[mlir][vector] Folder: shape_cast(extract) -> extract (#146368)

In a later PR more shape_cast ops will appear. Specifically, broadcasts that 
just prepend ones become shape_cast ops (i.e. volume preserving broadcasts 
are canonicalized to shape_casts). This PR ensures that broadcast-like 
shape_cast ops fold at least as well as broadcast ops.

This is done by modifying patterns that target broadcast ops, to target
'broadcast-like' ops. No new patterns are added, the patterns that exist
are just made to match on shape_casts where appropriate.

This PR also includes minor code simplifications: use
`isBroadcastableTo` to simplify `ExtractOpFromBroadcast` and simplify
how broadcast dims are detected in `foldExtractFromBroadcast`. These are
NFC.

---------

Co-authored-by: Andrzej WarzyƄski <andrzej.warzynski@gmail.com>
3 files changed
tree: d200c7f50d3516d54978cce3d584fc3fc78f4504
  1. .ci/
  2. .github/
  3. bolt/
  4. clang/
  5. clang-tools-extra/
  6. cmake/
  7. compiler-rt/
  8. cross-project-tests/
  9. flang/
  10. flang-rt/
  11. libc/
  12. libclc/
  13. libcxx/
  14. libcxxabi/
  15. libunwind/
  16. lld/
  17. lldb/
  18. llvm/
  19. llvm-libgcc/
  20. mlir/
  21. offload/
  22. openmp/
  23. polly/
  24. runtimes/
  25. third-party/
  26. utils/
  27. .clang-format
  28. .clang-format-ignore
  29. .clang-tidy
  30. .git-blame-ignore-revs
  31. .gitattributes
  32. .gitignore
  33. .mailmap
  34. CODE_OF_CONDUCT.md
  35. CONTRIBUTING.md
  36. LICENSE.TXT
  37. pyproject.toml
  38. README.md
  39. SECURITY.md
README.md

The LLVM Compiler Infrastructure

OpenSSF Scorecard OpenSSF Best Practices libc++

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, LLVM Office Hours or Regular sync-ups.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.