blob: d88a4172a53ccf878d7316c01dee3923a33cb5c1 [file] [log] [blame]
//===--- LLJITWithRemoteDebugging.cpp - LLJIT targeting a child process ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This example shows how to use LLJIT and JITLink for out-of-process execution
// with debug support. A few notes beforehand:
//
// * Debuggers must implement the GDB JIT interface (gdb, udb, lldb 12+).
// * Debug support is currently limited to ELF on x86-64 platforms that run
// Unix-like systems.
// * There is a test for this example and it ships an IR file that is prepared
// for the instructions below.
//
//
// The following command line session provides a complete walkthrough of the
// feature using LLDB 12:
//
// [Terminal 1] Prepare a debuggable out-of-process JIT session:
//
// > cd llvm-project/build
// > ninja LLJITWithRemoteDebugging llvm-jitlink-executor
// > cp ../llvm/test/Examples/OrcV2Examples/Inputs/argc_sub1_elf.ll .
// > bin/LLJITWithRemoteDebugging --wait-for-debugger argc_sub1_elf.ll
// Found out-of-process executor: bin/llvm-jitlink-executor
// Launched executor in subprocess: 65535
// Attach a debugger and press any key to continue.
//
//
// [Terminal 2] Attach a debugger to the child process:
//
// (lldb) log enable lldb jit
// (lldb) settings set plugin.jit-loader.gdb.enable on
// (lldb) settings set target.source-map Inputs/ \
// /path/to/llvm-project/llvm/test/Examples/OrcV2Examples/Inputs/
// (lldb) attach -p 65535
// JITLoaderGDB::SetJITBreakpoint looking for JIT register hook
// JITLoaderGDB::SetJITBreakpoint setting JIT breakpoint
// Process 65535 stopped
// (lldb) b sub1
// Breakpoint 1: no locations (pending).
// WARNING: Unable to resolve breakpoint to any actual locations.
// (lldb) c
// Process 65535 resuming
//
//
// [Terminal 1] Press a key to start code generation and execution:
//
// Parsed input IR code from: argc_sub1_elf.ll
// Initialized LLJIT for remote executor
// Running: argc_sub1_elf.ll
//
//
// [Terminal 2] Breakpoint hits; we change the argc value from 1 to 42:
//
// (lldb) JITLoaderGDB::JITDebugBreakpointHit hit JIT breakpoint
// JITLoaderGDB::ReadJITDescriptorImpl registering JIT entry at 0x106b34000
// 1 location added to breakpoint 1
// Process 65535 stopped
// * thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1
// frame #0: JIT(0x106b34000)`sub1(x=1) at argc_sub1.c:1:28
// -> 1 int sub1(int x) { return x - 1; }
// 2 int main(int argc, char **argv) { return sub1(argc); }
// (lldb) p x
// (int) $0 = 1
// (lldb) expr x = 42
// (int) $1 = 42
// (lldb) c
//
//
// [Terminal 1] Example output reflects the modified value:
//
// Exit code: 41
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/ExecutionEngine/Orc/ObjectLinkingLayer.h"
#include "llvm/ExecutionEngine/Orc/SimpleRemoteEPC.h"
#include "llvm/ExecutionEngine/Orc/ThreadSafeModule.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/raw_ostream.h"
#include "../ExampleModules.h"
#include "RemoteJITUtils.h"
#include <memory>
#include <string>
using namespace llvm;
using namespace llvm::orc;
// The LLVM IR file to run.
static cl::list<std::string> InputFiles(cl::Positional, cl::OneOrMore,
cl::desc("<input files>"));
// Command line arguments to pass to the JITed main function.
static cl::list<std::string> InputArgv("args", cl::Positional,
cl::desc("<program arguments>..."),
cl::ZeroOrMore, cl::PositionalEatsArgs);
// Given paths must exist on the remote target.
static cl::list<std::string>
Dylibs("dlopen", cl::desc("Dynamic libraries to load before linking"),
cl::value_desc("filename"), cl::ZeroOrMore);
// File path of the executable to launch for execution in a child process.
// Inter-process communication will go through stdin/stdout pipes.
static cl::opt<std::string>
OOPExecutor("executor", cl::desc("Set the out-of-process executor"),
cl::value_desc("filename"));
// Network address of a running executor process that we can connect via TCP. It
// may run locally or on a remote machine.
static cl::opt<std::string> OOPExecutorConnectTCP(
"connect",
cl::desc("Connect to an out-of-process executor through a TCP socket"),
cl::value_desc("<hostname>:<port>"));
// Give the user a chance to connect a debugger. Once we connected the executor
// process, wait for the user to press a key (and print out its PID if it's a
// child process).
static cl::opt<bool>
WaitForDebugger("wait-for-debugger",
cl::desc("Wait for user input before entering JITed code"),
cl::init(false));
ExitOnError ExitOnErr;
int main(int argc, char *argv[]) {
InitLLVM X(argc, argv);
InitializeNativeTarget();
InitializeNativeTargetAsmPrinter();
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
cl::ParseCommandLineOptions(argc, argv, "LLJITWithRemoteDebugging");
std::unique_ptr<SimpleRemoteEPC> EPC;
if (OOPExecutorConnectTCP.getNumOccurrences() > 0) {
// Connect to a running out-of-process executor through a TCP socket.
EPC = ExitOnErr(connectTCPSocket(OOPExecutorConnectTCP));
outs() << "Connected to executor at " << OOPExecutorConnectTCP << "\n";
} else {
// Launch an out-of-process executor locally in a child process.
std::string Path =
OOPExecutor.empty() ? findLocalExecutor(argv[0]) : OOPExecutor;
outs() << "Found out-of-process executor: " << Path << "\n";
uint64_t PID;
std::tie(EPC, PID) = ExitOnErr(launchLocalExecutor(Path));
outs() << "Launched executor in subprocess: " << PID << "\n";
}
if (WaitForDebugger) {
outs() << "Attach a debugger and press any key to continue.\n";
fflush(stdin);
getchar();
}
// Load the given IR files.
std::vector<ThreadSafeModule> TSMs;
for (const std::string &Path : InputFiles) {
outs() << "Parsing input IR code from: " << Path << "\n";
TSMs.push_back(ExitOnErr(parseExampleModuleFromFile(Path)));
}
StringRef TT;
StringRef MainModuleName;
TSMs.front().withModuleDo([&MainModuleName, &TT](Module &M) {
MainModuleName = M.getName();
TT = M.getTargetTriple();
});
for (const ThreadSafeModule &TSM : TSMs)
ExitOnErr(TSM.withModuleDo([TT, MainModuleName](Module &M) -> Error {
if (M.getTargetTriple() != TT)
return make_error<StringError>(
formatv("Different target triples in input files:\n"
" '{0}' in '{1}'\n '{2}' in '{3}'",
TT, MainModuleName, M.getTargetTriple(), M.getName()),
inconvertibleErrorCode());
return Error::success();
}));
// Create a target machine that matches the input triple.
JITTargetMachineBuilder JTMB((Triple(TT)));
JTMB.setCodeModel(CodeModel::Small);
JTMB.setRelocationModel(Reloc::PIC_);
// Create LLJIT and destroy it before disconnecting the target process.
outs() << "Initializing LLJIT for remote executor\n";
auto J = ExitOnErr(LLJITBuilder()
.setExecutorProcessControl(std::move(EPC))
.setJITTargetMachineBuilder(std::move(JTMB))
.setObjectLinkingLayerCreator([&](auto &ES, const auto &TT) {
return std::make_unique<ObjectLinkingLayer>(ES);
})
.create());
// Add plugin for debug support.
ExitOnErr(addDebugSupport(J->getObjLinkingLayer()));
// Load required shared libraries on the remote target and add a generator
// for each of it, so the compiler can lookup their symbols.
for (const std::string &Path : Dylibs)
J->getMainJITDylib().addGenerator(
ExitOnErr(loadDylib(J->getExecutionSession(), Path)));
// Add the loaded IR module to the JIT. This will set up symbol tables and
// prepare for materialization.
for (ThreadSafeModule &TSM : TSMs)
ExitOnErr(J->addIRModule(std::move(TSM)));
// The example uses a non-lazy JIT for simplicity. Thus, looking up the main
// function will materialize all reachable code. It also triggers debug
// registration in the remote target process.
JITEvaluatedSymbol MainFn = ExitOnErr(J->lookup("main"));
outs() << "Running: main(";
int Pos = 0;
std::vector<std::string> ActualArgv{"LLJITWithRemoteDebugging"};
for (const std::string &Arg : InputArgv) {
outs() << (Pos++ == 0 ? "" : ", ") << "\"" << Arg << "\"";
ActualArgv.push_back(Arg);
}
outs() << ")\n";
// Execute the code in the remote target process and dump the result. With
// the debugger attached to the target, it should be possible to inspect the
// JITed code as if it was compiled statically.
{
JITTargetAddress MainFnAddr = MainFn.getAddress();
ExecutorProcessControl &EPC =
J->getExecutionSession().getExecutorProcessControl();
int Result = ExitOnErr(EPC.runAsMain(ExecutorAddr(MainFnAddr), ActualArgv));
outs() << "Exit code: " << Result << "\n";
}
return 0;
}