[funcattrs] Infer nosync from instruction walk

Pretty straightforward use of existing infrastructure and port of the attributor inference rules for nosync.

A couple points of interest:
* I deliberately switched from "monotonic or better" to "unordered or better". This is simply me being conservative and is better in line with the rest of the optimizer. We treat monotonic conservatively pretty much everywhere.
* The operand bundle test change is suspicious. It looks like we might have missed something here, but if so, it's an issue with the existing nofree inference as well. I'm going to take a closer look at that separately.
* I needed to keep the previous inference from readnone. This surprised me, but made sense once I realized readonly inference goes to lengths to reason about local vs non-local memory and that writes to local memory are okay. This is fine for the purpose of nosync, but would e.g. prevent us from inferring nofree from readnone - which is slightly surprising.

Differential Revision: https://reviews.llvm.org/D99769
8 files changed
tree: e184cbf5e65d45d55c7e6d11848fd755ae230917
  1. .github/
  2. clang/
  3. clang-tools-extra/
  4. compiler-rt/
  5. debuginfo-tests/
  6. flang/
  7. libc/
  8. libclc/
  9. libcxx/
  10. libcxxabi/
  11. libunwind/
  12. lld/
  13. lldb/
  14. llvm/
  15. mlir/
  16. openmp/
  17. parallel-libs/
  18. polly/
  19. pstl/
  20. runtimes/
  21. utils/
  22. .arcconfig
  23. .arclint
  24. .clang-format
  25. .clang-tidy
  26. .git-blame-ignore-revs
  27. .gitignore
  28. CONTRIBUTING.md
  29. README.md
README.md

The LLVM Compiler Infrastructure

This directory and its sub-directories contain source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting Started with the LLVM System

Taken from https://llvm.org/docs/GettingStarted.html.

Overview

Welcome to the LLVM project!

The LLVM project has multiple components. The core of the project is itself called “LLVM”. This contains all of the tools, libraries, and header files needed to process intermediate representations and converts it into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.

C-like languages use the Clang front end. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.

This is an example work-flow and configuration to get and build the LLVM source:

  1. Checkout LLVM (including related sub-projects like Clang):

    • git clone https://github.com/llvm/llvm-project.git

    • Or, on windows, git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git

  2. Configure and build LLVM and Clang:

    • cd llvm-project

    • cmake -S llvm -B build -G <generator> [options]

      Some common build system generators are:

      • Ninja --- for generating Ninja build files. Most llvm developers use Ninja.
      • Unix Makefiles --- for generating make-compatible parallel makefiles.
      • Visual Studio --- for generating Visual Studio projects and solutions.
      • Xcode --- for generating Xcode projects.

      Some Common options:

      • -DLLVM_ENABLE_PROJECTS='...' --- semicolon-separated list of the LLVM sub-projects you'd like to additionally build. Can include any of: clang, clang-tools-extra, libcxx, libcxxabi, libunwind, lldb, compiler-rt, lld, polly, or debuginfo-tests.

        For example, to build LLVM, Clang, libcxx, and libcxxabi, use -DLLVM_ENABLE_PROJECTS="clang;libcxx;libcxxabi".

      • -DCMAKE_INSTALL_PREFIX=directory --- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default /usr/local).

      • -DCMAKE_BUILD_TYPE=type --- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug.

      • -DLLVM_ENABLE_ASSERTIONS=On --- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).

    • cmake --build build [-- [options] <target>] or your build system specified above directly.

      • The default target (i.e. ninja or make) will build all of LLVM.

      • The check-all target (i.e. ninja check-all) will run the regression tests to ensure everything is in working order.

      • CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own check-<project> target.

      • Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for make, use the option -j NNN, where NNN is the number of parallel jobs, e.g. the number of CPUs you have.

    • For more information see CMake

Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.