicrmw. |
| // TODO: add atomic region using cmpxchg (which needs atomic load to be |
| // available as an op). |
| if (matchSimpleReduction<arith::MulFOp, LLVM::FMulOp>(reduction)) { |
| return createDecl(builder, symbolTable, reduce, |
| builder.getFloatAttr(type, 1.0)); |
| } |
| |
| // Match select-based min/max reductions. |
| bool isMin; |
| if (matchSelectReduction<arith::CmpFOp, SelectOp>( |
| reduction, {arith::CmpFPredicate::OLT, arith::CmpFPredicate::OLE}, |
| {arith::CmpFPredicate::OGT, arith::CmpFPredicate::OGE}, isMin) || |
| matchSelectReduction<LLVM::FCmpOp, LLVM::SelectOp>( |
| reduction, {LLVM::FCmpPredicate::olt, LLVM::FCmpPredicate::ole}, |
| {LLVM::FCmpPredicate::ogt, LLVM::FCmpPredicate::oge}, isMin)) { |
| return createDecl(builder, symbolTable, reduce, |
| minMaxValueForFloat(type, !isMin)); |
| } |
| if (matchSelectReduction<arith::CmpIOp, SelectOp>( |
| reduction, {arith::CmpIPredicate::slt, arith::CmpIPredicate::sle}, |
| {arith::CmpIPredicate::sgt, arith::CmpIPredicate::sge}, isMin) || |
| matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>( |
| reduction, {LLVM::ICmpPredicate::slt, LLVM::ICmpPredicate::sle}, |
| {LLVM::ICmpPredicate::sgt, LLVM::ICmpPredicate::sge}, isMin)) { |
| omp::ReductionDeclareOp decl = createDecl( |
| builder, symbolTable, reduce, minMaxValueForSignedInt(type, !isMin)); |
| return addAtomicRMW(builder, |
| isMin ? LLVM::AtomicBinOp::min : LLVM::AtomicBinOp::max, |
| decl, reduce); |
| } |
| if (matchSelectReduction<arith::CmpIOp, SelectOp>( |
| reduction, {arith::CmpIPredicate::ult, arith::CmpIPredicate::ule}, |
| {arith::CmpIPredicate::ugt, arith::CmpIPredicate::uge}, isMin) || |
| matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>( |
| reduction, {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::ule}, |
| {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::uge}, isMin)) { |
| omp::ReductionDeclareOp decl = createDecl( |
| builder, symbolTable, reduce, minMaxValueForUnsignedInt(type, !isMin)); |
| return addAtomicRMW( |
| builder, isMin ? LLVM::AtomicBinOp::umin : LLVM::AtomicBinOp::umax, |
| decl, reduce); |
| } |
| |
| return nullptr; |
| } |
| |
| namespace { |
| |
| struct ParallelOpLowering : public OpRewritePattern<scf::ParallelOp> { |
| using OpRewritePattern<scf::ParallelOp>::OpRewritePattern; |
| |
| LogicalResult matchAndRewrite(scf::ParallelOp parallelOp, |
| PatternRewriter &rewriter) const override { |
| // Replace SCF yield with OpenMP yield. |
| { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.setInsertionPointToEnd(parallelOp.getBody()); |
| assert(llvm::hasSingleElement(parallelOp.region()) && |
| "expected scf.parallel to have one block"); |
| rewriter.replaceOpWithNewOp<omp::YieldOp>( |
| parallelOp.getBody()->getTerminator(), ValueRange()); |
| } |
| |
| // Declare reductions. |
| // TODO: consider checking it here is already a compatible reduction |
| // declaration and use it instead of redeclaring. |
| SmallVector<Attribute> reductionDeclSymbols; |
| for (auto reduce : parallelOp.getOps<scf::ReduceOp>()) { |
| omp::ReductionDeclareOp decl = declareReduction(rewriter, reduce); |
| if (!decl) |
| return failure(); |
| reductionDeclSymbols.push_back( |
| SymbolRefAttr::get(rewriter.getContext(), decl.sym_name())); |
| } |
| |
| // Allocate reduction variables. Make sure the we don't overflow the stack |
| // with local `alloca`s by saving and restoring the stack pointer. |
| Location loc = parallelOp.getLoc(); |
| Value one = rewriter.create<LLVM::ConstantOp>( |
| loc, rewriter.getIntegerType(64), rewriter.getI64IntegerAttr(1)); |
| SmallVector<Value> reductionVariables; |
| reductionVariables.reserve(parallelOp.getNumReductions()); |
| Value token = rewriter.create<LLVM::StackSaveOp>( |
| loc, LLVM::LLVMPointerType::get(rewriter.getIntegerType(8))); |
| for (Value init : parallelOp.initVals()) { |
| assert((LLVM::isCompatibleType(init.getType()) || |
| init.getType().isa<LLVM::PointerElementTypeInterface>()) && |
| "cannot create a reduction variable if the type is not an LLVM " |
| "pointer element"); |
| Value storage = rewriter.create<LLVM::AllocaOp>( |
| loc, LLVM::LLVMPointerType::get(init.getType()), one, 0); |
| rewriter.create<LLVM::StoreOp>(loc, init, storage); |
| reductionVariables.push_back(storage); |
| } |
| |
| // Replace the reduction operations contained in this loop. Must be done |
| // here rather than in a separate pattern to have access to the list of |
| // reduction variables. |
| for (auto pair : |
| llvm::zip(parallelOp.getOps<scf::ReduceOp>(), reductionVariables)) { |
| OpBuilder::InsertionGuard guard(rewriter); |
| scf::ReduceOp reduceOp = std::get<0>(pair); |
| rewriter.setInsertionPoint(reduceOp); |
| rewriter.replaceOpWithNewOp<omp::ReductionOp>( |
| reduceOp, reduceOp.operand(), std::get<1>(pair)); |
| } |
| |
| // Create the parallel wrapper. |
| auto ompParallel = rewriter.create<omp::ParallelOp>(loc); |
| { |
| OpBuilder::InsertionGuard guard(rewriter); |
| rewriter.createBlock(&ompParallel.region()); |
| |
| // Replace SCF yield with OpenMP yield. |
| { |
| OpBuilder::InsertionGuard innerGuard(rewriter); |
| rewriter.setInsertionPointToEnd(parallelOp.getBody()); |
| assert(llvm::hasSingleElement(parallelOp.region()) && |
| "expected scf.parallel to have one block"); |
| rewriter.replaceOpWithNewOp<omp::YieldOp>( |
| parallelOp.getBody()->getTerminator(), ValueRange()); |
| } |
| |
| // Replace the loop. |
| auto loop = rewriter.create<omp::WsLoopOp>( |
| parallelOp.getLoc(), parallelOp.lowerBound(), parallelOp.upperBound(), |
| parallelOp.step()); |
| rewriter.create<omp::TerminatorOp>(loc); |
| |
| rewriter.inlineRegionBefore(parallelOp.region(), loop.region(), |
| loop.region().begin()); |
| if (!reductionVariables.empty()) { |
| loop.reductionsAttr( |
| ArrayAttr::get(rewriter.getContext(), reductionDeclSymbols)); |
| loop.reduction_varsMutable().append(reductionVariables); |
| } |
| } |
| |
| // Load loop results. |
| SmallVector<Value> results; |
| results.reserve(reductionVariables.size()); |
| for (Value variable : reductionVariables) { |
| Value res = rewriter.create<LLVM::LoadOp>(loc, variable); |
| results.push_back(res); |
| } |
| rewriter.replaceOp(parallelOp, results); |
| |
| rewriter.create<LLVM::StackRestoreOp>(loc, token); |
| return success(); |
| } |
| }; |
| |
| /// Applies the conversion patterns in the given function. |
| static LogicalResult applyPatterns(ModuleOp module) { |
| ConversionTarget target(*module.getContext()); |
| target.addIllegalOp<scf::ReduceOp, scf::ReduceReturnOp, scf::ParallelOp>(); |
| target.addLegalDialect<omp::OpenMPDialect, LLVM::LLVMDialect>(); |
| |
| RewritePatternSet patterns(module.getContext()); |
| patterns.add<ParallelOpLowering>(module.getContext()); |
| FrozenRewritePatternSet frozen(std::move(patterns)); |
| return applyPartialConversion(module, target, frozen); |
| } |
| |
| /// A pass converting SCF operations to OpenMP operations. |
| struct SCFToOpenMPPass : public ConvertSCFToOpenMPBase<SCFToOpenMPPass> { |
| /// Pass entry point. |
| void runOnOperation() override { |
| if (failed(applyPatterns(getOperation()))) |
| signalPassFailure(); |
| } |
| }; |
| |
| } // end namespace |
| |
| std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertSCFToOpenMPPass() { |
| return std::make_unique<SCFToOpenMPPass>(); |
| } |